Tarantool
Release 2.1.1

Aug 08, 2019

Contents

An application server together with a database manager 1
Database features 3
User’s Guide 5
3.1 Preface . . . o . e e e e e e e e e e 5
3.2 Getting started L L e e e e 6
3.3 Database e 12
3.4 Application server L L e e e 51
3.5 Server administration 89
3.6 Replication L e e e e e 120
3.7 Connectors . . . v . v i e e e e e e e e e e e e e e e 143
3.8 SQL . . e e e e e 154
3.9 FAQ . . o ot 164
Reference 165
4.1 SQL reference L L 165
4.2 Built-in modules reference Lo 204
4.3 Rocks reference L L e 448
4.4 Configuration reference L 498
4.5 Utility tarantoolctl L 522
4.6 Tipson Luasyntax o e e e e e 524
Tutorials 527
5.1 Luatutorials e e e e e e e e e e e e 527
5.2 Ctutorial 539
5.3 SQL tutorial oL e e 546
5.4 libslave tutorial L L 557
Release Notes 561
6.1 Version 2.X 561
6.2 Version 1.10 564
6.3 Version 1.9 L e e e e e 567
6.4 Version 1.8 L e e e e e e e 568
6.5 Version 1.7 L 569
6.6 Version 1.6 L 579

7 Contributor’s Guide 585

7.1 C APIreference e 585
7.2 Internals 612
7.3 Build and contribute e 627
7.4 Guidelines e e e e e 636
Lua Module Index 677

ii

CHAPTER 1

An application server together with a database manager

Tarantool is a Lua application server integrated with a database management system. It has a “fiber” model
which means that many Tarantool applications can run simultaneously on a single thread, while each instance
of the Tarantool server itself can run multiple threads for input-output and background maintenance. It
incorporates the LuaJIT — “Just In Time” — Lua compiler, Lua libraries for most common applications, and
the Tarantool Database Server which is an established NoSQL DBMS. Thus Tarantool serves all the purposes
that have made node.js and Twisted popular, plus it supports data persistence.

The code is free. The open-source license is BSD license. The supported platforms are GNU /Linux, Mac
OS and FreeBSD.

Tarantool’s creator and biggest user is Mail.Ru, the largest internet company in Russia, with 30 million
users, 25 million emails per day, and a web site whose Alexa global rank is in the top 40 worldwide.
Tarantool services Mail.Ru’s hottest data, such as the session data of online users, the properties of online
applications, the caches of the underlying data, the distribution and sharding algorithms, and much more.
Outside Mail.Ru the software is used by a growing number of projects in online gaming, digital marketing,
and social media industries. Although Mail.Ru is the sponsor for product development, the roadmap and
the bugs database and the development process are fully open. The software incorporates patches from
dozens of community contributors. The Tarantool community writes and maintains most of the drivers for
programming languages. The greater Lua community has hundreds of useful packages most of which can
become Tarantool extensions.

Users can create, modify and drop Lua functions at runtime. Or they can define Lua programs that are
loaded during startup for triggers, background tasks, and interacting with networked peers. Unlike popular
application development frameworks based on a “reactor” pattern, networking in server-side Lua is sequential,
yet very efficient, as it is built on top of the cooperative multitasking environment that Tarantool itself uses.

One of the built-in Lua packages provides an API for the Database Management System. Thus some
developers see Tarantool as a DBMS with a popular stored procedure language, while others see it as a Lua
interpreter, while still others see it as a replacement for many components of multi-tier Web applications.
Performance can be a few hundred thousand transactions per second on a laptop, scalable upwards or
outwards to server farms.

http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://api.mail.ru
http://www.alexa.com/siteinfo/mail.ru

Tarantool, Release 2.1.1

2 Chapter 1. An application server together with a database manager

CHAPTER 2

Database features

Tarantool can run without it, but “The Box” — the DBMS server — is a strong distinguishing feature.

The database API allows for permanently storing Lua objects, managing object collections, creating or
dropping secondary keys, making changes atomically, configuring and monitoring replication, performing
controlled fail-over, and executing Lua code triggered by database events. Remote database instances are
accessible transparently via a remote-procedure-invocation API.

Tarantool’s DBMS server uses the storage engine concept, where different sets of algorithms and data struc-
tures can be used for different situations. Two storage engines are built-in: an in-memory engine which has
all the data and indexes in RAM, and a two-level B-tree engine for data sets whose size is 10 to 1000 times
the amount of available RAM. All storage engines in Tarantool support transactions and replication by using
a common write ahead log (WAL). This ensures consistency and crash safety of the persistent state. Changes
are not, considered complete until the WAL is written. The logging subsystem supports group commit.

Tarantool’s in-memory storage engine (memtx) keeps all the data in random-access memory, and therefore
has very low read latency. It also keeps persistent copies of the data in non-volatile storage, such as disk,
when users request “snapshots”. If an instance of the server stops and the random-access memory is lost,
then restarts, it reads the latest snapshot and then replays the transactions that are in the log — therefore
no data is lost.

Tarantool’s in-memory engine is lock-free in typical situations. Instead of the operating system’s concurrency
primitives, such as mutexes, Tarantool uses cooperative multitasking to handle thousands of connections
simultaneously. There is a fixed number of independent execution threads. The threads do not share state.
Instead they exchange data using low-overhead message queues. While this approach limits the number of
cores that the instance will use, it removes competition for the memory bus and ensures peak scalability of
memory access and network throughput. CPU utilization of a typical highly-loaded Tarantool instance is
under 10%. Searches are possible via secondary index keys as well as primary keys.

Tarantool’s disk-based storage engine is a fusion of ideas from modern filesystems, log-structured merge trees
and classical B-trees. All data is organized into ranges. Each range is represented by a file on disk. Range
size is a configuration option and normally is around 64MB. Each range is a collection of pages, serving
different purposes. Pages in a fully merged range contain non-overlapping ranges of keys. A range can be
partially merged if there were a lot of changes in its key range recently. In that case some pages represent
new keys and values in the range. The disk-based storage engine is append only: new data never overwrites
old data. The disk-based storage engine is named vinyl.

Tarantool, Release 2.1.1

Tarantool supports multi-part index keys. The possible index types are HASH, TREE, BITSET, and
RTREE.

Tarantool supports asynchronous replication, locally or to remote hosts. The replication architecture can be
master-master, that is, many nodes may both handle the loads and receive what others have handled, for
the same data sets.

Tarantool supports basic SQL structures and persistence for SQL operations (with acceptable limitations).
All tables and triggers created in SQL are available after server restart.

4 Chapter 2. Database features

CHAPTER 3

User’s Guide

3.1 Preface

Welcome to Tarantool! This is the User’s Guide. We recommend reading it first, and consulting Reference
materials for more detail afterwards, if needed.

3.1.1 How to read the documentation

To get started, you can install and launch Tarantool using a Docker container, a binary package, or the online
Tarantool server at http://try.tarantool.org. Either way, as the first tryout, you can follow the introductory
exercises from Chapter 2 “Getting started”. If you want more hands-on experience, proceed to Tutorials
after you are through with Chapter 2.

Chapter 3 “Database” is about using Tarantool as a NoSQL DBMS, whereas Chapter 4 “Application server”
is about using Tarantool as an application server.

Chapter 5 “Server administration” and Chapter 6 “Replication” are primarily for administrators.

Chapter 7 “Connectors” is strictly for users who are connecting from a different language such as C or Perl
or Python — other users will find no immediate need for this chapter.

Chapter 8 “FAQ” gives answers to some frequently asked questions about Tarantool.

For experienced users, there are also Reference materials, a Contributor’s Guide and an extensive set of
comments in the source code.

3.1.2 Getting in touch with the Tarantool community

Please report bugs or make feature requests at http://github.com/tarantool /tarantool /issues.

You can contact developers directly in telegram or in a Tarantool discussion group (English or Russian).

http://try.tarantool.org
http://github.com/tarantool/tarantool/issues
http://telegram.me/tarantool
https://groups.google.com/forum/#!forum/tarantool
https://googlegroups.com/group/tarantool-ru

Tarantool, Release 2.1.1

3.1.3 Conventions used in this manual

Square brackets [and | enclose optional syntax.
Two dots in a row .. mean the preceding tokens may be repeated.

A vertical bar | means the preceding and following tokens are mutually exclusive alternatives.

3.2 Getting started

In this chapter, we explain how to install Tarantool, how to start it, and how to create a simple database.

This chapter contains the following sections:

3.2.1 Using a Docker image

For trial and test purposes, we recommend using official Tarantool images for Docker. An official image
contains a particular Tarantool version (1.6, 1.10 or 2.1) and all popular external modules for Tarantool.
Everything is already installed and configured in Linux. These images are the easiest way to install and use
Tarantool.

Note: If you’re new to Docker, we recommend going over this tutorial before proceeding with this chapter.

Launching a container

If you don’t have Docker installed, please follow the official installation guide for your OS.

To start a fully functional Tarantool instance, run a container with minimal options:

$ docker run '
--name mytarantool
-d -p 3301:3301 \
-v /data/dir/on/host:/var/lib/tarantool \
tarantool/tarantool:2

This command runs a new container named ‘mytarantool’. Docker starts it from an official image named
‘tarantool /tarantool:2’, with Tarantool version 2.1 and all external modules already installed.

Tarantool will be accepting incoming connections on localhost:3301. You may start using it as a key-value
storage right away.

Tarantool persists data inside the container. To make your test data available after you stop the container,
this command also mounts the host’s directory /data/dir/on/host (you need to specify here an absolute
path to an existing local directory) in the container’s directory /var/lib/tarantool (by convention, Tarantool
in a container uses this directory to persist data). So, all changes made in the mounted directory on the
container’s side are applied to the host’s disk.

Tarantool’s database module in the container is already configured and started. You needn’t do it manually,
unless you use Tarantool as an application server and run it with an application.

6 Chapter 3. User’s Guide

https://github.com/tarantool/docker
https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/#/step-1-get-docker

Tarantool, Release 2.1.1

Attaching to Tarantool

To attach to Tarantool that runs inside the container, say:

$ docker exec -i -t mytarantool console

This command:
¢ Instructs Tarantool to open an interactive console port for incoming connections.
e Attaches to the Tarantool server inside the container under ‘admin’ user via a standard Unix socket.

Tarantool displays a prompt:

tarantool.sock>

Now you can enter requests on the command line.

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

While you're attached to the console, let’s create a simple test database.

First, create the first space (named ‘tester’):

tarantool.sock > s = box.schema.space.create(' tester ")

Format the created space by specifying field names and types:

tarantool.sock > s:format({

{name — 'id', type — 'unsigned'},
{name = 'band name', type = 'string'},
- {name = 'year', type — 'unsigned'}

Create the first index (named ‘primary’):

tarantool.sock > s:create index('primary', {
type = 'hash',
- parts = {'id"'}

)

This is a primary index based on the ‘id’ field of each tuple.

Insert three tuples (our name for “records”) into the space:

tarantool.sock > s:insert{1, 'Roxette', 1986}
tarantool.sock > s:insert{2, 'Scorpions', 2015}
tarantool.sock> s:insert{3, 'Ace of Base', 1993}

To select a tuple using the ‘primary’ index, say:

tarantool.sock > s:select{3}

The terminal screen now looks like this:

3.2. Getting started 7

Tarantool, Release 2.1.1

tarantool.sock > s = box.schema.space.create(' tester ')

tarantool.sock > s:format({
> {name — 'id', type — 'unsigned'},

{name = 'band name', type = 'string'},
> {name — 'year', type — 'unsigned'}
=~}

tarantool.sock > s:create index('primary ', {
> type = 'hash',
parts — {'id'}

)

- unique: true
parts:

- type: unsigned
is_nullable: false
fieldno: 1

id: 0

space_id: 512

name: primary

type: HASH

>
>

tarantool.sock > s:insert{1, 'Roxette', 1986}

- [1, "Roxette", 1986]

tarantool.sock > s:insert{2, 'Scorpions', 2015}

- [2, 'Scorpions', 2015
[s p)

tarantool.sock > s:insert{3, 'Ace of Base', 1993}

- [3, "Ace of Base', 1993]

tarantool.sock > s:select{3}

- - [3, "Ace of Base', 1993]

To add a secondary index based on the ‘band name’ field, say:

tarantool.sock > s:create index('secondary', {
> type = 'hash',
> parts = {'band name'}

=~}

To select tuples using the ‘secondary’ index, say:

tarantool.sock > s.index.secondary:select{ ' Scorpions'}

- - [2, "Scorpions', 2015]

8 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Stopping a container

When the testing is over, stop the container politely:

$ docker stop mytarantool

This was a temporary container, and its disk/memory data were flushed when you stopped it. But since you
mounted a data directory from the host in the container, Tarantool’s data files were persisted to the host’s
disk. Now if you start a new container and mount that data directory in it, Tarantool will recover all data
from disk and continue working with the persisted data.

3.2.2 Using a binary package

For production purposes, we recommend official binary packages. You can choose from two Tarantool
versions: 1.10 (stable) or 2.1 (beta). An automatic build system creates, tests and publishes packages for
every push into a corresponding branch (1.10 or 2.1) at Tarantool’s GitHub repository.

To download and install the package that’s appropriate for your OS, start a shell (terminal) and enter the
command-line instructions provided for your OS at Tarantool’s download page.

Starting Tarantool

To start a Tarantool instance, say this:

$ # if you downloaded a binary with apt-get or yum, say this:

$ /usr/bin/tarantool

$ # if you downloaded and untarred a binary tarball to ~ /tarantool, say this:
$ 7 /tarantool /bin/tarantool

Tarantool starts in the interactive mode and displays a prompt:

tarantool >

Now you can enter requests on the command line.

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

Here is how to create a simple test database after installation.

1. To let Tarantool store data in a separate place, create a new directory dedicated for tests:

$ mkdir ~/tarantool _sandbox
$ cd ~/tarantool sandbox

You can delete the directory when the tests are over.
2. Check if the default port the database instance will listen to is vacant.

Depending on the release, during installation Tarantool may start a demonstrative global example.lua
instance that listens to the 3301 port by default. The example.lua file showcases basic configuration and
can be found in the /etc/tarantool/instances.enabled or /etc/tarantool/instances.available directories.

3.2. Getting started 9

http://tarantool.org/download.html
https://github.com/tarantool/tarantool
http://tarantool.org/download.html

Tarantool, Release 2.1.1

However, we encourage you to perform the instance startup manually, so you can learn.
Make sure the default port is vacant:

1. To check if the demonstrative instance is running, say:

$ Isof -i :3301
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
tarantool 6851 root 12u IPv4 40827 0t0 TCP *:3301 (LISTEN)

2. If it does, kill the corresponding process. In this example:

$ kill 6851

. To start Tarantool’s database module and make the instance accept TCP requests on port 3301, say:

tarantool > box.cfg{listen = 3301}

. Create the first space (named 'tester'):

tarantool> s = box.schema.space.create(' tester')

. Format the created space by specifying field names and types:

tarantool > s:format({
> {name — 'id', type = 'unsigned'},

{name = 'band_ name', type = 'string'},
> {name — 'year', type — 'unsigned'}
-}

. Create the first index (named 'primary'):

tarantool > s:create index('primary', {
> type = 'hash',
> parts — {'id'}

)

This is a primary index based on the id field of each tuple.

. Insert three tuples (our name for “records”) into the space:

tarantool > s:insert{1, 'Roxette', 1986}
tarantool > s:nsert{2, 'Scorpions', 2015}
tarantool™> s:insert{3, 'Ace of Base', 1993}

. To select a tuple using the 'primary' index, say:

tarantool> s:select{3}

The terminal screen now looks like this:

tarantool > s — box.schema.space.create(' tester ")

tarantool > s:format({
{name = 'id', type = "unsigned'},

> {name — 'band name', type — 'string'},
> {name — 'year', type — 'unsigned'}
)

(continues on next page)

10

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

tarantool > s:create index('primary', {
type = 'hash',
> parts — {'id'}
)
- unique: true

parts:

- type: unsigned
is_nullable: false
fieldno: 1

id: 0

space_id: 512

name: primary

type: HASH

tarantool > s:insert{1, 'Roxette', 1986}

- il, 'Roxette ", 1986]

.t.z.u‘antool s:iinsert{2, 'Scorpions', 2015}
:-iQ, 'Scorpions ', 2015]

‘Eérantoolj: s:insert{3, 'Ace of Base', 1993}
:_i3, "Ace of Base', 1993]

.t;rantooli\ s:select{3}

- - [3, "Ace of Base', 1993]

9. To add a secondary index based on the 'band name' field, say:

tarantool > s:create_index('secondary ', {
> type — 'hash',
~ parts = {'band name'}

b

10. To select tuples using the 'secondary' index, say:

tarantool> s.index.secondary:select{ ' Scorpions' }

- - [2, "Scorpions"', 2015]

11. Now, to prepare for the example in the next section, try this:

tarantool > box.schema.user.grant('guest', 'read,write,execute', 'universe')

Connecting remotely

In the request box.cfg{listen = 3301} that we made earlier, the listen value can be any form of a URI
(uniform resource identifier). In this case, it’s just a local port: port 3301. You can send requests to the

3.2. Getting started 11

Tarantool, Release 2.1.1

listen URI via:
(1) telnet,
(2) a connector,
(3) another instance of Tarantool (using the console module), or
(4) tarantoolct! utility.
Let’s try (4).

Switch to another terminal. On Linux, for example, this means starting another instance of a Bash shell.
You can switch to any working directory in the new terminal, not necessarily to ~/tarantool sandbox.

Start the tarantoolctl utility:

’ $ tarantoolctl connect '3301"

This means “use tarantoolctl connect to connect to the Tarantool instance that’s listening on localhost:3301”.

Try this request:

localhost:3301 > box.space.tester:select{2}

This means “send a request to that Tarantool instance, and display the result”. The result in this case is one
of the tuples that was inserted earlier. Your terminal screen should now look like this:

$ tarantoolctl connect 3301
/usr/local /bin/tarantoolctl: connected to localhost:3301
localhost:3301 > box.space.tester:select{2}

- - 2, "Scorpions', 2015]

You can repeat box.space...:insert{} and box.space...:select{} indefinitely, on either Tarantool instance.
When the testing is over:

 To drop the space: s:drop()

¢ To stop tarantoolctl: Ctrl+C or Ctrl+D

 To stop Tarantool (an alternative): the standard Lua function os.exit()

 To stop Tarantool (from another terminal): sudo pkill -f tarantool

 To destroy the test: rm -r ~ /tarantool _sandbox

3.3 Database

In this chapter, we introduce the basic concepts of working with Tarantool as a database manager.

This chapter contains the following sections:

3.3.1 Data model

This section describes how Tarantool stores values and what operations with data it supports.

If you tried to create a database as suggested in our “Getting started” exercises, then your test database now
looks like this:

12 Chapter 3. User’s Guide

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 2.1.1

SPALCE 'tester’

NDEX ‘primary’

TUPLE [1, 'Roxette’)
TUPLE [=,

KEY ['Roxette’

KEY ['Scorpions']

KEY [‘Ace of Base']

Space

A space — ‘tester’ in our example — is a container.

When Tarantool is being used to store data, there is always at least one space. Each space has a unique
name specified by the user. Besides, each space has a unique numeric identifier which can be specified by
the user, but usually is assigned automatically by Tarantool. Finally, a space always has an engine: memtx
(default) — in-memory engine, fast but limited in size, or vinyl — on-disk engine for huge data sets.

A space is a container for tuples. To be functional, it needs to have a primary index. It can also have
secondary indexes.

Tuple
A tuple plays the same role as a “row” or a “record”, and the components of a tuple (which we call “fields”)
play the same role as a “row column” or “record field”, except that:

« fields can be composite structures, such as arrays or maps, and

* fields don’t need to have names.

Any given tuple may have any number of fields, and the fields may be of different types. The identifier of a
field is the field’s number, base 1 (in Lua and other 1-based languages) or base 0 (in PHP or C/C++). For
example, “1” or “0” can be used in some contexts to refer to the first field of a tuple.

Tuples in Tarantool are stored as MsgPack arrays.

3.3. Database 13

https://en.wikipedia.org/wiki/MessagePack

Tarantool, Release 2.1.1

When Tarantool returns a tuple value in console, it uses the YAML format, for example: [3, 'Ace of Base',
1993].

Index

An index is a group of key values and pointers.

As with spaces, you should specify the index name, and let Tarantool come up with a unique numeric
identifier (“index id”).

An index always has a type. The default index type is “TREE’. TREE indexes are provided by all Tarantool
engines, can index unique and non-unique values, support partial key searches, comparisons and ordered
results. Additionally, memtx engine supports HASH, RTREE and BITSET indexes.

An index may be multi-part, that is, you can declare that an index key value is composed of two or more
fields in the tuple, in any order. For example, for an ordinary TREE index, the maximum number of parts
is 255.

An index may be unique, that is, you can declare that it would be illegal to have the same key value twice.

The first index defined on a space is called the primary key index, and it must be unique. All other indexes
are called secondary indexes, and they may be non-unique.

An index definition may include identifiers of tuple fields and their expected types (see allowed indexed field
types below).

In our example, we first defined the primary index (named ‘primary’) based on field #1 of each tuple:

tarantool > i = s:create _index('primary', {type = 'hash', parts = {1, "unsigned'}})

The effect is that, for all tuples in space ‘tester’, field #1 must exist and must contain an unsigned integer.
The index type is ‘hash’, so values in field #1 must be unique, because keys in HASH indexes are unique.

After that, we defined a secondary index (named ‘secondary’) based on field #2 of each tuple:

tarantool > i — s:create_index('secondary', {type = 'tree', parts — {2, 'string'}})

The effect is that, for all tuples in space ‘tester’, field #2 must exist and must contain a string. The index
type is ‘tree’, so values in field #2 must not be unique, because keys in TREE indexes may be non-unique.

Note: Space definitions and index definitions are stored permanently in Tarantool’s system spaces _space
and _index (for details, see reference on box.space submodule).

You can add, drop, or alter the definitions at runtime, with some restrictions. See syntax details in reference
on box module.

Data types

Tarantool is both a database and an application server. Hence a developer often deals with two type sets:
the programming language types (e.g. Lua) and the types of the Tarantool storage format (MsgPack).

14 Chapter 3. User’s Guide

https://en.wikipedia.org/wiki/YAML

Tarantool, Release 2.1.1

Lua vs MsgPack

Scalar / compound | MsgPack type | Lua type Example value
scalar nil “nil” msgpack.NULL
scalar boolean “boolean” true

scalar string “string” ‘ABC

scalar integer “number” 12345

scalar double “number” 1.2345

scalar bin “cdata” ["binary 3t7e]
compound map “table” (with string keys) | {‘a’: 5, ‘b’: 6}
compound array “table” (with integer keys) | [1, 2, 3, 4, 5]
compound array tuple (“cdata”) [12345, ‘A B C’]

In Lua, a nil type has only one possible value, also called nil (displayed as null on Tarantool’s command line,
since the output is in the YAML format). Nils may be compared to values of any types with == (is-equal) or
~= (is-not-equal), but other operations will not work. Nils may not be used in Lua tables; the workaround
is to use msgpack.NULL

A boolean is either true or false.

A string is a variable-length sequence of bytes, usually represented with alphanumeric characters inside
single quotes. In both Lua and MsgPack, strings are treated as binary data, with no attempts to determine
a string’s character set or to perform any string conversion — unless there is an optional collation. So, usually,
string sorting and comparison are done byte-by-byte, without any special collation rules applied. (Example:
numbers are ordered by their point on the number line, so 2345 is greater than 500; meanwhile, strings are
ordered by the encoding of the first byte, then the encoding of the second byte, and so on, so ‘2345’ is less
than ‘500’.)

In Lua, a number is double-precision floating-point, but Tarantool allows both integer and floating-point
values. Tarantool will try to store a Lua number as floating-point if the value contains a decimal point or
is very large (greater than 100 trillion = 1el4), otherwise Tarantool will store it as an integer. To ensure
that even very large numbers are stored as integers, use the tonumber64 function, or the LL (Long Long)
suffix, or the ULL (Unsigned Long Long) suffix. Here are examples of numbers using regular notation,
exponential notation, the ULL suffix and the tonumber64 function: -55, -2.7e+20, 100000000000000ULL,
tonumber64(' 18446744073709551615").

A bin (binary) value is not directly supported by Lua but there is a Tarantool type VARBINARY which
is encoded as MessagePack binary. For an (advanced) example showing how to insert VARBINARY into a
database, see the Cookbook Recipe for ffi varbinary insert.

Lua tables with string keys are stored as MsgPack maps; Lua tables with integer keys starting with 1 — as
MsgPack arrays. Nils may not be used in Lua tables; the workaround is to use msgpack. NULL

A tuple is a light reference to a MsgPack array stored in the database. It is a special type (cdata) to avoid
conversion to a Lua table on retrieval. A few functions may return tables with multiple tuples. For more
tuple examples, see box.tuple.

Note: Tarantool uses the MsgPack format for database storage, which is variable-length. So, for example,
the smallest number requires only one byte, but the largest number requires nine bytes.

Examples of insert requests with different data types:

tarantool > box.space.K:insert{1,nil,true,' A B C',12345,1.2345}

(continues on next page)

3.3. Database 15

http://www.lua.org/pil/2.1.html
http://www.lua.org/pil/2.2.html
http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.3.html
http://luajit.org/ext_ffi.html#call
http://www.lua.org/pil/2.5.html
http://www.lua.org/pil/2.5.html
http://luajit.org/ext_ffi.html#call

Tarantool, Release 2.1.1

continued from previous page
g

- [1, null, true, 'A B C', 12345, 1.2345]

.t;rantool box.space.K:insert{2,{["a']=5,['b']=6}}
:_i2, {ra": 5, 'b': 6}]

.t.'(%ra‘ntool box.space.K:insert{3,{1,2,3,4,5}}

- [:))7 [17 2,3, 4, ‘V)”

Indexed field types

Indexes restrict values which Tarantool’s MsgPack may contain. This is why, for example, ‘unsigned’ is a
separate indexed field type, compared to ‘integer’ data type in MsgPack: they both store ‘integer’ values,
but an ‘unsigned’ index contains only non-negative integer values and an ‘integer’ index contains all integer
values.

Here’s how Tarantool indexed field types correspond to MsgPack data types.

16 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Indexed field | MsgPack data type (and possible values) In- Exam-
type dex ples
type
unsigned integer (integer between 0 and 18446744073709551615, i.e. about 18 | TREE] 123456
(may also be | quintillion) BIT-
called ‘uint’ SET
or ‘num’, or
but ‘num’ is HASH
deprecated)
integer (may | integer (integer between -9223372036854775808 and | TREE| -2763
also be called | 18446744073709551615) or
‘int’) HASH
number integer (integer between -9223372036854775808 and | TREE| 1.234
18446744073709551615) or -44
double (single-precision floating point number or double-precision float- | HASH| 1.447e+44
ing point number)
string (may | string (any set of octets, up to the maximum length) TREE, ‘A B
also be called BIT- | C
‘str”) SET | ‘\65
or \66
HASH| \67’
varbinary bin (any set of octets, up to the maximum length) TREE| ‘\65
or \66
HASH| \67’
boolean bool (true or false) TREE| true
or
HASH
array array (list of numbers representing points in a geometric figure) RTREE{10,
11}
{3, 5,
9, 10}
scalar null TREE| msg-
bool (true or false) or pack.NULL
integer (integer between -9223372036854775808 and | HASH| true
18446744073709551615) -1
double (single-precision floating point number or double-precision float- 1.234
ing point number) “
string (any set of octets) ‘Py’
varbinary (any set of octets)
Note: When there is a mix of types, the key order is: null, then
booleans, then numbers, then strings, then varbinary.
Collations

By default, when Tarantool compares strings, it uses what we call a “binary” collation. The only consideration
here is the numeric value of each byte in the string. Therefore, if the string is encoded with ASCII or UTF-8,
then "A' < 'B' < 'a', because the encoding of ‘A’ (what used to be called the “ASCII value”) is 65, the
encoding of ‘B’ is 66, and the encoding of ‘a’ is 98. Binary collation is best if you prefer fast deterministic
simple maintenance and searching with Tarantool indexes.

But if you want the ordering that you see in phone books and dictionaries, then you need Tarantool’s optional
collations, such as unicode and unicode ci, which allow for 'a' < 'A' < 'B' and 'a' = "A' < 'B"

3.3. Database

17

Tarantool, Release 2.1.1

respectively.

The unicode and unicode ci optional collations use the ordering according to the Default Unicode Collation
Element Table (DUCET) and the rules described in Unicode® Technical Standard #10 Unicode Collation
Algorithm (UTS #10 UCA). The only difference between the two collations is about weights:

* unicode collation observes L1 and L2 and L3 weights (strength = ‘tertiary’),

* unicode _ci collation observes only L1 weights (strength = ‘primary’), so for example ‘a’ = ‘A’ = ‘4
_ cA'a'

As an example, take some Russian words:

'EJIE!

' eJ1eiHbII '
'éika’

' €JIOBBI '

' e7103uTh '
'Enouka’

' €JIOIHBIHN '
'EJIn!

‘e’

...and show the difference in ordering and selecting by index:

¢ with unicode collation:

tarantool> box.space.T:create index('I', {parts = {{1,'str', collation—"unicode'}}})

tarantool > box.space.T.index.I:select()
- ['EJIE']

- [" eneitnbrit ']

- [rénxa']

- [emoBbrii '

- ['enozuTs |

- ['Enouxa']

- [émounbrit ' |

- [rems']

- ["EJIs"]

tarantool > box.space.T.index.I:select{ ' ExKa'}

-l

¢ with unicode ci collation:

tarantool > box.space.T:create _index('I", {parts = {{1,'str', collation—"unicode ci'}}})

tarantool > box.space.S.index.I:select()
~['EJIE']

- [eneiinbrit '

- [rénxa']

- [emonnrii ']

- ["enosuTs ']

- ['Emouxa ']

- [énounmrit ']

(continues on next page)

18 Chapter 3. User’s Guide

http://unicode.org/reports/tr10/#Default_Unicode_Collation_Element_Table
http://unicode.org/reports/tr10/#Default_Unicode_Collation_Element_Table
http://unicode.org/reports/tr10
http://unicode.org/reports/tr10
https://unicode.org/reports/tr10/#Weight_Level_Defn

Tarantool, Release 2.1.1

continued from previous page
g

- ["EJIs']

tarantool ~ box.space.S.index.Iiselect{ ' EnKa '}

- - [rémxa']

In all, collation involves much more than these simple examples of upper case / lower case and accented
/ unaccented equivalence in alphabets. We also consider variations of the same character, non-alphabetic
writing systems, and special rules that apply for combinations of characters.

For English: use “unicode” and “unicode ci”. For Russian: use “unicode” and “unicode ci” (although a few
Russians might prefer the Kyrgyz collation which says Cyrillic letters ‘E’ and ‘E’ are the same with level-1
weights). For Dutch, German (dictionary), French, Indonesian, Irish, Italian, Lingala, Malay, Portuguese,
Southern Soho, Xhosa, or Zulu: “unicode” and “unicode ci” will do.

The tailored optional collations: For other languages, Tarantool supplies tailored collations for every modern
language that has more than a million native speakers, and for specialized situations such as the difference
between dictionary order and telephone book order. To see a complete list say box.space. _collation:select().
The tailored collation names have the form unicode [language code] [strength] where language code is a
standard 2-character or 3-character language abbreviation, and strength is s1 for “primary strength” (level-1
weights), s2 for “secondary”, s3 for “tertiary”. Tarantool uses the same language codes as the ones in the “list
of tailorable locales” on man pages of Ubuntu and Fedora. Charts explaining the precise differences from
DUCET order are in the Common Language Data Repository.

Sequences

A sequence is a generator of ordered integer values.

As with spaces and indexes, you should specify the sequence name, and let Tarantool come up with a unique
numeric identifier (“sequence id”).

As well, you can specify several options when creating a new sequence. The options determine what value
will be generated whenever the sequence is used.

Options for box.schema.sequence.create()

Option | Type and meaning Default Examples

name

start Integer. The value to generate the first time a sequence is used 1 start=0

min Integer. Values smaller than this cannot be generated 1 min=-

1000

max Integer. Values larger than this cannot be generated 9223372036834 7786 D

cycle Boolean. Whether to start again when values cannot be generated | false cycle=true

cache Integer. The number of values to store in a cache 0 cache=0

step Integer. What to add to the previous generated value, when gen- | 1 step=-1
erating a new value

if not exBBtwlean. If this is true and a sequence with this name exists | false if not_exisf
already, ignore other options and use the existing values

Once a sequence exists, it can be altered, dropped, reset, forced to generate the next value, or associated
with an index.

3.3. Database 19

s=true

http://manpages.ubuntu.com/manpages/bionic/man3/Unicode::Collate::Locale.3perl.html
http://www.polarhome.com/service/man/?qf=Unicode%3A%3ACollate%3A%3ALocale&af=0&tf=2&of=Fedora
https://unicode.org/cldr/charts/30/collation

Tarantool, Release 2.1.1

For an initial example, we generate a sequence named ‘S’.

tarantool > box.schema.sequence.create('S',{min=5, start=5})
- step: 1

id: 5

min: 5

cache: 0

uid: 1

max: 9223372036854775807

cycle: false

name: S

start: 5

The result shows that the new sequence has all default values, except for the two that were specified, min
and start.

Then we get the next value, with the next() function.

tarantool > box.sequence.S:next()

-5

The result is the same as the start value. If we called next() again, we would get 6 (because the previous
value plus the step value is 6), and so on.

Then we create a new table, and say that its primary key may be generated from the sequence.

tarantool > s=box.schema.space.create('T');s:create _index('I',{sequence="S"})

Then we insert a tuple, without specifying a value for the primary key.

tarantool > box.space.T:insert{nil, 'other stuff'}

- [6, 'other stuff']

The result is a new tuple where the first field has a value of 6. This arrangement, where the system
automatically generates the values for a primary key, is sometimes called “auto-incrementing” or “identity”.

For syntax and implementation details, see the reference for box.schema.sequence.

Persistence

In Tarantool, updates to the database are recorded in the so-called write ahead log (WAL) files. This ensures
data persistence. When a power outage occurs or the Tarantool instance is killed incidentally, the in-memory
database is lost. In this situation, WAL files are used to restore the data. Namely, Tarantool reads the WAL
files and redoes the requests (this is called the “recovery process”). You can change the timing of the WAL
writer, or turn it off, by setting wal mode.

Tarantool also maintains a set of snapshot files. These files contain an on-disk copy of the entire data set for
a given moment. Instead of reading every WAL file since the databases were created, the recovery process
can load the latest snapshot file and then read only those WAL files that were produced after the snapshot
file was made. After checkpointing, old WAL files can be removed to free up space.

20 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

To force immediate creation of a snapshot file, you can use Tarantool’s box.snapshot() request. To enable
automatic creation of snapshot files, you can use Tarantool’s checkpoint daemon. The checkpoint daemon
sets intervals for forced checkpoints. It makes sure that the states of both memtx and vinyl storage engines
are synchronized and saved to disk, and automatically removes old WAL files.

Snapshot files can be created even if there is no WAL file.

Note: The memtx engine makes only regular checkpoints with the interval set in checkpoint daemon
configuration.

The vinyl engine runs checkpointing in the background at all times.

See the Internals section for more details about the WAL writer and the recovery process.

Operations

Data operations

The basic data operations supported in Tarantool are:
* five data-manipulation operations (INSERT, UPDATE, UPSERT, DELETE, REPLACE), and
* one data-retrieval operation (SELECT).
All of them are implemented as functions in box.space submodule.
Examples:
e INSERT: Add a new tuple to space ‘tester’.
The first field, field[1], will be 999 (MsgPack type is integer).
The second field, field[2], will be ‘Taranto’ (MsgPack type is string).

tarantool > box.space.tester:insert{999, 'Taranto'}

* UPDATE: Update the tuple, changing field field[2].

The clause “{999}”, which has the value to look up in the index of the tuple’s primary-key field, is
mandatory, because update() requests must always have a clause that specifies a unique key, which in
this case is field[1].

The clause “{{‘=’, 2, ‘Tarantino’}}” specifies that assignment will happen to field[2] with the new
value.

tarantool > box.space.tester:update({999}, {{'=", 2, ' Tarantino'}})

» UPSERT: Upsert the tuple, changing field field[2] again.

The syntax of upsert() is similar to the syntax of update(). However, the execution logic of these two
requests is different. UPSERT is either UPDATE or INSERT, depending on the database’s state. Also,
UPSERT execution is postponed until after transaction commit, so, unlike update(), upsert() doesn’t
return data back.

tarantool > box.space.tester:upsert({999}, {{'=", 2, ' Tarantism'}})

 REPLACE: Replace the tuple, adding a new field.

This is also possible with the update() request, but the update() request is usually more complicated.

3.3. Database 21

Tarantool, Release 2.1.1

tarantool> box.space.tester:replace{999, ' Tarantella', ' Tarantula'}

¢« SELECT: Retrieve the tuple.
The clause “{999}” is still mandatory, although it does not have to mention the primary key.

tarantool > box.space.tester:select {999}

e DELETE: Delete the tuple.
In this example, we identify the primary-key field.

tarantool > box.space.tester:delete{999}

Summarizing the examples:
* Functions insert and replace accept a tuple (where a primary key comes as part of the tuple).

* Function upsert accepts a tuple (where a primary key comes as part of the tuple), and also the update
operations to execute.

* Function delete accepts a full key of any unique index (primary or secondary).

* Function update accepts a full key of any unique index (primary or secondary), and also the operations
to execute.

* Function select accepts any key: primary/secondary, unique/non-unique, full/partial.

See reference on box.space for more details on using data operations.

Note: Besides Lua, you can use Perl, PHP, Python or other programming language connectors. The client
server protocol is open and documented. See this annotated BNF.

Index operations

Index operations are automatic: if a data-manipulation request changes a tuple, then it also changes the
index keys defined for the tuple.

The simple index-creation operation that we’ve illustrated before is:
box.space.space-name:create _index('index-name")

This creates a unique TREE index on the first field of all tuples (often called “Field#1”), which is assumed
to be numeric.

The simple SELECT request that we’ve illustrated before is:
box.space.space-name:select(value)

This looks for a single tuple via the first index. Since the first index is always unique, the maximum number
of returned tuples will be: one.

The following SELECT variations exist:
1. The search can use comparisons other than equality.

box.space.space-name:select(value, {iterator = 'GT'})

22 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

The comparison operators are LT, LE, EQ, REQ, GE, GT (for “less than”, “less than or equal”, “equal”,
“reversed equal”, “greater than or equal”, “greater than” respectively). Comparisons make sense if and
only if the index type is “TREE’.

This type of search may return more than one tuple; if so, the tuples will be in descending order by
key when the comparison operator is LT or LE or REQ, otherwise in ascending order.

2. The search can use a secondary index.
box.space.space-name.index.index-name:select(value)

For a primary-key search, it is optional to specify an index name. For a secondary-key search, it is
mandatory.

3. The search may be for some or all key parts.

-- Suppose an index has two parts
tarantool> box.space.space-name.index.index-name.parts

- - type: unsigned
fieldno: 1
- type: string
fieldno: 2

-- Suppose the space has three tuples
box.space.space-name:select()

T
'[]-7 'B']
'[27 ”]

4. The search may be for all fields, using a table for the value:
box.space.space-name:select({1, "A'})
or the search can be for one field, using a table or a scalar:
box.space.space-name:select(1)
In the second case, the result will be two tuples: {1, 'A'} and {1, 'B"'}.

You can specify even zero fields, causing all three tuples to be returned. (Notice that partial key
searches are available only in TREE indexes.)

Examples

e BITSET example:

tarantool > box.schema.space.create('bitset example")

tarantool > box.space.bitset example:create index('primary")

tarantool > box.space.bitset__example:create _index('bitset ',{unique—false,type="BITSET " _
< parts={2, 'unsigned ' }})

tarantool > box.space.bitset example:insert{1,1}

tarantool > box.space.bitset__example:insert{2,4}

tarantool > box.space.bitset example:insert{3,7}

tarantool > box.space.bitset example:insert{4,3}

tarantool > box.space.bitset__example.index.bitset:select(2, {iterator="BITS ANY SET'})

The result will be:

3.3. Database 23

Tarantool, Release 2.1.1

because (7 AND 2) is not equal to 0, and (3 AND 2) is not equal to 0.

« RTREE example:

tarantool > box.schema.space.create('rtree example")

—parts—{2," ARRAY '}})

tarantool > box.space.rtree_example:insert{2, {10, 11}}

tarantool > box.space.rtree_example:create _index(' primary")
tarantool > box.space.rtree__example:create _index('rtree',{unique—false,type—"'RTREE",_

tarantool > box.space.rtree_example:insert{1, {3, 5, 9, 10}}

tarantool > box.space.rtree_example.index.rtree:select({4, 7, 5, 9}, {iterator = 'GT'})

The result will be:

-1, 03, 5,9, 10]]

because a rectangle whose corners are at coordinates 4,7,5,9 is entirely within a rectangle

whose corners are at coordinates 3,5,9,10.

Additionally, there exist index iterator operations. They can only be used with code in Lua and C/C++.
Index iterators are for traversing indexes one key at a time, taking advantage of features that are specific
to an index type, for example evaluating Boolean expressions when traversing BITSET indexes, or going in

descending order when traversing TREE indexes.

See also other index operations like alter() and drop() in reference for box.index submodule.

Complexity factors

In reference for box.space and box.index submodules, there are notes about which complexity factors might

affect the resource usage of each function.

24

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Com- Effect

plexity

factor

Index The number of index keys is the same as the number of tuples in the data set. For a TREE
size index, if there are more keys, then the lookup time will be greater, although of course the effect

is not linear. For a HASH index, if there are more keys, then there is more RAM used, but the
number of low-level steps tends to remain constant.

Index Typically, a HASH index is faster than a TREE index if the number of tuples in the space is
type greater than one.

Num- Ordinarily, only one index is accessed to retrieve one tuple. But to update the tuple, there must
ber be N accesses if the space has N different indexes.

of in- | Note re storage engine: Vinyl optimizes away such accesses if secondary index fields are un-
dexes changed by the update. So, this complexity factor applies only to memtx, since it always makes
ac- a full-tuple copy on every update.

cessed

Num- A few requests, for example SELECT, can retrieve multiple tuples. This factor is usually less
ber of | important than the others.

tuples

ac-

cessed

WAL The important setting for the write-ahead log is wal mode. If the setting causes no writing or
set- delayed writing, this factor is unimportant. If the setting causes every data-change request to
tings wait for writing to finish on a slow device, this factor is more important than all the others.

3.3.2 Transaction control

Transactions in Tarantool occur in fibers on a single thread. That is why Tarantool has a guarantee of
execution atomicity. That requires emphasis.

Threads, fibers and yields

How does Tarantool process a basic operation? As an example, let’s take this query:

tarantool > box.space.tester:update({3}, {{'—", 2, 'size'}, {'=", 3, 0}})

This is equivalent to the following SQL statement for a table that stores primary keys in field[1]:

’UPDATE tester SET "field[2]" — 'size', "field[3]" — 0 WHERE "field[1]" — 3

This query will be processed with three operating system threads:

1. If we issue the query on a remote client, then the network thread on the server side receives the query,
parses the statement and changes it to a server executable message which has already been checked,
and which the server instance can understand without parsing everything again.

2. The network thread ships this message to the instance’s transaction processor thread using a lock-free
message bus. Lua programs execute directly in the transaction processor thread, and do not require
parsing and preparation.

The instance’s transaction processor thread uses the primary-key index on field[1] to find the location
of the tuple. It determines that the tuple can be updated (not much can go wrong when you’re merely
changing an unindexed field value to something shorter).

3.3. Database 25

Tarantool, Release 2.1.1

3. The transaction processor thread sends a message to the write-ahead logging (WAL) thread to commit
the transaction. When done, the WAL thread replies with a COMMIT or ROLLBACK result, which
is returned to the client.

Notice that there is only one transaction processor thread in Tarantool. Some people are used to the idea that
there can be multiple threads operating on the database, with (say) thread #1 reading row #x, while thread
#2 writes row #y. With Tarantool, no such thing ever happens. Only the transaction processor thread can
access the database, and there is only one transaction processor thread for each Tarantool instance.

Like any other Tarantool thread, the transaction processor thread can handle many fibers. A fiber is a set
of computer instructions that may contain “yield” signals. The transaction processor thread will execute all
computer instructions until a yield, then switch to execute the instructions of a different fiber. Thus (say)
the thread reads row #x for the sake of fiber #1, then writes row #y for the sake of fiber #2.

Yields must happen, otherwise the transaction processor thread would stick permanently on the same fiber.
There are two types of yields:

e implicit yields: every data-change operation or network-access causes an implicit yield, and every
statement that goes through the Tarantool client causes an implicit yield.

* explicit yields: in a Lua function, you can (and should) add “yield” statements to prevent hogging.
This is called cooperative multitasking.

Cooperative multitasking

Cooperative multitasking means: unless a running fiber deliberately yields control, it is not preempted by
some other fiber. But a running fiber will deliberately yield when it encounters a “yield point”: a transaction
commit, an operating system call, or an explicit “yield” request. Any system call which can block will be
performed asynchronously, and any running fiber which must wait for a system call will be preempted, so
that another ready-to-run fiber takes its place and becomes the new running fiber.

This model makes all programmatic locks unnecessary: cooperative multitasking ensures that there will be
no concurrency around a resource, no race conditions, and no memory consistency issues.

When requests are small, for example simple UPDATE or INSERT or DELETE or SELECT, fiber scheduling
is fair: it takes only a little time to process the request, schedule a disk write, and yield to a fiber serving
the next client.

However, a function might perform complex computations or might be written in such a way that yields
do not occur for a long time. This can lead to unfair scheduling, when a single client throttles the rest of
the system, or to apparent stalls in request processing. Avoiding this situation is the responsibility of the
function’s author.

Transactions

In the absence of transactions, any function that contains yield points may see changes in the database state
caused by fibers that preempt. Multi-statement transactions exist to provide isolation: each transaction sees
a consistent database state and commits all its changes atomically. At commit time, a yield happens and all
transaction changes are written to the write ahead log in a single batch. Or, if needed, transaction changes
can be rolled back — completely or to a specific savepoint.

To implement isolation, Tarantool uses a simple optimistic scheduler: the first transaction to commit wins.
If a concurrent active transaction has read a value modified by a committed transaction, it is aborted.

The cooperative scheduler ensures that, in absence of yields, a multi-statement transaction is not preempted
and hence is never aborted. Therefore, understanding yields is essential to writing abort-free code.

26 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Note: You can’t mix storage engines in a transaction today.

Implicit yields

The only explicit yield requests in Tarantool are fiber.sleep() and fiber.yield(), but many other requests
“imply” yields because Tarantool is designed to avoid blocking.

Database requests imply yields if and only if there is disk I/O. For memtx, since all data is in memory, there
is no disk I/O during the request. For vinyl, since some data may not be in memory, there may be disk
I/0O for a read (to fetch data from disk) or for a write (because a stall may occur while waiting for memory
to be free). For both memtx and vinyl, since data-change requests must be recorded in the WAL, there is
normally a commit. A commit happens automatically after every request in default “autocommit” mode, or
a commit happens at the end of a transaction in “transaction” mode, when a user deliberately commits by
calling box.commit(). Therefore for both memtx and vinyl, because there can be disk I/O, some database
operations may imply yields.

Many functions in modules fio, net__box, console and socket (the “os” and “network” requests) yield.
Example #1

* Engine = memtx select() insert() has one yield, at the end of insertion, caused by implicit commit;
select() has nothing to write to the WAL and so does not yield.

* Engine = vinyl select() insert() has between one and three yields, since select() may yield if the data is
not in cache, insert() may yield waiting for available memory, and there is an implicit yield at commit.

» The sequence begin() insert() insert() commit() yields only at commit if the engine is memtx, and can
yield up to 3 times if the engine is vinyl.

Example #2

Assume that in space ‘tester’ there are tuples in which the third field represents a positive dollar amount.
Let’s start a transaction, withdraw from tuple#1, deposit in tuple#2, and end the transaction, making its
effects permanent.

tarantool > function txn _example(from, to, amount of money)
box.begin()

box.space.tester:update(from, {{'-', 3, amount of money}})
box.space.tester:update(to, {{'+', 3, amount_ of money}})
box.commit()
return "ok"

end

tarantool > txn_example({999}, {1000}, 1.00)

- "ok"

If wal _mode = ‘none’, then implicit yielding at commit time does not take place, because there are no writes
to the WAL.

If a task is interactive — sending requests to the server and receiving responses — then it involves network 10,
and therefore there is an implicit yield, even if the request that is sent to the server is not itself an implicit
yield request. Therefore, the sequence:

3.3. Database 27

Tarantool, Release 2.1.1

select
select
select

causes blocking (in memtx), if it is inside a function or Lua program being executed on the server instance,
but causes yielding (in both memtx and vinyl) if it is done as a series of transmissions from a client, including
a client which operates via telnet, via one of the connectors, or via the MySQL and PostgreSQL rocks, or
via the interactive mode when using Tarantool as a client.

After a fiber has yielded and then has regained control, it immediately issues testcancel.

3.3.3 Access control

Understanding security details is primarily an issue for administrators. However, ordinary users should
at least skim this section to get an idea of how Tarantool makes it possible for administrators to prevent
unauthorized access to the database and to certain functions.

Briefly:

¢ There is a method to guarantee with password checks that users really are who they say they are
(“authentication”).

e There is a _user system space, where usernames and password-hashes are stored.
* There are functions for saying that certain users are allowed to do certain things (“privileges”).

e There is a _priv system space, where privileges are stored. Whenever a user tries to do an operation,
there is a check whether the user has the privilege to do the operation (“access control”).

Details follow.

Users

There is a current user for any program working with Tarantool, local or remote. If a remote connection is
using a binary port, the current user, by default, is ‘guest’. If the connection is using an admin-console port,
the current user is ‘admin’. When executing a Lua initialization script, the current user is also ‘admin’.

The current user name can be found with box.session.user().

The current user can be changed:
e For a binary port connection — with the AUTH protocol command, supported by most clients;
e For an admin-console connection and in a Lua initialization script — with box.session.su;

e For a binary-port connection invoking a stored function with the CALL command - if the SETUID
property is enabled for the function, Tarantool temporarily replaces the current user with the function’s
creator, with all the creator’s privileges, during function execution.

Passwords

Each user (except ‘guest’) may have a password. The password is any alphanumeric string.

Tarantool passwords are stored in the user system space with a cryptographic hash function so that, if
the password is ‘x’, the stored hash-password is a long string like ‘1L3OvhkIPOKh+Vn9Avlkx69M /Ck=".
When a client connects to a Tarantool instance, the instance sends a random salt value which the client must
mix with the hashed-password before sending to the instance. Thus the original value ‘x’ is never stored

28 Chapter 3. User’s Guide

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Salt_%28cryptography%29

Tarantool, Release 2.1.1

anywhere except in the user’s head, and the hashed value is never passed down a network wire except when
mixed with a random salt.

Note: For more details of the password hashing algorithm (e.g. for the purpose of writing a new client
application), read the scramble.h header file.

This system prevents malicious onlookers from finding passwords by snooping in the log files or snooping on
the wire. It is the same system that MySQL introduced several years ago, which has proved adequate for
medium-security installations. Nevertheless, administrators should warn users that no system is foolproof
against determined long-term attacks, so passwords should be guarded and changed occasionally. Adminis-
trators should also advise users to choose long unobvious passwords, but it is ultimately up to the users to
choose or change their own passwords.

There are two functions for managing passwords in Tarantool: box.schema.user.password() for changing a
user’s password and box.schema.user.passwd() for getting a hash-password.

Owners and privileges
Tarantool has one database. It may be called “box.schema” or “universe”. The database contains database
objects, including spaces, indexes, users, roles, sequences, and functions.

The owner of a database object is the user who created it. The owner of the database itself, and the owner
of objects that are created initially — the system spaces and the default users — is ‘admin’.

Owners automatically have privileges for what they create. They can share these privileges with other users
or with roles, using box.schema.user.grant requests. The following privileges can be granted:

e ‘read’, e.g. allow select from a space

¢ ‘write’, e.g. allow update on a space

* ‘execute’, e.g. allow call of a function, or (less commonly) allow use of a role

* ‘create’, e.g. allow box.schema.space.create (access to certain system spaces is also necessary)
* ‘alter’, e.g. allow box.space.x.index.y:alter (access to certain system spaces is also necessary)
* ‘drop’, e.g. allow box.sequence.x:drop (currently this can be granted but has no effect)

* ‘usage’, e.g. whether any action is allowable regardless of other privileges (sometimes revoking ‘usage’
is a convenient way to block a user temporarily without dropping the user)

* ‘session’, e.g. whether the user can ‘connect’.

To create objects, users need the ‘create’ privilege and at least ‘read’ and ‘write’ privileges on the system
space with a similar name (for example, on the space if the user needs to create spaces).

To access objects, users need an appropriate privilege on the object (for example, the ‘execute’ privilege on
function F if the users need to execute function F). See below some examples for granting specific privileges
that a grantor — that is, ‘admin’ or the object creator — can make.

To drop an object, users must be the object’s creator or be ‘admin’. As the owner of the entire database,
‘admin’ can drop any object including other users.

To grant privileges to a user, the object owner says grant(). To revoke privileges from a user, the object
owner says revoke(). In either case, there are up to five parameters:

(user-name, privilege, object-type [, object-name [, options]|)

* user-name is the user (or role) that will receive or lose the privilege;

3.3. Database 29

https://github.com/tarantool/tarantool/blob/2.1/src/scramble.h
http://dev.mysql.com/doc/refman/5.7/en/password-hashing.html

Tarantool, Release 2.1.1

o privilege is any of ‘read’, ‘write’, ‘execute’, ‘create’, ‘alter’, ‘drop’, ‘usage’, or ‘session’ (or a comma-

separated list);

¢ object-type is any of ‘space’, ‘index’; ‘sequence’, ‘function’, role-name, or ‘universe’;

* object-name is what the privilege is for (omitted if object-type is ‘universe’);

* options is a list inside braces for example {if not exists=true|false} (usually omitted because the

default is acceptable).

Example for granting many privileges at once

In this example user ‘admin’ grants many privileges on many objects to user ‘U’, with a single request.

box.schema.user.grant(' U', ' read,write,execute,create,drop ', ' universe ")

Examples for granting privileges for specific operations

In these examples the object’s creator grants precisely the minimal privileges necessary for particular oper-

ations, to user ‘U’.

-- So that 'U’ can create spaces:
box.schema.user.grant('U", ' create', universe')
box.schema.user.grant('U", 'write', 'space', ' schema')
box.schema.user.grant('U"','write', 'space', ' space')

- So that 'U’ can create indexes (assuming 'U’ created the space)
box.schema.user.grant('U', 'read"', "space', ' space')
box.schema.user.grant('U"', 'read,write', 'space', ' index")

- So that 'U’ can create indexes on space T (assuming 'U ' did not create space T)
box.schema.user.grant('U", "' create ', 'space','T")
box.schema.user.grant('U', 'read"', "space', ' space')
box.schema.user.grant('U',"write', 'space', ' index")

-- So that 'U’ can alter indexes on space T (assuming 'U’ did not create the index)
box.schema.user.grant('U", "alter ', 'space','T")
box.schema.user.grant('U','read ', 'space',' space')
box.schema.user.grant('U', 'read", 'space',' index')
box.schema.user.grant('U', 'read"', "'space',' space_sequence')
box.schema.user.grant('U',"write', space',' index")

-- So that 'U "’ can create users or roles:
box.schema.user.grant('U',"create', ' universe')
box.schema.user.grant(' U', 'read,write', 'space', ' user')
box.schema.user.grant('U"', 'write',"'space', ' priv')

-- So that 'U "’ can create sequences:
box.schema.user.grant('U"', ' create', ' universe')
box.schema.user.grant('U"', 'read,write','space',' sequence')

-- So that 'U "’ can create functions:
box.schema.user.grant('U"', ' create ', universe')
box.schema.user.grant('U", 'read,write', 'space',"' func')

-- So that 'U’ can grant access on objects that '"U ' created
box.schema.user.grant('U', 'read ', 'space',"' user')

-- So that 'U ' can select or get from a space named 'T’
box.schema.user.grant('U", 'read ', 'space','T")

-- So that 'U "’ can update or insert or delete or truncate a space named 'T’
box.schema.user.grant('U", ' write', 'space','T")

-- So that 'U’ can execute a function named 'F’
box.schema.user.grant('U', " execute', "' function',"F ")

-- So that 'U"’ can use the "S:next()" function with a sequence named S
box.schema.user.grant('U"', 'read,write','sequence','S")

- So that 'U "’ can use the "S:set()" or "S:reset() function with a sequence named S
box.schema.user.grant('U",'write','sequence','S")

30

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Example for creating users and objects then granting privileges

Here we create a Lua function that will be executed under the user id of its creator, even if called by another
user.

First, we create two spaces (‘u’ and ‘1’) and grant a no-password user (‘internal’) full access to them. Then we
define a function (‘read and modify’) and the no-password user becomes this function’s creator. Finally,
we grant another user (‘public_user’) access to execute Lua functions created by the no-password user.

box.schema.space.create('u")
box.schema.space.create('i")
box.space.u:create _index('pk")
box.space.i:create _index('pk")

box.schema.user.create('internal ')

box.schema.user.grant('internal ', 'read,write', "space', 'u')
box.schema.user.grant('internal ', 'read,write', 'space', 'i")
box.schema.user.grant('internal ', 'create', "universe')
box.schema.user.grant('internal ', 'read,write', 'space', ' func")

function read _and_modify(key)
local u — box.space.u
local i = box.space.i
local fiber = require(' fiber")
local t — w:get{key}
if t "= nil then
u:put{key, box.session.uid()}
i:put{key, fiber.time()}
end
end

box.session.su('internal ')
box.schema.func.create('read and modify ', {setuid= true})
box.session.su('admin")

box.schema.user.create(' public_user', {password = 'secret'})
box.schema.user.grant(' public_user', "execute', 'function', 'read and modify")
Roles

A role is a container for privileges which can be granted to regular users. Instead of granting or revoking
individual privileges, you can put all the privileges in a role and then grant or revoke the role.

Role information is stored in the _user space, but the third field in the tuple — the type field —is ‘role’ rather
than ‘user’.

An important feature in role management is that roles can be nested. For example, role R1 can be granted
a privilege “role R2”, so users with the role R1 will subsequently get all privileges from both roles R1 and
R2. In other words, a user gets all the privileges that are granted to a user’s roles, directly or indirectly.

There are actually two ways to grant or revoke a role: box.schema.user.grant-or-revoke(user-name-or-
role-name, ' execute', 'role' role-name...) or box.schema.user.grant-or-revoke(user-name-or-role-name,role-
name...). The second way is preferable.

The ‘usage’ and ‘session’ privileges cannot be granted to roles.

Example

3.3. Database 31

Tarantool, Release 2.1.1

-- This example will work for a user with many privileges, such as 'admin ’
-- or a user with the pre-defined ’'super’ role

-- Create space T with a primary index

box.schema.space.create('T")

box.space.T:create _index('primary', {})

-- Create user Ul so that later we can change the current user to Ul
box.schema.user.create('Ul")

-- Create two roles, R1 and R2

box.schema.role.create('R1")

box.schema.role.create('R2")

-- Grant role R2 to role R1 and role R1 to user Ul (order doesn 't matter)
-- There are two ways to grant a role; here we use the shorter way
box.schema.role.grant('R1', 'R2")

box.schema.user.grant('U1l', 'R1")

-- Grant read/write privileges for space T to role R2

-- (but not to role R1 and not to user Ul)

box.schema.role.grant('R2", 'read,write', 'space', 'T")

-- Change the current user to user Ul

box.session.su('Ul")

-- An insertion to space T will now succeed because, due to nested roles,
-- user Ul has write privilege on space T

box.space.T:insert{1}

For more detail see box.schema.user.grant() and box.schema.role.grant() in the built-in modules reference.

Sessions and security

A session is the state of a connection to Tarantool. It contains:
 an integer id identifying the connection,
e the current user associated with the connection,
* text description of the connected peer, and
« session local state, such as Lua variables and functions.

In Tarantool, a single session can execute multiple concurrent transactions. Each transaction is identified by
a unique integer id, which can be queried at start of the transaction using box.session.sync().

Note: To track all connects and disconnects, you can use connection and authentication triggers.

3.3.4 Triggers

Triggers, also known as callbacks, are functions which the server executes when certain events happen.
There are six types of triggers in Tarantool:

* connection triggers, which are executed when a session begins or ends,

¢ authentication triggers, which are executed during authentication,

* replace triggers, which are for database events,

¢ transaction triggers, which are executed during commit or rollback,

* server triggers, which are executed when the server starts or stops.

32 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

* member triggers, which are executed when a SWIM member is updated.

All triggers have the following characteristics:

e Triggers associate a function with an event. The request to “define a trigger” implies passing the
trigger’s function to one of the “on_event()” functions:

— box.session.on_connect() and box.session.on_disconnect(), or
— box.session.on_auth(), or
— space_object:on_replace() and space object:before replace(), or
— box.on_commit() and box.on_rollback(), or
— box.ctl.on_schema init() and box.ctl.on shutdown(), or
— swim_object:on_member event().
e Triggers are defined only by the ‘admin’ user.

e Triggers are stored in the Tarantool instance’s memory, not in the database. Therefore triggers disap-
pear when the instance is shut down. To make them permanent, put function definitions and trigger
settings into Tarantool’s initialization script.

» Triggers have low overhead. If a trigger is not defined, then the overhead is minimal: merely a pointer
dereference and check. If a trigger is defined, then its overhead is equivalent to the overhead of calling
a function.

¢ There can be multiple triggers for one event. In this case, triggers are executed in the reverse order
that they were defined in. (Exception: member triggers are executed in the order that they appear in
the member list.)

e Triggers must work within the event context. However, effects are undefined if a function contains
requests which normally could not occur immediately after the event, but only before the return from
the event. For example, putting os.exit() or box.rollback() in a trigger function would be bringing in
requests outside the event context.

» Triggers are replaceable. The request to ‘redefine a trigger” implies passing a new trigger function and
an old trigger function to one of the “on_event()” functions.

* The “on_event()” functions all have parameters which are function pointers, and they all return func-
tion pointers. Remember that a Lua function definition such as “function f() x = x + 1 end” is the
same as “f = function () x = x + 1 end” — in both cases f gets a function pointer. And “trigger =
box.session.on _connect(f)” is the same as “trigger = box.session.on connect(function () x = x + 1
end)” — in both cases trigger gets the function pointer which was passed.

To get a list of triggers, you can use:

* box.session.on_ connect() — with no arguments — to return a table of all connect-trigger functions;
* box.session.on_auth() to return all authentication-trigger functions;

* box.session.on_disconnect() to return all disconnect-trigger functions;

* space_object:on_replace() to return all replace-trigger functions made for on_replace().

* space_ object:before replace() to return all replace-trigger functions made for before replace().

* box.ctl.on_shutdown() to return all shutdown-trigger functions made for on _shutdown().

* box.ctl.on _schema _init() to return all initialization-trigger functions made for on_schema _init().

* swim_ object:on_member event() to return all member triggers made for on _member _event().

3.3. Database 33

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 2.1.1

Example

Here we log connect and disconnect events into Tarantool server log.

log = require('log")

function on_connect impl()
log.info("connected "..box.session.peer()..
end

", sid "..box.session.id())

function on_ disconnect _impl()
log.info("disconnected, sid "..box.session.id())
end

function on_auth _impl(user)
log.info("authenticated sid "..box.session.id().." as "..user)
end"

function on_ connect() pcall(on connect impl) end
function on_ disconnect() pcall(on_ disconnect _impl) end
function on_auth(user) pcall(on_auth impl, user) end

box.session.on__connect(on_connect)
box.session.on _disconnect(on _disconnect)
box.session.on_auth(on_auth)

3.3.5 Limitations

Number of parts in an index

For TREE or HASH indexes, the maximum is 255 (box.schema.INDEX PART_MAX). For
RTREE indexes, the maximum is 1 but the field is an ARRAY of up to 20 dimensions. For
BITSET indexes, the maximum is 1.

Number of indexes in a space
128 (box.schema.INDEX_MAX).
Number of fields in a tuple

The theoretical maximum is 2,147,483,647 (box.schema.FIELD MAX). The practical maximum
is whatever is specified by the space’s field _count member, or the maximal tuple length.

Number of bytes in a tuple

The maximal number of bytes in a tuple is roughly equal to memtx max tuple size or
vinyl max_tuple size (with a metadata overhead of about 20 bytes per tuple, which is
added on top of useful bytes). By default, the value of either memtx max tuple size or
vinyl _max_tuple size is 1,048,576. To increase it, specify a larger value when starting the
Tarantool instance. For example, box.cfg{memtx max tuple size=2%*1048576}.

Number of bytes in an index key

If a field in a tuple can contain a million bytes, then the index key can contain a million bytes,
so the maximum is determined by factors such as Number of bytes in a tuple, not by the index
support.

Number of spaces

The theoretical maximum is 2147483647 (box.schema.SPACE MAX) but the practical maximum
is around 65,000.

34 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Number of connections
The practical limit is the number of file descriptors that one can set with the operating system.
Space size

The total maximum size for all spaces is in effect set by memtx memory, which in turn is limited
by the total available memory.

Update operations count

The maximum number of operations that can be in a single update is 4000
(BOX_UPDATE OP_ CNT_ MAX).

Number of users and roles
32 (BOX_ USER_MAX).

Length of an index name or space name or user name
65000 (box.schema.NAME _MAX).

Number of replicas in a replica set

32 (vclock. VCLOCK _MAX).

3.3.6 Storage engines

A storage engine is a set of very-low-level routines which actually store and retrieve tuple values. Tarantool
offers a choice of two storage engines:

* memtx (the in-memory storage engine) is the default and was the first to arrive.

* vinyl (the on-disk storage engine) is a working key-value engine and will especially appeal to users who
like to see data go directly to disk, so that recovery time might be shorter and database size might be
larger.

On the other hand, vinyl lacks some functions and options that are available with memtx. Where that
is the case, the relevant description in this manual contains a note beginning with the words “Note re
storage engine”.

Further in this section we discuss the details of storing data using the vinyl storage engine.

To specify that the engine should be vinyl, add the clause engine = 'vinyl' when creating a space, for
example:

space — box.schema.space.create('name', {engine—"'vinyl'})

Differences between memtx and vinyl storage engines

The primary difference between memtx and vinyl is that memtx is an “in-memory” engine while vinyl is an
“on-disk” engine. An in-memory storage engine is generally faster (each query is usually run under 1 ms),
and the memtx engine is justifiably the default for Tarantool, but on-disk engine such as vinyl is preferable
when the database is larger than the available memory and adding more memory is not a realistic option.

3.3. Database 35

Tarantool, Release 2.1.1

Option memtx vinyl

Supported | TREE, HASH, RTREE or BITSET TREE

index type

Temporary | Supported Not supported

spaces

random() Supported Not supported

function

alter() Supported Supported starting from the 1.10.2 release
function (the primary index cannot be modified)

len() func-
tion

Returns the number of tuples in the space

Returns the maximum approximate number
of tuples in the space

the transaction is commited to WAL

count() Takes a constant amount of time Takes a variable amount of time depending
function on a state of a DB

delete() Returns the deleted tuple, if any Always returns nil

function

yield Does not yield on the select requests unless | Yields on the select requests or on its equiv-

alents: get() or pairs()

Storing data with vinyl

Tarantool is a transactional and persistent DBMS that maintains 100% of its data in RAM. The greatest
advantages of in-memory databases are their speed and ease of use: they demonstrate consistently high
performance, but you never need to tune them.

A few years ago we decided to extend the product by implementing a classical storage engine similar to those
used by regular DBMSes: it uses RAM for caching, while the bulk of its data is stored on disk. We decided
to make it possible to set a storage engine independently for each table in the database, which is the same
way that MySQL approaches it, but we also wanted to support transactions from the very beginning.

The first question we needed to answer was whether to create our own storage engine or use an existing
library. The open-source community offered a few viable solutions. The RocksDB library was the fastest
growing open-source library and is currently one of the most prominent out there. There were also several
lesser-known libraries to consider, such as WiredTiger, ForestDB, NestDB, and LMDB.

Nevertheless, after studying the source code of existing libraries and considering the pros and cons, we
opted for our own storage engine. One reason is that the existing third-party libraries expected requests
to come from multiple operating system threads and thus contained complex synchronization primitives for
controlling parallel data access. If we had decided to embed one of these in Tarantool, we would have made
our users bear the overhead of a multithreaded application without getting anything in return. The thing is,
Tarantool has an actor-based architecture. The way it processes transactions in a dedicated thread allows
it to do away with the unnecessary locks, interprocess communication, and other overhead that accounts for
up to 80% of processor time in multithreaded DBMSes.

The Tarantool process consists of a fixed number of “actor” threads

If you design a database engine with cooperative multitasking in mind right from the start, it not only
significantly speeds up the development process, but also allows the implementation of certain optimization
tricks that would be too complex for multithreaded engines. In short, using a third-party solution wouldn’t
have yielded the best result.

Algorithm

Once the idea of using an existing library was off the table, we needed to pick an architecture to build
upon. There are two competing approaches to on-disk data storage: the older one relies on B-trees and

36 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

1/0 Transaction Control Write ahead log
- session - read your own writes - redo log
- parser - multi-engine - async relay
- undo log - group replication
Engine 1 Engine 2
indexing
checkpoint

storage mgmt

their variations; the newer one advocates the use of log-structured merge-trees, or “LSM” trees. MySQL,
PostgreSQL, and Oracle use B-trees, while Cassandra, MongoDB, and CockroachDB have adopted LSM
trees.

B-trees are considered better suited for reads and LSM trees—for writes. However, with SSDs becoming more
widespread and the fact that SSDs have read throughput that’s several times greater than write throughput,
the advantages of LSM trees in most scenarios was more obvious to us.

Before dissecting LSM trees in Tarantool, let’s take a look at how they work. To do that, we’ll begin by
analyzing a regular B-tree and the issues it faces. A B-tree is a balanced tree made up of blocks, which
contain sorted lists of key- value pairs. (Topics such as filling and balancing a B-tree or splitting and merging
blocks are outside of the scope of this article and can easily be found on Wikipedia). As a result, we get a
container sorted by key, where the smallest element is stored in the leftmost node and the largest one in the
rightmost node. Let’s have a look at how insertions and searches in a B-tree happen.

30 70
8 25 40 50 76 88
1 3 7 15 21 23 26 28 3B 38 42 49 56 &7 71 73 75 77 85 B89 97

Classical B-tree

If you need to find an element or check its membership, the search starts at the root, as usual. If the key is
found in the root block, the search stops; otherwise, the search visits the rightmost block holding the largest
element that’s not larger than the key being searched (recall that elements at each level are sorted). If the
first level yields no results, the search proceeds to the next level. Finally, the search ends up in one of the
leaves and probably locates the needed key. Blocks are stored and read into RAM one by one, meaning the
algorithm reads logB(N) blocks in a single search, where N is the number of elements in the B-tree. In the
simplest case, writes are done similarly: the algorithm finds the block that holds the necessary element and
updates (inserts) its value.

3.3. Database 37

Tarantool, Release 2.1.1

To better understand the data structure, let’s consider a practical example: say we have a B-tree with
100,000,000 nodes, a block size of 4096 bytes, and an element size of 100 bytes. Thus each block will hold up
to 40 elements (all overhead considered), and the B-tree will consist of around 2,570,000 blocks and 5 levels:
the first four will have a size of 256 Mb, while the last one will grow up to 10 Gb. Obviously, any modern
computer will be able to store all of the levels except the last one in filesystem cache, so read requests will
require just a single I/O operation.

But if we change our perspective —B-trees don’t look so good anymore. Suppose we need to update a single
element. Since working with B-trees involves reading and writing whole blocks, we would have to read in
one whole block, change our 100 bytes out of 4096, and then write the whole updated block to disk. In other
words,we were forced to write 40 times more data than we actually modified!

If you take into account the fact that an SSD block has a size of 64 Kb+ and not every modification changes
a whole element, the extra disk workload can be greater still.

Authors of specialized literature and blogs dedicated to on-disk data storage have coined two terms for these
phenomena: extra reads are referred to as “read amplification” and writes as “write amplification”.

The amplification factor (multiplication coefficient) is calculated as the ratio of the size of actual read (or
written) data to the size of data needed (or actually changed). In our B-tree example, the amplification
factor would be around 40 for both reads and writes.

The huge number of extra I/O operations associated with updating data is one of the main issues addressed
by LSM trees. Let’s see how they work.

The key difference between LSM trees and regular B-trees is that LSM trees don’t just store data (keys and
values), but also data operations: insertions and deletions.

key Isn op_code value

LSM tree:
¢ Stores statements, not values:
— REPLACE
— DELETE
— UPSERT
* Every statement is marked by LSN Append-only files, garbage is collected after a checkpoint
e Transactional log of all filesystem changes: vylog

For example, an element corresponding to an insertion operation has, apart from a key and a value, an extra
byte with an operation code (“REPLACE” in the image above). An element representing the deletion opera-
tion contains a key (since storing a value is unnecessary) and the corresponding operation code—"DELETE”.
Also, each LSM tree element has a log sequence number (LSN), which is the value of a monotonically in-
creasing sequence that uniquely identifies each operation. The whole tree is first ordered by key in ascending
order, and then, within a single key scope, by LSN in descending order.

38 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Key lsn Op code Value
1 176 REPLACE 2018-05-07 15:00:01

1 53 INSERT 2017-12-31 23:59:01
2 174 REPLACE 2018-05-06 00:00:00
3 175 REPLACE 2018-05-07 09:04:19
3 9 REPLACE 2017-01-01 19:25:43
3 7 INSERT 2017-01-01 19:22:16
4 173 DELETE

4 168 INSERT 2018-05-05 07:40:01

A single level of an LSM tree

Filling an LSM tree

Unlike a B-tree, which is stored completely on disk and can be partly cached in RAM, when using an LSM
tree, memory is explicitly separated from disk right from the start. The issue of volatile memory and data
persistence is beyond the scope of the storage algorithm and can be solved in various ways—for example, by
logging changes.

The part of an LSM tree that’s stored in RAM is called LO (level zero). The size of RAM is limited, so
LO is allocated a fixed amount of memory. For example, in Tarantool, the L0 size is controlled by the
vinyl memory parameter. Initially, when an LSM tree is empty, operations are written to L0. Recall that
all elements are ordered by key in ascending order, and then within a single key scope, by LSN in descending
order, so when a new value associated with a given key gets inserted, it’s easy to locate the older value
and delete it. LO can be structured as any container capable of storing a sorted sequence of elements. For
example, in Tarantool, LO is implemented as a B+*-tree. Lookups and insertions are standard operations
for the data structure underlying L0, so I won’t dwell on those.

Sooner or later the number of elements in an LSM tree exceeds the LO size and that’s when L0 gets written
to a file on disk (called a “run”) and then cleared for storing new elements. This operation is called a “dump”.

3.3. Database 39

Tarantool, Release 2.1.1

memtable
Memaory
dump .
29 a7 Disk
sorted run
compact
—_——] a8 10 15 25 26 36 40 45

Dumps on disk form a sequence ordered by LSN: LSN ranges in different runs don’t overlap, and the leftmost
runs (at the head of the sequence) hold newer operations. Think of these runs as a pyramid, with the newest
ones closer to the top. As runs keep getting dumped, the pyramid grows higher. Note that newer runs may
contain deletions or replacements for existing keys. To remove older data, it’s necessary to perform garbage
collection (this process is sometimes called “merge” or “compaction”) by combining several older runs into
a new one. If two versions of the same key are encountered during a compaction, only the newer one is
retained; however, if a key insertion is followed by a deletion, then both operations can be discarded.

10 25 36 -

L |
Ead
-]
=
(= |
-~
N

purge

1 a8 15 g

The key choices determining an LSM tree’s efficiency are which runs to compact and when to compact them.
Suppose an LSM tree stores a monotonically increasing sequence of keys (1, 2, 3, ...,) with no deletions. In
this case, compacting runs would be useless: all of the elements are sorted, the tree doesn’t have any garbage,
and the location of any key can unequivocally be determined. On the other hand, if an LSM tree contains
many deletions, doing a compaction would free up some disk space. However, even if there are no deletions,
but key ranges in different runs overlap a lot, compacting such runs could speed up lookups as there would
be fewer runs to scan. In this case, it might make sense to compact runs after each dump. But keep in mind
that a compaction causes all data stored on disk to be overwritten, so with few reads it’s recommended to
perform it less often.

To ensure it’s optimally configurable for any of the scenarios above, an LSM tree organizes all runs into a
pyramid: the newer the data operations, the higher up the pyramid they are located. During a compaction,
the algorithm picks two or more neighboring runs of approximately equal size, if possible.

40 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

writes
14 15 65 92 a5 89 Disk
2 19 26 29 32 38 43 46 79 22 23 27 3 37 46 65 78 94

3 B 28 a3 44 47 48 54 56 &9 61 66 75 81 a3 94 98 48 49

e Multi-level compaction can span any number of levels
* A level can contain multiple runs

All of the neighboring runs of approximately equal size constitute an LSM tree level on disk. The ratio
of run sizes at different levels determines the pyramid’s proportions, which allows optimizing the tree for
write-intensive or read-intensive scenarios.

Suppose the L0 size is 100 Mb, the ratio of run sizes at each level (the vinyl run_size ratio parameter)
is 5, and there can be no more than 2 runs per level (the vinyl run_count per_ level parameter). After
the first 3 dumps, the disk will contain 3 runs of 100 Mb each—which constitute L1 (level one). Since 3 >
2, the runs will be compacted into a single 300 Mb run, with the older ones being deleted. After 2 more
dumps, there will be another compaction, this time of 2 runs of 100 Mb each and the 300 Mb run, which
will produce one 500 Mb run. It will be moved to L2 (recall that the run size ratio is 5), leaving L1 empty.
The next 10 dumps will result in L2 having 3 runs of 500 Mb each, which will be compacted into a single
1500 Mb run. Over the course of 10 more dumps, the following will happen: 3 runs of 100 Mb each will be
compacted twice, as will two 100 Mb runs and one 300 Mb run, which will yield 2 new 500 Mb runs in L2.
Since L2 now has 3 runs, they will also be compacted: two 500 Mb runs and one 1500 Mb run will produce
a 2500 Mb run that will be moved to L3, given its size.

This can go on infinitely, but if an LSM tree contains lots of deletions, the resulting compacted run can be
moved not only down, but also up the pyramid due to its size being smaller than the sizes of the original
runs that were compacted. In other words, it’s enough to logically track which level a certain run belongs
to, based on the run size and the smallest and greatest LSN among all of its operations.

Controlling the form of an LSM tree

If it’s necessary to reduce the number of runs for lookups, then the run size ratio can be increased, thus
bringing the number of levels down. If, on the other hand, you need to minimize the compaction-related
overhead, then the run size ratio can be decreased: the pyramid will grow higher, and even though runs
will be compacted more often, they will be smaller, which will reduce the total amount of work done. In
general, write amplification in an LSM tree is described by this formula: log_ {x}(\frac {N} {L0}) x x or,
alternatively, x x \frac {ln (\frac {N} {C0})} {ln(x)}, where N is the total size of all tree elements, LO is
the level zero size, and x is the level size ratio (the level _size ratio parameter). At \frac {N} {C0} = 40
(the disk-to- memory ratio), the plot would look something like this:

3.3. Database 41

Tarantool, Release 2.1.1

0 5 10 15

As for read amplification, it’s proportional to the number of levels. The lookup cost at each level is no
greater than that for a B-tree. Getting back to the example of a tree with 100,000,000 elements: given 256
Mb of RAM and the default values of vinyl level size ratio and run_count per level, write amplification
would come out to about 13, while read amplification could be as high as 150. Let’s try to figure out why
this happens.

Search

When doing a lookup in an LSM tree, what we need to find is not the element itself, but the most recent
operation associated with it. If it’s a deletion, then the tree doesn’t contain this element. If it’s an insertion,
we need to grab the topmost value in the pyramid, and the search can be stopped after finding the first
matching key. In the worst-case scenario, that is if the tree doesn’t hold the needed element, the algorithm
will have to sequentially visit all of the levels, starting from LO.

42 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

GET (16)

Y Memory

Disk

45 48

a7 38 4 45 47 49

Unfortunately, this scenario is quite common in real life. For example, when inserting a value into a tree,
it’s necessary to make sure there are no duplicates among primary /unique keys. So to speed up membership
checks, LSM trees use a probabilistic data structure called a “Bloom filter”, which will be covered a bit later,
in a section on how vinyl works under the hood.

Range searching

In the case of a single-key search, the algorithm stops after encountering the first match. However, when
searching within a certain key range (for example, looking for all the users with the last name “Ivanov”), it’s
necessary to scan all tree levels.

Umcommitted i o5 B .
changes
Tuple cache 3 8 15
» 25 26 29
merge
LO 4

Sorted run 3 8 15 26 _,

Searching within a range of [24,30)

The required range is formed the same way as when compacting several runs: the algorithm picks the key
with the largest LSN out of all the sources, ignoring the other associated operations, then moves on to the
next key and repeats the procedure.

Deletion

Why would one store deletions? And why doesn’t it lead to a tree overflow in the case of for i=1,10000000
put(i) delete(i) end?

3.3. Database 43

Tarantool, Release 2.1.1

With regards to lookups, deletions signal the absence of a value being searched; with compactions, they clear
the tree of “garbage” records with older LSNs.

While the data is in RAM only, there’s no need to store deletions. Similarly, you don’t need to keep them
following a compaction if they affect, among other things, the lowest tree level, which contains the oldest
dump. Indeed, if a value can’t be found at the lowest level, then it doesn’t exist in the tree.

¢ We can’t delete from append-only files

» Tombstones (delete markers) are inserted into LO instead

Memory

22 a7 Disk

10 25 36 42

3 8 15 26 a5 40 45 48
Deletion, step 1: a tombstone is inserted into L0

Memory

10 25 36 42

3 8 15 26 35 40 45 48
Deletion, step 2: the tombstone passes through intermediate levels

Memory

3 8 10 15 22 25 a5 36 37 40 42 45 48 Disk

Deletion, step 3: in the case of a major compaction, the tombstone is removed from the tree

If a deletion is known to come right after the insertion of a unique value, which is often the case when modi-
fying a value in a secondary index, then the deletion can safely be filtered out while compacting intermediate
tree levels. This optimization is implemented in vinyl.

44 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Advantages of an LSM tree

Apart from decreasing write amplification, the approach that involves periodically dumping level LO and
compacting levels L1-Lk has a few advantages over the approach to writes adopted by B-trees:

¢ Dumps and compactions write relatively large files: typically, the LO size is 50-100 Mb, which is
thousands of times larger than the size of a B-tree block.

e This large size allows efficiently compressing data before writing it. Tarantool compresses data auto-
matically, which further decreases write amplification.

¢ There is no fragmentation overhead, since there’s no padding/empty space between the elements inside
a run.

e All operations create new runs instead of modifying older data in place. This allows avoiding those
nasty locks that everyone hates so much. Several operations can run in parallel without causing any
conflicts. This also simplifies making backups and moving data to replicas.

¢ Storing older versions of data allows for the efficient implementation of transaction support by using
multiversion concurrency control.

Disadvantages of an LSM tree and how to deal with them

One of the key advantages of the B-tree as a search data structure is its predictability: all operations take no
longer than log_ {B}(N) to run. Conversely, in a classical LSM tree, both read and write speeds can differ
by a factor of hundreds (best case scenario) or even thousands (worst case scenario). For example, adding
just one element to LO can cause it to overflow, which can trigger a chain reaction in levels L1, L2, and so
on. Lookups may find the needed element in LO or may need to scan all of the tree levels. It’s also necessary
to optimize reads within a single level to achieve speeds comparable to those of a B-tree. Fortunately, most
disadvantages can be mitigated or even eliminated with additional algorithms and data structures. Let’s
take a closer look at these disadvantages and how they’re dealt with in Tarantool.

Unpredictable write speed

In an LSM tree, insertions almost always affect L0 only. How do you avoid idle time when the memory area
allocated for LO is full?

Clearing L0 involves two lengthy operations: writing to disk and memory deallocation. To avoid idle time
while LO is being dumped, Tarantool uses writeaheads. Suppose the LO size is 256 Mb. The disk write speed
is 10 Mbps. Then it would take 26 seconds to dump LO. The insertion speed is 10,000 RPS, with each key
having a size of 100 bytes. While L0 is being dumped, it’s necessary to reserve 26 Mb of RAM, effectively
slicing the LO size down to 230 Mb.

Tarantool does all of these calculations automatically, constantly updating the rolling average of the DBMS
workload and the histogram of the disk speed. This allows using L0 as efficiently as possible and it prevents
write requests from timing out. But in the case of workload surges, some wait time is still possible. That’s
why we also introduced an insertion timeout (the vinyl timeout parameter), which is set to 60 seconds by
default. The write operation itself is executed in dedicated threads. The number of these threads (2 by
default) is controlled by the vinyl write threads parameter. The default value of 2 allows doing dumps and
compactions in parallel, which is also necessary for ensuring system predictability.

In Tarantool, compactions are always performed independently of dumps, in a separate execution thread.
This is made possible by the append-only nature of an LSM tree: after dumps runs are never changed, and
compactions simply create new runs.

3.3. Database 45

Tarantool, Release 2.1.1

Delays can also be caused by L0 rotation and the deallocation of memory dumped to disk: during a dump, L0
memory is owned by two operating system threads, a transaction processing thread and a write thread. Even
though no elements are being added to the rotated LO, it can still be used for lookups. To avoid read locks
when doing lookups, the write thread doesn’t deallocate the dumped memory, instead delegating this task
to the transaction processor thread. Following a dump, memory deallocation itself happens instantaneously:
to achieve this, LO uses a special allocator that deallocates all of the memory with a single operation.

memtable
for writes shadow

Memory

dump .
an 97 Disk

* anticipatory dump
¢ throttling

The dump is performed from the so-called “shadow” LO without blocking new insertions and lookups

Unpredictable read speed

Optimizing reads is the most difficult optimization task with regards to LSM trees. The main complexity
factor here is the number of levels: any optimization causes not only much slower lookups, but also tends to
require significantly larger RAM resources. Fortunately, the append-only nature of LSM trees allows us to
address these problems in ways that would be nontrivial for traditional data structures.

page index writes tuple cache Bloom filter

26 oMoIaoIoIo1eaNa
181818111 BAG00OI0

3 15 22 36 22 23

| Disk

22 ar

¢ page index

bloom filters
* tuple range cache

e multi-level compaction

46 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Compression and page index

In B-trees, data compression is either the hardest problem to crack or a great marketing tool—rather than
something really useful. In LSM trees, compression works as follows:

During a dump or compaction all of the data within a single run is split into pages. The page size (in bytes)
is controlled by the vinyl page size parameter and can be set separately for each index. A page doesn’t
have to be exactly of vinyl page size size—depending on the data it holds, it can be a little bit smaller or
larger. Because of this, pages never have any empty space inside.

Data is compressed by Facebook’s streaming algorithm called “zstd”. The first key of each page, along with
the page offset, is added to a “page index”, which is a separate file that allows the quick retrieval of any page.
After a dump or compaction, the page index of the created run is also written to disk.

All .index files are cached in RAM, which allows finding the necessary page with a single lookup in a .run
file (in vinyl, this is the extension of files resulting from a dump or compaction). Since data within a page
is sorted, after it’s read and decompressed, the needed key can be found using a regular binary search.
Decompression and reads are handled by separate threads, and are controlled by the vinyl read threads
parameter.

Tarantool uses a universal file format: for example, the format of a .run file is no different from that of an
.xlog file (log file). This simplifies backup and recovery as well as the usage of external tools.

Bloom filters

Even though using a page index enables scanning fewer pages per run when doing a lookup, it’s still necessary
to traverse all of the tree levels. There’s a special case, which involves checking if particular data is absent
when scanning all of the tree levels and it’s unavoidable: I'm talking about insertions into a unique index.
If the data being inserted already exists, then inserting the same data into a unique index should lead to an
error. The only way to throw an error in an LSM tree before a transaction is committed is to do a search
before inserting the data. Such reads form a class of their own in the DBMS world and are called “hidden”
or “parasitic” reads.

Another operation leading to hidden reads is updating a value in a field on which a secondary index is
defined. Secondary keys are regular LSM trees that store differently ordered data. In most cases, in order
not to have to store all of the data in all of the indexes, a value associated with a given key is kept in whole
only in the primary index (any index that stores both a key and a value is called “covering” or “clustered”),
whereas the secondary index only stores the fields on which a secondary index is defined, and the values of
the fields that are part of the primary index. Thus, each time a change is made to a value in a field on which
a secondary index is defined, it’s necessary to first remove the old key from the secondary index—and only
then can the new key be inserted. At update time, the old value is unknown, and it is this value that needs
to be read in from the primary key “under the hood”.

For example:

’ update t1 set city="Moscow’ where id=1

To minimize the number of disk reads, especially for nonexistent data, nearly all LSM trees use probabilistic
data structures, and Tarantool is no exception. A classical Bloom filter is made up of several (usually 3-
to-5) bit arrays. When data is written, several hash functions are calculated for each key in order to get
corresponding array positions. The bits at these positions are then set to 1. Due to possible hash collisions,
some bits might be set to 1 twice. We're most interested in the bits that remain 0 after all keys have been
added. When looking for an element within a run, the same hash functions are applied to produce bit
positions in the arrays. If any of the bits at these positions is 0, then the element is definitely not in the run.
The probability of a false positive in a Bloom filter is calculated using Bayes’ theorem: each hash function

3.3. Database 47

https://github.com/facebook/zstd

Tarantool, Release 2.1.1

is an independent random variable, so the probability of a collision simultaneously occurring in all of the bit
arrays is infinitesimal.

The key advantage of Bloom filters in Tarantool is that they’re easily configurable. The only parameter
that can be specified separately for each index is called bloom fpr (FPR stands for “false positive ratio”)
and it has the default value of 0.05, which translates to a 5% FPR. Based on this parameter, Tarantool
automatically creates Bloom filters of the optimal size for partial- key and full-key searches. The Bloom
filters are stored in the .index file, along with the page index, and are cached in RAM.

Caching

A lot of people think that caching is a silver bullet that can help with any performance issue. “When in
doubt, add more cache”. In vinyl, caching is viewed rather as a means of reducing the overall workload and
consequently, of getting a more stable response time for those requests that don’t hit the cache. vinyl boasts
a unique type of cache among transactional systems called a “range tuple cache”. Unlike, say, RocksDB or
MySQL, this cache doesn’t store pages, but rather ranges of index values obtained from disk, after having
performed a compaction spanning all tree levels. This allows the use of caching for both single-key and
key-range searches. Since this method of caching stores only hot data and not, say, pages (you may need
only some data from a page), RAM is used in the most efficient way possible. The cache size is controlled
by the vinyl cache parameter.

Garbage collection control

Chances are that by now you’ve started losing focus and need a well-deserved dopamine reward. Feel free
to take a break, since working through the rest of the article is going to take some serious mental effort.

An LSM tree in vinyl is just a small piece of the puzzle. Even with a single table (or so-called “space”), vinyl
creates and maintains several LSM trees, one for each index. But even a single index can be comprised of
dozens of LSM trees. Let’s try to understand why this might be necessary.

Recall our example with a tree containing 100,000,000 records, 100 bytes each. As time passes, the lowest
LSM level may end up holding a 10 Gb run. During compaction, a temporary run of approximately the
same size will be created. Data at intermediate levels takes up some space as well, since the tree may store
several operations associated with a single key. In total, storing 10 Gb of actual data may require up to 30
Gb of free space: 10 Gb for the last tree level, 10 Gb for a temporary run, and 10 Gb for the remaining data.
But what if the data size is not 10 Gb, but 1 Th? Requiring that the available disk space always be several
times greater than the actual data size is financially unpractical, not to mention that it may take dozens of
hours to create a 1 Th run. And in the case of an emergency shutdown or system restart, the process would
have to be started from scratch.

Here’s another scenario. Suppose the primary key is a monotonically increasing sequence—for example, a
time series. In this case, most insertions will fall into the right part of the key range, so it wouldn’t make
much sense to do a compaction just to append a few million more records to an already huge run.

But what if writes predominantly occur in a particular region of the key range, whereas most reads take
place in a different region? How do you optimize the form of the LSM tree in this case? If it’s too high, read
performance is impacted; if it’s too low—write speed is reduced.

Tarantool “factorizes” this problem by creating multiple LSM trees for each index. The approximate size
of each subtree may be controlled by the vinyl range size configuration parameter. We call such subtrees
“ranges”.

48 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Memory

14 15 65 o2 35 89 Disk
2 3 9 14 15 2 23 27 28 31 33 37 44 81 93 94 96 98
(<inf, 23) [-23, 45) [-45, +inf)

Factorizing large LSM trees via ranging
* Ranges reflect a static layout of sorted runs
* Slices connect a sorted run into a range

Initially, when the index has few elements, it consists of a single range. As more elements are added, its
total size may exceed the maximum range size. In that case a special operation called “split” divides the
tree into two equal parts. The tree is split at the middle element in the range of keys stored in the tree.
For example, if the tree initially stores the full range of -inf... +inf, then after splitting it at the middle key
X, we get two subtrees: one that stores the range of -inf... X, and the other storing the range of X...+inf.
With this approach, we always know which subtree to use for writes and which one for reads. If the tree
contained deletions and each of the neighboring ranges grew smaller as a result, the opposite operation called
“coalesce” combines two neighboring trees into one.

Split and coalesce don’t entail a compaction, the creation of new runs, or other resource-intensive operations.
An LSM tree is just a collection of runs. vinyl has a special metadata log that helps keep track of which run
belongs to which subtree(s). This has the .vylog extension and its format is compatible with an .xlog file.
Similarly to an .xlog file, the metadata log gets rotated at each checkpoint. To avoid the creation of extra
runs with split and coalesce, we have also introduced an auxiliary entity called “slice”. It’s a reference to a
run containing a key range and it’s stored only in the metadata log. Once the reference counter drops to
zero, the corresponding file gets removed. When it’s necessary to perform a split or to coalesce, Tarantool
creates slice objects for each new tree, removes older slices, and writes these operations to the metadata log,
which literally stores records that look like this: <tree id, slice id> or <slice id, run id, min, max>.

This way all of the heavy lifting associated with splitting a tree into two subtrees is postponed until a
compaction and then is performed automatically. A huge advantage of dividing all of the keys into ranges
is the ability to independently control the LO size as well as the dump and compaction processes for each
subtree, which makes these processes manageable and predictable. Having a separate metadata log also
simplifies the implementation of both “truncate” and “drop”. In vinyl, they’re processed instantly, since they
only work with the metadata log, while garbage collection is done in the background.

Advanced features of vinyl
Upsert

In the previous sections, we mentioned only two operations stored by an LSM tree: deletion and replacement.
Let’s take a look at how all of the other operations can be represented. An insertion can be represented via
a replacement—you just need to make sure there are no other elements with the specified key. To perform
an update, it’s necessary to read the older value from the tree, so it’s easier to represent this operation as
a replacement as well—this speeds up future read requests by the key. Besides, an update must return the
new value, so there’s no avoiding hidden reads.

In B-trees, the cost of hidden reads is negligible: to update a block, it first needs to be read from disk
anyway. Creating a special update operation for an LSM tree that doesn’t cause any hidden reads is really

3.3. Database 49

Tarantool, Release 2.1.1

tempting.

Such an operation must contain not only a default value to be inserted if a key has no value yet, but also a
list of update operations to perform if a value does exist.

At transaction execution time, Tarantool just saves the operation in an LSM tree, then “executes” it later,
during a compaction.

The upsert operation:

space:upsert(tuple, {{operator, field, value}, ... })

* Non-reading update or insert
¢ Delayed execution
* Background upsert squashing prevents upserts from piling up

Unfortunately, postponing the operation execution until a compaction doesn’t leave much leeway in terms of
error handling. That’s why Tarantool tries to validate upserts as fully as possible before writing them to an
LSM tree. However, some checks are only possible with older data on hand, for example when the update
operation is trying to add a number to a string or to remove a field that doesn’t exist.

A semantically similar operation exists in many products including PostgreSQL and MongoDB. But anywhere
you look, it’s just syntactic sugar that combines the update and replace operations without avoiding hidden
reads. Most probably, the reason is that LSM trees as data storage structures are relatively new.

Even though an upsert is a very important optimization and implementing it cost us a lot of blood, sweat,
and tears, we must admit that it has limited applicability. If a table contains secondary keys or triggers,
hidden reads can’t be avoided. But if you have a scenario where secondary keys are not required and the
update following the transaction completion will certainly not cause any errors, then the operation is for
you.

T'd like to tell you a short story about an upsert. It takes place back when vinyl was only beginning to
“mature” and we were using an upsert in production for the first time. We had what seemed like an ideal
environment for it: we had tons of keys, the current time was being used as values; update operations were
inserting keys or modifying the current time; and we had few reads. Load tests yielded great results.

Nevertheless, after a couple of days, the Tarantool process started eating up 100% of our CPU, and the
system performance dropped close to zero.

We started digging into the issue and found out that the distribution of requests across keys was significantly
different from what we had seen in the test environment. It was...well, quite nonuniform. Most keys were
updated once or twice a day, so the database was idle for the most part, but there were much hotter keys with
tens of thousands of updates per day. Tarantool handled those just fine. But in the case of lookups by key
with tens of thousands of upserts, things quickly went downhill. To return the most recent value, Tarantool
had to read and “replay” the whole history consisting of all of the upserts. When designing upserts, we had
hoped this would happen automatically during a compaction, but the process never even got to that stage:
the L0 size was more than enough, so there were no dumps.

We solved the problem by adding a background process that performed readaheads on any keys that had
more than a few dozen upserts piled up, so all those upserts were squashed and substituted with the read
value.

Secondary keys

Update is not the only operation where optimizing hidden reads is critical. Even the replace operation,
given secondary keys, has to read the older value: it needs to be independently deleted from the secondary
indexes, and inserting a new element might not do this, leaving some garbage behind.

50 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Primary index Secondary index

vers. 6 vers. 6

vers. 5 vers. 5

vers. 4 vers. 4

ndex

primary primary primary secondary secondary secondary secondary
key 1 key 2 key 3 key 1 key 2 key 3 key 4

If secondary indexes are not unique, then collecting “garbage” from them can be put off until a compaction,
which is what we do in Tarantool. The append-only nature of LSM trees allowed us to implement full-
blown serializable transactions in vinyl. Read-only requests use older versions of data without blocking any
writes. The transaction manager itself is fairly simple for now: in classical terms, it implements the MVTO
(multiversion timestamp ordering) class, whereby the winning transaction is the one that finished earlier.
There are no locks and associated deadlocks. Strange as it may seem, this is a drawback rather than an
advantage: with parallel execution, you can increase the number of successful transactions by simply holding
some of them on lock when necessary. We're planning to improve the transaction manager soon. In the
current release, we focused on making the algorithm behave 100% correctly and predictably. For example,
our transaction manager is one of the few on the NoSQL market that supports so-called “gap locks”.

3.4 Application server

In this chapter, we introduce the basics of working with Tarantool as a Lua application server.

This chapter contains the following sections:

3.4.1 Launching an application

Using Tarantool as an application server, you can write your own applications. Tarantool’s native language
for writing applications is Lua, so a typical application would be a file that contains your Lua script. But
you can also write applications in C or C++.

Note: If you're new to Lua, we recommend going over the interactive Tarantool tutorial before proceeding
with this chapter. To launch the tutorial, say tutorial() in Tarantool console:

tarantool > tutorial()

(continues on next page)

3.4. Application server 51

http://www.lua.org/about.html

Tarantool, Release 2.1.1

continued from previous page
g

Let’s create and launch our first Lua application for Tarantool. Here’s a simplest Lua application, the good
old “Hello, world!”:

#!/usr/bin/env tarantool
print(' Hello, world!")

We save it in a file. Let it be myapp.lua in the current directory.
Now let’s discuss how we can launch our application with Tarantool.
Launching in Docker

If we run Tarantool in a Docker container, the following command will start Tarantool 1.9 without any
application:

$ # create a temporary container and run it in interactive mode
$ docker run --rm -t -i tarantool/tarantool:1

To run Tarantool with our application, we can say:

$ # create a temporary container and

$ # launch Tarantool with our application

$ docker run --rm -t -i
-v " pwd’ /myapp.lua:/opt/tarantool/myapp.lua \
-v /data/dir/on/host:/var/lib/tarantool
tarantool/tarantool:1 tarantool /opt/tarantool/myapp.lua

Here two resources on the host get mounted in the container:
* our application file (myapp.lua) and
 Tarantool data directory (/data/dir/on/host).

By convention, the directory for Tarantool application code inside a container is /opt/tarantool, and the
directory for data is /var/lib/tarantool.

Launching a binary program

If we run Tarantool from a binary package or from a source build, we can launch our application:
* in the script mode,
¢ as a server application, or

¢ as a daemon service.

52 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

The simplest way is to pass the filename to Tarantool at start:

$ tarantool myapp.lua
Hello, world!
$

Tarantool starts, executes our script in the script mode and exits.
Now let’s turn this script into a server application. We use box.cfg from Tarantool’s built-in Lua module to:

* launch the database (a database has a persistent on-disk state, which needs to be restored after we
start an application) and

* configure Tarantool as a server that accepts requests over a TCP port.

We also add some simple database logic, using space.create() and create index() to create a space with a
primary index. We use the function box.once() to make sure that our logic will be executed only once when
the database is initialized for the first time, so we don’t try to create an existing space or index on each
invocation of the script:

#!/usr/bin/env tarantool
-- Configure database
box.cfg {

listen — 3301
}

box.once("bootstrap", function()
box.schema.space.create(' tweedledum ")
box.space.tweedledum:create _index(' primary',
{ type = '"TREE", parts = {1, "unsigned'}})
end)

Now we launch our application in the same manner as before:

$ tarantool myapp.lua

Hello, world!

2017-08-11 16:07:14.250 [41436] main/101/myapp.lua C> version 2.1.0-429-g4e5231702

2017-08-11 16:07:14.250 [41436] main/101/myapp.lua C> log level 5

2017-08-11 16:07:14.251 [41436] main/101/myapp.lua I> mapping 1073741824 bytes for tuple arena...
2017-08-11 16:07:14.255 [41436] main/101/myapp.lua I>> recovery start

2017-08-11 16:07:14.255 [41436] main/101/myapp.lua I> recovering from *./00000000000000000000.snap "
2017-08-11 16:07:14.271 [41436] main/101/myapp.lua I>> recover from *./00000000000000000000.xlog"
2017-08-11 16:07:14.271 [41436] main /101 /myapp.lua I> done *./00000000000000000000.xlog"
2017-08-11 16:07:14.272 [41436] main/102/hot _standby I> recover from ./00000000000000000000.xlog"
2017-08-11 16:07:14.274 [41436] iproto/102/iproto I>> binary: started

2017-08-11 16:07:14.275 [41436] iproto/102/iproto I> binary: bound to [::]:3301

2017-08-11 16:07:14.275 [41436] main/101/myapp.lua I>> done "./00000000000000000000.xlog"
2017-08-11 16:07:14.278 [41436] main/101/myapp.lua I>> ready to accept requests

This time, Tarantool executes our script and keeps working as a server, accepting TCP requests on port
3301. We can see Tarantool in the current session’s process list:

$ ps | grep "tarantool"
PID TTY TIME CMD
41608 ttys001 0:00.47 tarantool myapp.lua <running>

But the Tarantool instance will stop if we close the current terminal window. To detach Tarantool and
our application from the terminal window, we can launch it in the daemon mode. To do so, we add some
parameters to box.cfg{}:

e background = true that actually tells Tarantool to work as a daemon service,

3.4. Application server 53

Tarantool, Release 2.1.1

e log = 'dir-name"' that tells the Tarantool daemon where to store its log file (other log settings are
available in Tarantool log module), and

* pid file — 'file-name"' that tells the Tarantool daemon where to store its pid file.

For example:

box.cfg {
listen — 3301
background — true,
log = "l.log",
pid_file = "1.pid’

}

We launch our application in the same manner as before:

$ tarantool myapp.lua
Hello, world!

$

Tarantool executes our script, gets detached from the current shell session (you won’t see it with ps | grep
"tarantool") and continues working in the background as a daemon attached to the global session (with SID
= 0):

$ ps -ef | grep "tarantool"
PID SID TIME CMD
42178 0 0:00.72 tarantool myapp.lua <running>

Now that we have discussed how to create and launch a Lua application for Tarantool, let’s dive deeper into
programming practices.

3.4.2 Creating an application

Further we walk you through key programming practices that will give you a good start in writing Lua
applications for Tarantool. For an adventure, this is a story of implementing... a real microservice based
on Tarantool! We implement a backend for a simplified version of Pokémon Go, a location-based augmented
reality game released in mid-2016. In this game, players use a mobile device’s GPS capability to locate,
capture, battle and train virtual monsters called “pokémon”, who appear on the screen as if they were in the
same real-world location as the player.

To stay within the walk-through format, let’s narrow the original gameplay as follows. We have a map with
pokémon spawn locations. Next, we have multiple players who can send catch-a-pokémon requests to the
server (which runs our Tarantool microservice). The server replies whether the pokémon is caught or not,
increases the player’s pokémon counter if yes, and triggers the respawn-a-pokémon method that spawns a
new pokémon at the same location in a while.

We leave client-side applications outside the scope of this story. Yet we promise a mini-demo in the end to
simulate real users and give us some fun. :-)

&= & ok

First, what would be the best way to deliver our microservice?

Modules, rocks and applications

To make our game logic available to other developers and Lua applications, let’s put it into a Lua module.

54 Chapter 3. User’s Guide

https://en.wikipedia.org/wiki/Pok\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 1 e\egroup \spacefactor \accent@spacefactor mon_Go

Tarantool, Release 2.1.1

A module (called “rock” in Lua) is an optional library which enhances Tarantool functionality. So, we
can install our logic as a module in Tarantool and use it from any Tarantool application or module. Like
applications, modules in Tarantool can be written in Lua (rocks), C or C++.

Modules are good for two things:
* easier code management (reuse, packaging, versioning), and
¢ hot code reload without restarting the Tarantool instance.

Technically, a module is a file with source code that exports its functions in an API. For example, here is a
Lua module named mymodule.lua that exports one function named myfun:

local exports = {}

exports.myfun = function(input_string)
print('Hello', input_ string)

end

return exports

To launch the function myfun() — from another module, from a Lua application, or from Tarantool itself, —
we need to save this module as a file, then load this module with the require() directive and call the exported
function.

For example, here’s a Lua application that uses myfun() function from mymodule.lua module:

-- loading the module
local mymodule = require('mymodule")

-- calling myfun() from within test() function
local test = function()

mymodule.myfun()
end

A thing to remember here is that the require() directive takes load paths to Lua modules from the package.
path variable. This is a semicolon-separated string, where a question mark is used to interpolate the module
name. By default, this variable contains system-wide Lua paths and the working directory. But if we put
our modules inside a specific folder (e.g. scripts/), we need to add this folder to package.path before any
calls to require():

package.path = 'scripts/?.lua;" .. package.path

For our microservice, a simple and convenient solution would be to put all methods in a Lua module (say
pokemon.lua) and to write a Lua application (say game.lua) that initializes the gaming environment and
starts the game loop.

&= & ok

Now let’s get down to implementation details. In our game, we need three entities:

e map, which is an array of pokémons with coordinates of respawn locations; in this version of the game,
let a location be a rectangle identified with two points, upper-left and lower-right;

e player, which has an ID, a name, and coordinates of the player’s location point;

* pokémon, which has the same fields as the player, plus a status (active/inactive, that is present on the
map or not) and a catch probability (well, let’s give our pokémons a chance to escape :-))

We’ll store these entities as tuples in Tarantool spaces. But to deliver our backend application as a mi-
croservice, the good practice would be to send/receive our data in the universal JSON format, thus using
Tarantool as a document storage.

3.4. Application server 55

Tarantool, Release 2.1.1

Avro schemas

To store JSON data as tuples, we will apply a savvy practice which reduces data footprint and ensures all
stored documents are valid. We will use Tarantool module avro-schema which checks the schema of a JSON
document and converts it to a Tarantool tuple. The tuple will contain only field values, and thus take a
lot less space than the original document. In avro-schema terms, converting JSON documents to tuples is
“flattening”, and restoring the original documents is “unflattening”. The usage is quite straightforward:

(1) For each entity, we need to define a schema in Apache Avro schema syntax, where we list the entity’s
fields with their names and Avro data types.

(2) At initialization, we call avro-schema.create() that creates objects in memory for all schema entities,
and compile() that generates flatten /unflatten methods for each entity.

(3) Further on, we just call flatten/unflatten methods for a respective entity on receiving/sending the
entity’s data.

Here’s what our schema definitions for the player and pokémon entities look like:

local schema = {
player — {
type="record",
name="player schema",
fields={
{name="id", type="long"},

{name—"name", type="string"},

{
name—"location",
type= {
type="record",
name="player location",
fields—{
{name—"x", type="double"},
{name="y", type="double"}
}
}
}

}
|2

pokemon = {

type="record",

name—"pokemon_schema",

fields={
{name—"id", type—"long"},
{name—"status", type="string"},
{name="name", type="string"},
{name—"chance", type="double"},

name—"location",
type— {
type="record",
name="pokemon _location",
fields—{
{name="x", type="double"},
{name="y", type="double"}

}

(continues on next page)

o6 Chapter 3. User’s Guide

https://github.com/tarantool/avro-schema
https://en.wikipedia.org/wiki/Apache_Avro
http://avro.apache.org/docs/current/spec.html#schema_primitive

Tarantool, Release 2.1.1

continued from previous page
g

And here’s how we create and compile our entities at initialization:

-- load avro-schema module with require()
local avro = require('avro_schema')

-- create models
local ok_m, pokemon — avro.create(schema.pokemon)
local ok _p, player = avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok _cm, compiled pokemon = avro.compile(pokemon)
local ok _cp, compiled player — avro.compile(player)
if ok_cm and ok _cp then
-- start the game

else
log.error(' Schema compilation failed ")
end
else
log.info(' Schema creation failed")
end
return false

As for the map entity, it would be an overkill to introduce a schema for it, because we have only one map
in the game, it has very few fields, and — which is most important — we use the map only inside our logic,
never exposing it to external users.

Next, we need methods to implement the game logic. To simulate object-oriented programming in our Lua
code, let’s store all Lua functions and shared variables in a single local variable (let’s name it as game). This
will allow us to address functions or variables from within our module as self.func_name or self.var _name.
Like this:

local game = {
-- a local variable
num_ players — 0,

-- a method that prints a local variable
hello — function(self)

print(' Hello! Your player number is ' .. selfnum_players .. '.")
end,

-- a method that calls another method and returns a local variable
sign _in = function(self)

self.num_players — self.num_players + 1

self:hello()

return self.num_ players
end

In OOP terms, we can now regard local variables inside game as object fields, and local functions as object
methods.

3.4. Application server 57

Tarantool, Release 2.1.1

Note: In this manual, Lua examples use local variables. Use global variables with caution, since the
module’s users may be unaware of them.

To enable/disable the use of undeclared global variables in your Lua code, use Tarantool’s strict module.

So, our game module will have the following methods:

« catch() to calculate whether the pokémon was caught (besides the coordinates of both the player and
pokémon, this method will apply a probability factor, so not every pokémon within the player’s reach
will be caught);

* respawn() to add missing pokémons to the map, say, every 60 seconds (we assume that a frightened
pokémon runs away, so we remove a pokémon from the map on any catch attempt and add it back to
the map in a while);

* notify() to log information about caught pokémons (like “Player 1 caught pokémon A”);

o start() to initialize the game (it will create database spaces, create and compile avro schemas, and
launch respawn()).

Besides, it would be convenient to have methods for working with Tarantool storage. For example:
* add_pokemon() to add a pokémon to the database, and
* map() to populate the map with all pokémons stored in Tarantool.

We’ll need these two methods primarily when initializing our game, but we can also call them later, for
example to test our code.

Bootstrapping a database

Let’s discuss game initialization. In start() method, we need to populate Tarantool spaces with pokémon
data. Why not keep all game data in memory? Why use a database? The answer is: persistence. Without
a database, we risk losing data on power outage, for example. But if we store our data in an in-memory
database, Tarantool takes care to persist it on disk whenever it’s changed. This gives us one more benefit:
quick startup in case of failure. Tarantool has a smart algorithm that quickly loads all data from disk into
memory on startup, so the warm-up takes little time.

We'll be using functions from Tarantool built-in box module:

* box.schema.create space('pokemons') to create a space named pokemon for storing information
about pokémons (we don’t create a similar space for players, because we intend to only send/receive
player information via APT calls, so we needn’t store it);

* box.space.pokemons:create index('primary', {type = '"hash', parts = {1, "unsigned'}}) to create
a primary HASH index by pokémon ID;

* box.space.pokemons:create index('status', {type = 'tree', parts = {2, 'str' }}) to create a secondary
TREE index by pokémon status.

Notice the parts = argument in the index specification. The pokémon ID is the first field in a Tarantool
tuple since it’s the first member of the respective Avro type. So does the pokémon status. The actual JSON
document may have ID or status fields at any position of the JSON map.

The implementation of start() method looks like this:

-- create game object
start — function(self)
-- create spaces and indexes

(continues on next page)

o8 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

box.once(' init ", function()
box.schema.create _space(' pokemons')
box.space.pokemons:create _index(
"primary", {type = 'hash', parts = {1, 'unsigned'}}
)
box.space.pokemons:create _index(
"status", {type = "tree", parts = {2, 'str'}}

)
end)

-- create models
local ok _m, pokemon — avro.create(schema.pokemon)
local ok _p, player = avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok _cm, compiled pokemon = avro.compile(pokemon)
local ok _cp, compiled player — avro.compile(player)
if ok_cm and ok _cp then
-- start the game

log.error(' Schema compilation failed")
end
else
log.info(' Schema creation failed ")
end
return false
end

GIS

Now let’s discuss catch(), which is the main method in our gaming logic.

Here we receive the player’s coordinates and the target pokémon’s ID number, and we need to answer whether
the player has actually caught the pokémon or not (remember that each pokémon has a chance to escape).

First thing, we validate the received player data against its Avro schema. And we check whether such a
pokémon exists in our database and is displayed on the map (the pokémon must have the active status):

catch — function(self, pokemon _id, player)
-- check player data
local ok, tuple = self.player model.flatten(player)
if not ok then
return false
end
-- get pokemon data
local p_tuple = box.space.pokemons:get(pokemon _id)
if p_tuple == nil then
return false
end
local ok, pokemon = self.pokemon_model.unflatten(p_tuple)
if not ok then
return false
end
if pokemon.status ~— self.state. ACTIVE then

(continues on next page)

3.4. Application server 59

Tarantool, Release 2.1.1

continued from previous page
g

return false
end
-- more catch logic to follow

end

Next, we calculate the answer: caught or not.
To work with geographical coordinates, we use Tarantool gis module.

To keep things simple, we don’t load any specific map, assuming that we deal with a world map. And we do
not validate incoming coordinates, assuming again that all received locations are within the planet Earth.

We use two geo-specific variables:

* wgs84, which stands for the latest revision of the World Geodetic System standard, WGS84. Basically,
it comprises a standard coordinate system for the Earth and represents the Earth as an ellipsoid.

 nationalmap, which stands for the US National Atlas Equal Area. This is a projected coordinates
system based on WGS84. It gives us a zero base for location projection and allows positioning our
players and pokémons in meters.

Both these systems are listed in the EPSG Geodetic Parameter Registry, where each system has a unique
number. In our code, we assign these listing numbers to respective variables:

wgs84 — 4326,
nationalmap — 2163,

For our game logic, we need one more variable, catch _distance, which defines how close a player must get
to a pokémon before trying to catch it. Let’s set the distance to 100 meters.

catch _distance = 100,

Now we'’re ready to calculate the answer. We need to project the current location of both player (p_pos)
and pokémon (m_pos) on the map, check whether the player is close enough to the pokémon (using
catch_distance), and calculate whether the player has caught the pokémon (here we generate some ran-
dom value and let the pokémon escape if the random value happens to be less than 100 minus pokémon’s
chance value):

-- project locations
local m_pos — gis.Point(

{pokemon.location.x, pokemon.location.y}, self.wgs84
):transform(self.nationalmap)
local p_ pos — gis.Point(

{player.location.x, player.location.y}, self.wgs84
):transform(self.nationalmap)

-- check catch distance condition
if p_pos:distance(m_pos) > self.catch _distance then
return false

end
-- try to catch pokemon
local caught — math.random(100) >— 100 - pokemon.chance

if caught then
-- update and notify on success
box.space.pokemons:update(
pokemon _id, {{'=", sell. STATUS, self.state. CAUGHT}}

)

(continues on next page)

60 Chapter 3. User’s Guide

https://github.com/tarantool/gis
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://epsg.io/2163

Tarantool, Release 2.1.1

continued from previous page
g

self:notify(player, pokemon)
end
return caught

Index iterators

By our gameplay, all caught pokémons are returned back to the map. We do this for all pokémons on the
map every 60 seconds using respawn() method. We iterate through pokémons by status using Tarantool
index iterator function index:pairs and reset the statuses of all “caught” pokémons back to “active” using
box.space.pokemons:update().

respawn — function(self)
fiber.name(' Respawn fiber")
for _, tuple in box.space.pokemons.index.status:pairs(
self.state. CAUGHT) do
box.space.pokemons:update(
tuple[self.ID],
{{'=", self. STATUS, self.state. ACTIVE}}
)
end
end

For readability, we introduce named fields:
ID =1, STATUS = 2,

The complete implementation of start() now looks like this:

-- create game object
start — function(self)
-- create spaces and indexes
box.once('init ', function()
box.schema.create _space(' pokemons")
box.space.pokemons:create index(
"primary", {type = 'hash', parts = {1, 'unsigned'}}
)
box.space.pokemons:create index(
"status", {type = "tree", parts = {2, 'str'}}
)
end)

-- create models
local ok _m, pokemon = avro.create(schema.pokemon)
local ok _p, player — avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok cm, compiled pokemon — avro.compile(pokemon)
local ok_cp, compiled player — avro.compile(player)
if ok_cm and ok _cp then
-- start the game
self.pokemon _model = compiled pokemon
self.player model = compiled player
self.respawn()
log.info(' Started")
return true

(continues on next page)

3.4. Application server 61

Tarantool, Release 2.1.1

continued from previous page
g

else
log.error(' Schema compilation failed")
end
else
log.info(' Schema creation failed")
end
return false
end

Fibers

But wait! If we launch it as shown above — self.respawn() — the function will be executed only once, just like
all the other methods. But we need to execute respawn() every 60 seconds. Creating a fiber is the Tarantool
way of making application logic work in the background at all times.

A fiber exists for executing instruction sequences but it is not a thread. The key difference is that threads
use preemptive multitasking, while fibers use cooperative multitasking. This gives fibers the following two
advantages over threads:

¢ Better controllability. Threads often depend on the kernel’s thread scheduler to preempt a busy thread
and resume another thread, so preemption may occur unpredictably. Fibers yield themselves to run
another fiber while executing, so yields are controlled by application logic.

¢ Higher performance. Threads require more resources to preempt as they need to address the system
kernel. Fibers are lighter and faster as they don’t need to address the kernel to yield.

Yet fibers have some limitations as compared with threads, the main limitation being no multi-core mode.
All fibers in an application belong to a single thread, so they all use the same CPU core as the parent thread.
Meanwhile, this limitation is not really serious for Tarantool applications, because a typical bottleneck for
Tarantool is the HDD, not the CPU.

A fiber has all the features of a Lua coroutine and all programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

Well, performance or controllability are of little importance in our case. We’ll launch respawn() in a fiber to
make it work in the background all the time. To do so, we’ll need to amend respawn():

respawn — function(self)

- let 's give our fiber a name;

-- this will produce neat output in fiber.info()

fiber.name(' Respawn fiber")

while true do

for _, tuple in box.space.pokemons.index.status:pairs(
self.state. CAUGHT) do
box.space.pokemons:update(

tuple[self.ID],
{{'=", sell. STATUS, self.state. ACTIVE}}

)
end
fiber.sleep(self.respawn_ time)
end
end

and call it as a fiber in start():

62 Chapter 3. User’s Guide

http://www.lua.org/pil/contents.html#9

Tarantool, Release 2.1.1

start — function(self)
-- create spaces and indexes

create models

- compile models

- start the game
self.pokemon _model = compiled pokemon
self.player model = compiled player
fiber.create(self.respawn, self)
log.info(' Started")

-- errors if schema creation or compilation fails

end

Logging

One more helpful function that we used in start() was log.info() from Tarantool log module. We also need
this function in notify() to add a record to the log file on every successful catch:

-- event notification
notify = function(self, player, pokemon)

log.info("Player '%s"' caught '%s'", player.name, pokemon.name)
end

We use default Tarantool log settings, so we’ll see the log output in console when we launch our application
in script mode.

o

Great! We’ve discussed all programming practices used in our Lua module (see pokemon.lua).

Now let’s prepare the test environment. As planned, we write a Lua application (see game.lua) to initialize
Tarantool’s database module, initialize our game, call the game loop and simulate a couple of player requests.

To launch our microservice, we put both pokemon.lua module and game.lua application in the current
directory, install all external modules, and launch the Tarantool instance running our game.lua application
(this example is for Ubuntu):

$ls

game.lua pokemon.lua

$ sudo apt-get install tarantool-gis

$ sudo apt-get install tarantool-avro-schema
$ tarantool game.lua

Tarantool starts and initializes the database. Then Tarantool executes the demo logic from game.lua: adds
a pokémon named Pikachu (its chance to be caught is very high, 99.1), displays the current map (it contains
one active pokémon, Pikachu) and processes catch requests from two players. Playerl is located just near
the lonely Pikachu pokémon and Player2 is located far away from it. As expected, the catch results in this
output are “true”’ for Playerl and “false” for Player2. Finally, Tarantool displays the current map which is
empty, because Pikachu is caught and temporarily inactive:

$ tarantool game.lua
2017-01-09 20:19:24.605 [6282] main/101 /game.lua C> version 1.7.3-43-gf5falel

(continues on next page)

3.4. Application server 63

https://github.com/tarantool/pokemon/blob/1.9/src/pokemon.lua
https://github.com/tarantool/pokemon/blob/1.9/game.lua

Tarantool, Release 2.1.1

continued from previous page
g

2017-01-09 20:19:24.605 [6282] main/101/game.lua C> log level 5

2017-01-09 20:19:24.605 [6282] main/101/game.lua I>> mapping 1073741824 bytes for tuple arena...

2017-01-09 20:19:24.609 [6282] main/101/game.lua I*> initializing an empty data directory

2017-01-09 20:19:24.634 [6282] snapshot/101/main I> saving snapshot *./00000000000000000000.snap.inprogress '
2017-01-09 20:19:24.635 [6282] snapshot/101/main I>> done

2017-01-09 20:19:24.641 [6282] main/101/game.lua I*> ready to accept requests

2017-01-09 20:19:24.786 [6282] main/101 /game.lua I> Started

- {'id': 1, 'status': 'active', 'location': {'y': 2, 'x': 1}, 'name': 'Pikachu', 'chance': 99.1}

2017-01-09 20:19:24.789 [6282] main/101/game.lua I'> Player 'Playerl' caught 'Pikachu'
true
false

—1]

2017-01-09 20:19:24.789 [6282] main C>> entering the event loop

nginx

In the real life, this microservice would work over HTTP. Let’s add nginx web server to our environment
and make a similar demo. But how do we make Tarantool methods callable via REST API? We use nginx
with Tarantool nginx upstream module and create one more Lua script (app.lua) that exports three of our
game methods — add_pokemon(), map() and catch() — as REST endpoints of the nginx upstream module:

local game — require(' pokemon ")
box.cfg{listen—=3301}
game:start()

-- add, map and catch functions exposed to REST API
function add(request, pokemon)
return {
result—game:add__pokemon(pokemon)
}

end

function map(request)
return {
map—game:map()
}

end

function catch(request, pid, player)
local id = tonumber(pid)
if id == nil then
return {result—false}
end
return {
result—game:catch(id, player)
}

end

An easy way to configure and launch nginx would be to create a Docker container based on a Docker image
with nginx and the upstream module already installed (see http/Dockerfile). We take a standard nginx.conf,

64 Chapter 3. User’s Guide

https://nginx.org/en/
https://github.com/tarantool/nginx_upstream_module
https://github.com/tarantool/pokemon/blob/1.9/src/app.lua
https://hub.docker.com/r/tarantool/tarantool-nginx/
https://github.com/tarantool/pokemon/blob/1.9/http/Dockerfile
https://github.com/tarantool/pokemon/blob/1.9/http/nginx.conf

Tarantool, Release 2.1.1

where we define an upstream with our Tarantool backend running (this is another Docker container, see
details below):

upstream tnt {
server pserver:3301 max_fails=1 fail timeout—=60s;
keepalive 250000;

¥

and add some Tarantool-specific parameters (see descriptions in the upstream module’s README file):

server {
server name tnt_test;

listen 80 default deferred reuseport so_keepalive=on backlog=65535;

location = / {
root /usr/local/nginx/html;

}

location /api {
answers check infinity timeout
tnt_read_ timeout 60m;
if ($request_method = GET) {
tnt _method "map";
}
tnt_http rest methods get;
tnt_http methods all;
tnt__multireturn_skip count 2;
tnt__pure_result on;
tnt _pass_http request on parse args;
tnt__pass tnt;
}
}

Likewise, we put Tarantool server and all our game logic in a second Docker container based on the official
Tarantool 1.9 image (see src/Dockerfile) and set the container’s default command to tarantool app.lua. This
is the backend.

Non-blocking IO

To test the REST API, we create a new script (client.lua), which is similar to our game.lua application, but
makes HTTP POST and GET requests rather than calling Lua functions:

local http = require(' curl').http()

local json = require('json")

local URI = os.getenv('SERVER _URI")
local fiber = require(' fiber")

local playerl — {
name="Playerl",
id=1,
location — {
x=1.0001,
y=2.0003

}
}

(continues on next page)

3.4. Application server 65

https://github.com/tarantool/nginx_upstream_module#directives
https://github.com/tarantool/docker
https://github.com/tarantool/docker
https://github.com/tarantool/pokemon/blob/1.9/src/Dockerfile
https://github.com/tarantool/pokemon/blob/1.9/client/client.lua

Tarantool, Release 2.1.1

continued from previous page
g

local player2 = {
name="Player2",
id—2,
location = {
x=30.123,
y=40.456
}
}

local pokemon = {
name—"Pikachu",
chance—=99.1,
id=1,
status—"active",
location — {
x=1,
y—2
}
}

function request(method, body, id)
local resp = http:request(
method, URI, body
)
if id ~= nil then
print(string.format (' Player %d result: %s",
id, resp.body))
else
print(resp.body)
end
end

local players = {}
function catch(player)
fiber.sleep(math.random(5))
print(' Catch pokemon by player ' .. tostring(player.id))
request(
'POST", '{"method": "catch",
"params": [1, '..json.encode(player)..'|} ',
tostring(player.id)
)
table.insert(players, player.id)
end

print(' Create pokemon ")

request('POST ", '{"method": "add",
"params": ['..json.encode(pokemon).."|} ")

request('GET"', ')

fiber.create(catch, playerl)
fiber.create(catch, player2)

-- wait for players
while #players "= 2 do
fiber.sleep(0.001)

end

(continues on next page)

66 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

request('GET"', ' ")
os.exit()

When you run this script, you’ll notice that both players have equal chances to make the first attempt at
catching the pokémon. In a classical Lua script, a networked call blocks the script until it’s finished, so
the first catch attempt can only be done by the player who entered the game first. In Tarantool, both
players play concurrently, since all modules are integrated with Tarantool cooperative multitasking and use
non-blocking I/0.

Indeed, when Playerl makes its first REST call, the script doesn’t block. The fiber running catch() function
on behalf of Player] issues a non-blocking call to the operating system and yields control to the next fiber,
which happens to be the fiber of Player2. Player2’s fiber does the same. When the network response
is received, Player1’s fiber is activated by Tarantool cooperative scheduler, and resumes its work. All
Tarantool modules use non-blocking I/O and are integrated with Tarantool cooperative scheduler. For
module developers, Tarantool provides an API.

For our HTTP test, we create a third container based on the official Tarantool 1.9 image (see
client /Dockerfile) and set the container’s default command to tarantool client.lua.

o

To run this test locally, download our pokemon project from GitHub and say:

$ docker-compose build
$ docker-compose up

Docker Compose builds and runs all the three containers: pserver (Tarantool backend), phttp (nginx) and
pclient (demo client). You can see log messages from all these containers in the console, pclient saying that
it made an HTTP request to create a pokémon, made two catch requests, requested the map (empty since
the pokémon is caught and temporarily inactive) and exited:

pclient 1 | Create pokemon

pclient 1 | {"result":true}

pclient 1 | {"map":[{"id":1,"status":"active","location":{"y":2,"x":1},"name":"Pikachu","chance":99.100000}]}
pclient_1 | Catch pokemon by player 2

pclient 1 | Catch pokemon by player 1

pclient 1 | Player 1 result: {"result":true}

pclient 1 | Player 2 result: {"result":false}

pclient 1 | {"map":[]}

pokemon_pclient_ 1 exited with code 0

Congratulations! Here’s the end point of our walk-through. As further reading, see more about installing
and contributing a module.

See also reference on Tarantool modules and C API, and don’t miss our Lua cookbook recipes.

3.4.3 Installing a module
Modules in Lua and C that come from Tarantool developers and community contributors are available in
the following locations:

¢ Tarantool modules repository, and

* Tarantool deb/rpm repositories.

3.4. Application server 67

https://github.com/tarantool/docker
https://github.com/tarantool/pokemon/blob/1.9/client/Dockerfile
https://github.com/tarantool/pokemon

Tarantool, Release 2.1.1

Installing a module from a repository

See README in tarantool/rocks repository for detailed instructions.

Installing a module from deb/rpm

Follow these steps:
1. Install Tarantool as recommended on the download page.

2. Install the module you need. Look up the module’s name on Tarantool rocks page and put the prefix
“tarantool-” before the module name to avoid ambiguity:

$ # for Ubuntu/Debian:
$ sudo apt-get install tarantool-<module-name>

$ # for RHEL /CentOS/Amazon:
$ sudo yum install tarantool-<module-name>

For example, to install the module shard on Ubuntu, say:

’ $ sudo apt-get install tarantool-shard

Once these steps are complete, you can:

¢ load any module with

tarantool > name — require('module-name")

for example:

tarantool > shard = require('shard")

* search locally for installed modules using package.path (Lua) or package.cpath (C):

tarantool> package.path

- ./?lua;./?/init.lua; /usr/local/share/tarantool/?.lua;/usr/local/share/
tarantool/?/init.lua;/usr/share/tarantool/? lua;/usr /share/tarantool /? /ini
t.lua;/usr/local/share/lua/5.1/?.lua;/usr/local /share/lua/5.1/7 /init.lua;/
usr/share/lua/5.1/7.lua;/usr/share/lua/5.1/7 /init.lua;

tarantool> package.cpath

- ./?.s0;/usr/local/lib/x86 _64-linux-gnu/tarantool/?.so;/usr/lib/x86_ 64-li
nux-gnu/tarantool /?.so; /usr/local/lib /tarantool /7 .so; /usr/local /lib/x86 64
-linux-gnu/lua/5.1/7.s0;/usr/lib/x86 64-linux-gnu/lua/5.1/?.s0;/usr/local/
lib/lua/5.1/7.s0;

Note: Question-marks stand for the module name that was specified earlier when saying re-
quire(' module-name").

68 Chapter 3. User’s Guide

https://github.com/tarantool/rocks#managing-modules-with-tarantool-174
http://tarantool.org/download.html
http://tarantool.org/rocks.html
http://github.com/tarantool/shard

Tarantool, Release 2.1.1

3.4.4 Contributing a module

We have already discussed how to create a simple module in Lua for local usage. Now let’s discuss how to
create a more advanced Tarantool module and then get it published on Tarantool rocks page and included
in official Tarantool images for Docker.

To help our contributors, we have created modulekit, a set of templates for creating Tarantool modules in
Lua and C.

Note: As a prerequisite for using modulekit, install tarantool-dev package first. For example, in Ubuntu
say:

$ sudo apt-get install tarantool-dev

Contributing a module in Lua

See README in “luakit” branch of tarantool/modulekit repository for detailed instructions and examples.

Contributing a module in C

In some cases, you may want to create a Tarantool module in C rather than in Lua. For example, to work
with specific hardware or low-level system interfaces.

See README in “ckit” branch of tarantool/modulekit repository for detailed instructions and examples.

Note: You can also create modules with C++, provided that the code does not throw exceptions.

3.4.5 Reloading a module

You can reload any Tarantool application or module with zero downtime.

Reloading a module in Lua

Here’s an example that illustrates the most typical case — “update and reload”.

Note: In this example, we use recommended administration practices based on instance files and tarantoolctl
utility.

1. Update the application file.

For example, a module in /usr/share/tarantool/app.lua:

local function start()
-- initial version
box.once("myapp:v1.0", function()
box.schema.space.create("somedata")
box.space.somedata:create _index("primary")

(continues on next page)

3.4. Application server 69

http://tarantool.org/rocks.html
http://github.com/tarantool/docker
http://github.com/tarantool/modulekit
http://github.com/tarantool/modulekit/blob/luakit/README.md
http://github.com/tarantool/modulekit/blob/ckit/README.md

Tarantool, Release 2.1.1

continued from previous page
g

end)

-- migration code from 1.0 to 1.1
box.once("myapp:v1.1", function()
box.space.somedata.index.primary:alter(...)

end)
-- migration code from 1.1 to 1.2
box.once("myapp:v1.2", function()
box.space.somedata.index.primary:alter(...)
box.space.somedata:insert(...)
end)
end

-- start some background fibers if you need

local function stop()
-- stop all background fibers and clean up resources
end

local function api_for call(xxx)
-- do some business

end

return {
start — start,
stop — stop,

api_for_call — api_for_call

}

2. Update the instance file.

For example, /etc/tarantool/instances.enabled/my app.lua:

#!/usr/bin/env tarantool

-- hot code reload example

box.cfg({listen = 3302})

-- ATTENTION: unload it all properly!
local app — package.loaded|"app']
if app ~= nil then
-- stop the old application version
app.stop()
-- unload the application
package.loaded["app'| = nil
-- unload all dependencies
package.loaded|'somedep '] = nil
end

-- load the application
log.info('require app ")
app — require('app")

(continues on next page)

70

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

-- start the application
app.start({some app options controlled by sysadmins})

The important thing here is to properly unload the application and its dependencies.
3. Manually reload the application file.

For example, using tarantoolctl:

$ tarantoolctl eval my app /etc/tarantool/instances.enabled/my app.lua

Reloading a module in C

After you compiled a new version of a C module (*.so shared library), call box.schema.func.reload(‘module-
name’) from your Lua script to reload the module.

3.4.6 Developing with an IDE

You can use IntelliJ IDEA as an IDE to develop and debug Lua applications for Tarantool.
1. Download and install the IDE from the official web-site.

JetBrains provides specialized editions for particular languages: IntelliJ IDEA (Java), PHPStorm
(PHP), PyCharm (Python), RubyMine (Ruby), CLion (C/C++), WebStorm (Web) and others. So,
download a version that suits your primary programming language.

Tarantool integration is supported for all editions.
2. Configure the IDE:
a. Start Intelli] IDEA.
b. Click Configure button and select Plugins.

3.4. Application server 71

https://www.jetbrains.com/idea/

Tarantool, Release 2.1.1

Welcome to Intellid IDEA

IntelliJ IDEA

Version 2017.2.3

#¢ Create New Project
¥ Import Project
= Open

¥ Check out from Version Control ~

Configure ~ Get Help ~

1 Preferences
Import Settings

c. Click Browse repositories.

Export Settings

Settings Repository...

Check for Updates
Project Defaults

»

"

72

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

[BN Plugins
Qr Show: All plugins «
Sort by: name ¥ | GitHub
Android Support Version: 172.3968.16
m Ant Support Allows warking with GitHub, The following features are available:
w Bytecode Viewer L] g:tc:iiri‘l:;:grs:egr::Or;dse‘;i:eo;ersion Control node in the
n Copyright ® Cvailable Gitrepostones, when Gt ub s notanabied.
® When GitHub is enabled, the GitHub node appears an the VCS

s Coverage menu, and an the context menu of the editor.
s CVS Integration
s Eclipse Integration
= EditorConfig
s Git Integration

-
= Gradle
a Groovy
a hgdidea
= 118n for Java
s IntelliLang
= Java Bvtecode Decompiler
Install JetBrains plugin... Browse repositories... Install plugin from disk...

? Cancel | ol |

d. Install EmmyLua plugin.

Note: Please don’t be confused with Lua plugin, which is less powerful than EmmyLua.

[NN] Browse Repositories

Qr 5 category: All =

Sort by: name * LANGUAGES i
LANGUALES 2 years ago 1
EmmyLua

Emma Code Coverage; 1
28563 Wiy [Install H

CODE TOOLS 12 years ago |
H

Emmet Everywh wirdrdrdr 5051 downloads I

73,969 WWAAN | Updated 24/08/2017 v1.1.8

CODE TOOLS 2 yaars ago
Support for Lua programming language.

M Pt Source Code | Gitter | Donate
- Features:

Emoji Support Plugin 4120 i ® Syntax highiighting

CODE EDITING ' P ® Highlight global value

e e ® Highlight localiparam value
EmojiPrefix o & Highlight up value
35
VS INTEGRATION ane month ago ¢ Code completion
. . & Keyword completion
Enclosing Plugin 0437 driddd & Basic completion
HTTP Proxy Settings... Manage repositories...

3.4. Application server 73

Tarantool, Release 2.1.1

e. Restart IntelliJ IDEA.
f. Click Configure, select Project Defaults and then Run Configurations.

®® Welcome to IntelliJ IDEA

IntelliJ IDEA

Version 2017.2.3

¢ Create New Project
¥ Import Project
Open

¥ Check out from Version Control ~

#* Configure » Get Help ~

) Preferences f
Plugins
Import Settings

Export Settings
Settings Repository...
Check for Updates

Settings
Project Structure

g. Find Lua Application in the sidebar at the left.
h. In Program, type a path to an installed tarantool binary.
By default, this is tarantool or /usr/bin/tarantool on most platforms.

If you installed tarantool from sources to a custom directory, please specify the proper path here.

74 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

e o Run/Debug Configurations

+ 42 Debugger: Remote Debugger(Mobdebug)

v J“Defaults
& Ant Target
= Applet Working Directory:
= Application
! Compound Entry File:

(* Gradle
™) Griffon Parameters:

Program: tarantool

& Groovy
JAR Application ~ Before launch: Activate tool window
W JUnit
= Java Scratch
K Kotlin There are no tasks to run before launch
K Kotlin (JavaScript)
K Kotlin script
= Lua Application
= Lua Remote(Mo ug)
Maven +
Plugin
& Remote
Wi TestNG
B XSLT

Show this page Activate tool window

? Cancel

Apply

Now IntelliJ IDEA is ready to use with Tarantool.
3. Create a new Lua project.
o e New Project

= Java Project SDK: Lua New...
= Java FX

IntelliJ Platform Plugin

Additional Librari d Frameworks:

17 Maven

(2 Gradle
Nothing to show

& Groovy
(@) Griffon

‘m
K Kotlin

= Empty Project

? Cancel Previous m

4. Add a new Lua file, for example init.lua.

3.4. Application server

75

Tarantool, Release 2.1.1

& Create Gist...

|ﬁ

5. Write your code, save the file.

eee myproject - (~/ideaProjects/myproject] -
wmyproject) [src) H-renm@Q
¥ Wamyproject ~/IdeaProjects/myproject
v [w.idea
& misc.xml Lua File
& madules.xmi [Copy & Lua Tutorial
& workspace.xm! Copy Path pe o0
fsrc | Copy Reference Xo%C | .
myproject.iml (M Paste “ : :cmch File O8N
» |l External Libraries = ackage
Find Usages XF7 & FXML File
Find in Path... 0%F &= package-infojava
Replace in Path.. %R &= module-info.java
Analyze & HTML File
Refactor » i JavaFXApplication
= Singleton
Add to Favorites > 2 xsLT Style "
Show Image Thumbnails 08T
Edit File Templates...
Reformat Code 8L il Resource Bundle
Optimize Imports X0
Delete... =
Build Module 'myproject
Rebuild '<default>' 0 #®F
Local History >
@5 Synchronize 'src’
Reveal in Finder
+* Compare With... %D
Open Module Settings £
Mark Directory as »>
‘= Run LuaCheck

6. To run you application, click Run -> Run in the main menu and select your source file in the list.

Or click Run -> Debug to start debugging.

(XX) ¥ init.lua - myproject - (~/IdeaProjects/myproject]
Namyproject) hw sre) 5, init.lua) W . mye- p & H B Q
B Project - D ok B I minitla
¥ hamyproject ~/IdeaProjects/myproject 1 — v
v [w.idea 2 —— Created by lenkis
& Misc.xml i o DateTime: 11/09/2017 17:09
& Modules.xm| 5
o workspace.xml 6 print(“Hello")
» mout 7
¥ busrc | Run |
= init.lua 0.[» Edit Configurations...
ik 2 nitba
» |l External Libraries %o myua K
| Hold © to Debug
Run o, my.lua et

Note:

To use Lua debugger, please upgrade Tarantool to version 1.7.5-29-gbb6170e4b or later.

76

Chapter 3. User’s Guide

Tarantool, Release 2.1.1

« myproject 81C) g, Init.lua

7 Project .
amyproject ~/deabr
{ .idea
| misc.xml
o Modules.xml
« Workspace.xml|
{ out

src
aMyproject.iml
|l External Libraries

i Debug , initlua

| G Debugger [E] Console -+
H

{ 3) Frames

| ¥ LuaStack
mE

la
[

: [} compilation completed successfully in 2s 160ms (a minute ago)

@ b e 1o Zinita

print{"Hello")

¥ init.lua - myproject - [~/IdeaProjects/myproject]

local a, b = 10, 15

print{a, b)

local yaml = require

('yaml')

box.once("schema”, function()

box.schema.

space.create('memtx')

bax. space.memtx: index_create(‘primary’)

)

box, space.memtx:auto_increment(“Hello")
box . space.memtx:auto_increment (“World")

print(yaml.encode(box.space.memtx:select()))

i
|+
e
W
|

v

i

fir]

3.4.7 Cookbook recipes

Here are contributions of Lua programs for some frequent or tricky situations.

1 = init.lua [) & Q

133 e UTF8: w S C

You can execute any of these programs by copying the code into a .lua file, and then entering chmod +x
./program-name.lua and ./program-name.lua on the terminal.

The first line is a “hashbang”:

#!/usr/bin/env tarantool

This runs Tarantool Lua application server, which should be on the execution path.

This section contains the following recipes:

» fio_read.lua
e fio write.lua

e ffi printflua

e fi_zlib.lua

o fi meta.lua

hello world.lua

* console _start.lua

o fi_gettimeofday.lua

o fi_varbinary insert.lua

 print _arrays.lua

3.4. Application server

77

Tarantool, Release 2.1.1

* count array.lua

e count_array with nils.lua
e count_array with nulls.lua
* count map.lua

e swap.lua

* class.lua

» garbage.lua

 fiber producer and consumer.lua
* socket tcpconnect.lua

* socket tcp_echo.lua
 getaddrinfo.lua

* socket udp echo.lua

e http _get.lua

* http send.lua

* http server.lua

* http generate html.lua

Use freely.

hello world.lua

The standard example of a simple program.

#!/usr/bin/env tarantool

print(' Hello, World!")

console _start.lua

Use box.once() to initialize a database (creating spaces) if this is the first time the server has been run. Then
use console.start() to start interactive mode.

#!/usr/bin/env tarantool

-- Configure database
box.cfg {

listen — 3313
}

box.once("bootstrap", function()
box.schema.space.create(' tweedledum ")
box.space.tweedledum:create _index('primary"',
{ type = "TREE", parts — {1, "unsigned'}})
end)

(continues on next page)

78 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

require(' console ").start()

fio read.lua

Use the fio module to open, read, and close a file.

#!/usr/bin/env tarantool

local fio — require('fio")
local errno = require('errno")
local f = fio.open(' /tmp/xxxx.txt', {"O_RDONLY"' })
if not f then
error("Failed to open file: "..errno.strerror())
end
local data = f:read(4096)
f:close()
print(data)

fio write.lua

Use the fio module to open, write, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio")

local errno = require('errno")

local f = fio.open(' /tmp/xxxx.txt', {'O_CREAT' 'O _WRONLY', 'O _APPEND'},
tonumber('0666', 8))

if not f then
error("Failed to open file: "..errno.strerror())

end

frwrite("Hello\n");

f:close()

fiprintf.lua

Use the LuaJIT ffi library to call a C built-in function: printf(). (For help understanding ffi, see the FFI
tutorial.)

#!/usr/bin/env tarantool
local fii = require('ffi")

ffi.cdef][
int printf(const char *format, ...);
Il

ffi.C.printf("Hello, %s\n", os.getenv("USER"));

3.4. Application server 79

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 2.1.1

i gettimeofday.lua

Use the LuaJIT ffi library to call a C function: gettimeofday(). This delivers time with millisecond precision,
unlike the time function in Tarantool’s clock module.

#!/usr/bin/env tarantool

local fii = require('ffi")
ffi.cdef][
typedef long time _t;
typedef struct timeval {
time t tv_sec;
time t tv_ usec;
} timeval;
int gettimeofday(struct timeval *t, void *tzp);
Il

local timeval buf = fli.new("timeval')
local now = function()

ffi.C.gettimeofday (timeval _buf, nil)

return tonumber(timeval _buf.tv_sec * 1000 + (timeval buf.tv_usec / 1000))
end

fii_zlib.lua

Use the LuaJIT ffi library to call a C library function. (For help understanding ffi, see the FFI tutorial.)

#!/usr/bin/env tarantool

local fii = require("ffi")

ffi.cdef][
unsigned long compressBound(unsigned long sourceLen);
int compress2(uint8 t *dest, unsigned long *destLen,
const uint8 t *source, unsigned long sourceLen, int level);
int uncompress(uint8 t *dest, unsigned long *destLen,
const uint8 _t *source, unsigned long sourceLen);

Il
local zlib = fli.load(ffi.os == "Windows" and "zIlib1" or "z")

-- Lua wrapper for compress2()
local function compress(txt)
local n = zlib.compressBound (#txt)
local buf = fli.new("uint8 t[?]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.compress2(buf, buflen, txt, #txt, 9)

assert(res == 0)
return fli.string(buf, buflen|[0])
end

-- Lua wrapper for uncompress
local function uncompress(comp, n)
local buf = fli.new("uint8 t[?]", n)
local buflen = flinew("unsigned long[1]", n)
local res = zlib.uncompress(buf, buflen, comp, #comp)
assert(res == 0)
return fli.string(buf, buflen[0])

(continues on next page)

&0 Chapter 3. User’s Guide

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 2.1.1

continued from previous page
g

end

-- Simple test code.

local txt = string.rep("abcd", 1000)
print("Uncompressed size: ", #txt)
local ¢ = compress(txt)
print("Compressed size: ", #c)
local txt2 — uncompress(c, #txt)
assert(txt2 == txt)

fi_meta.lua

Use the LuaJIT ffi library to access a C object via a metamethod (a method which is defined with a
metatable).

#!/usr/bin/env tarantool

local fli = require("ffi")
fi.cdef]|
typedef struct { double x, y; } point_t;

Il

local point
local mt = {
__add = function(a, b) return point(a.x+b.x, a.y-+b.y) end,
__len — function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
__index = {
area — function(a) return a.x*a.x + a.y*a.y end,
}
}

point — fli.metatype("point _t", mt)

local a = point(3, 4)

print(a.x, a.y) --> 3 4
print(#a) ->5
print(a:area()) --> 25
local b = a + point(0.5, 8)
print(#b) ->12.5

fi_varbinary insert.lua

Use the LuaJIT ffi library to insert a tuple which has a VARBINARY field. Lua does not have direct support
for VARBINARY, so using C is one way to put in data which in MessagePack is stored as bin (MP_BIN).
If the tuple is retrieved later, field “b” will have type = ‘cdata’.

#!/usr/bin/env tarantool
-- box.cfg{} should be here
s = box.schema.space.create(' withdata ")

s:format({{"b", "varbinary"}})
s:create_index('pk', {parts — {1, "varbinary"}})

(continues on next page)

3.4. Application server 81

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi.html

Tarantool, Release 2.1.1

continued from previous page
g

buffer = require('buffer")
fi = require('fli")

function varbinary insert(space, bytes)
local tmpbuf — buffer.IBUF _SHARED
tmpbufireset()
local p = tmpbuf:alloc(3 + #bytes)
p[0] = 0x91 -- MsgPack code for "array-1"
p[1] = 0xC4 -- MsgPack code for "bin-8" so up to 256 bytes
p[2] = #bytes
for i, ¢ in pairs(bytes) do p[i + 3 - 1] = c end
ffi.cdef][int box_insert(uint32 t space id,
const char *tuple,
const char *tuple end,
box_tuple t **result);]|
fi.C.box_insert(space.id, tmpbuf.rpos, tmpbuf.wpos, nil)
end

varbinary insert(s, {0xDE, 0xAD, 0xBE, 0xAF})
varbinary insert(s, {OxFE, 0xED, 0xFA, 0xCE})

-- if successful, Tarantool enters the event loop now

print__arrays.lua

Create Lua tables, and print them. Notice that for the ‘array’ table the iterator function is ipairs(), while for
the ‘map’ table the iterator function is pairs(). (ipairs() is faster than pairs(), but pairs() is recommended for
map-like tables or mixed tables.) The display will look like: “1 Apple | 2 Orange | 3 Grapefruit | 4 Banana |
k3 v3 | k1 vl | k2 v2”.

#!/usr/bin/env tarantool

array — { "Apple', 'Orange', 'Grapefruit', 'Banana'}
for k, v in ipairs(array) do print(k, v) end

map —{kl = 'vl', k2 = 'v2' k3 = 'v3' }
for k, v in pairs(map) do print(k, v) end

count__array.lua

Use the ‘#’ operator to get the number of items in an array-like Lua table. This operation has O(log(N))
complexity.

#!/usr/bin/env tarantool

array — { 1, 2, 3}
print(#array)

count_array with nils.lua

Missing elements in arrays, which Lua treats as “nil”’s, cause the simple “#” operator to deliver improper
results. The “print(#t)” instruction will print “4”; the “print(counter)” instruction will print “3”; the

82 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

“print(max)” instruction will print “10”. Other table functions, such as table.sort(), will also misbehave

when “nils” are present.

#!/usr/bin/env tarantool

local t = {}

t[1] =1

t[4] — 4

t[10] = 10

print(#t)

local counter — 0

for k,v in pairs(t) do counter = counter + 1 end
print(counter)

local max — 0

for k,v in pairs(t) do if k > max then max = k end end
print(max)

count array with nulls.lua

Use explicit NULL values to avoid the problems caused by Lua’s nil == missing value behavior. Although
json.NULL == nil is true, all the print instructions in this program will print the correct value: 10.

#!/usr/bin/env tarantool

local json = require('json")

local t = {}

t[1] = 1; t[2] = json.NULL; t[3]= json.NULL,;
t[4] = 4; t[5] = json.NULL; t[6]= json.NULL;
t[6] = 4; t[7] = json.NULL; t[8]= json.NULL;
t[9] = json.NULL

£[10] = 10

print(#t)

local counter — 0

for k,v in pairs(t) do counter = counter + 1 end
print(counter)

local max — 0

for k,v in pairs(t) do if k > max then max — k end end
print(max)

count _map.lua

Get the number of elements in a map-like table.

#!/usr/bin/env tarantool

local map = {a =10, b =15, ¢ = 20 }
local size — 0

for _ in pairs(map) do size = size + 1; end
print(size)

swap.lua

Use a Lua peculiarity to swap two variables without needing a third variable.

3.4. Application server

83

Tarantool, Release 2.1.1

#!/usr/bin/env tarantool

localx =1
local y = 2
5Ly X
print(x, y)

class.lua

Create a class, create a metatable for the class, create an instance of the class.

http://lua-users.org/wiki/LuaClassesWithMetatable.

Another illustration is at

#!/usr/bin/env tarantool

-- define class objects

local myclass_somemethod — function(self)
print('test 1', self.data)

end

local myclass _someothermethod = function(self)
print('test 2", self.data)
end

local myclass_tostring — function(self)
return 'MyClass < '..self.data..’ >
end

local myclass mt — {
__tostring — myclass_tostring;
__index — {
somemethod — myclass _somemethod;
someothermethod — myclass _someothermethod;

}
}

-- create a new object of myclass

local object = setmetatable({ data — 'data'}, myclass mt)
print(object:somemethod())

print(object.data)

garbage.lua

Activate the Lua garbage collector with the collectgarbage function.

#!/usr/bin/env tarantool

collectgarbage(' collect ")

fiber producer and consumer.lua

Start one fiber for producer and one fiber for consumer. Use fiber.channel() to exchange data and synchronize.
One can tweak the channel size (ch_size in the program code) to control the number of simultaneous tasks

waiting for processing.

84

Chapter 3. User’s Guide

http://lua-users.org/wiki/LuaClassesWithMetatable
https://www.lua.org/manual/5.1/manual.html#2.10
https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 2.1.1

#!/usr/bin/env tarantool

local fiber = require(' fiber")
local function consumer loop(ch, i)
-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do
local data = ch:get()
if data == nil then
break
end
print(' consumed ', i, data)
fiber.sleep(math.random()) -- simulate some work
end
end

local function producer loop(ch, i)
-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do
local data = math.random()
ch:put(data)
print(' produced', i, data)
end
end

local function start()
local consumer_n — 5
local producer n = 3

-- Create a channel
local ch_size = math.max(consumer n, producer_n)
local ch = fiber.channel(ch _size)

-- Start consumers

for i=1, consumer_n,1 do
fiber.create(consumer_loop, ch, i)

end

-- Start producers
for i=1, producer _n,1 do
fiber.create(producer loop, ch, i)
end
end

start()
print('started ")

socket _tcpconnect.lua

Use socket.tcp _connect() to connect to a remote host via TCP. Display the connection details and the result
of a GET request.

#!/usr/bin/env tarantool

local s = require('socket').tcp__connect('google.com", 80)

(continues on next page)

3.4. Application server 85

Tarantool, Release 2.1.1

continued from previous page
g

print(s:peer().host)

print(s:peer().family)

print(s:peer().type)

print(s:peer().protocol)

print(s:peer().port)

print(s:write("GET / HT'TP/1.0\r\n\r\n"))
print(s:read('\r\n"))

print(siread('\r\n"))

socket _tcp _echo.lua

Use socket.tcp connect() to set up a simple TCP server, by creating a function that handles requests and
echos them, and passing the function to socket.tcp server(). This program has been used to test with
100,000 clients, with each client getting a separate fiber.

#!/usr/bin/env tarantool

local function handler(s, peer)
siwrite("Welcome to test server,
while true do
local line = s:read('\n")

" .. peer.host .."\n")

if line == nil then
break -- error or eof
end

if not s:write("pong: "..line) then
break -- error or eof
end
end
end

local server, addr = require('socket").tcp _server('localhost', 3311, handler)

getaddrinfo.lua

Use socket.getaddrinfo() to perform non-blocking DNS resolution, getting both the AF INET6 and
AF _INET information for ‘google.com’. This technique is not always necessary for tcp connections be-
cause socket.tcp connect() performs socket.getaddrinfo under the hood, before trying to connect to the first
available address.

#!/usr/bin/env tarantool

local s = require('socket ').getaddrinfo(' google.com ', "http', { type = 'SOCK_ STREAM'" })
print(" host=",s[1].host)

print(' family—" s[1].family)
print(' type=",s[1].type)

print(' protocol=",s[1].protocol)
print(' port—",s[1].port)

print(' host=",s[2].host)

print(' family=" s[2].family)
print(' type—",s[2].type)

print(' protocol=",s[2].protocol)
print(' port=",s[2].port)

86 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

socket udp _echo.lua

Tarantool does not currently have a udp _server function, therefore socket udp echo.lua is more complicated
than socket _tcp _echo.lua. It can be implemented with sockets and fibers.

#!/usr/bin/env tarantool

local socket = require('socket")
local errno = require('errno")
local fiber — require(' fiber")

local function udp_server loop(s, handler)
fiber.name("udp_server")
while true do
-- try to read a datagram first
local msg, peer — s:recvirom()

if msg == "" then
-- socket was closed via s:close()
break

elseif msg ~—= nil then

-- got a new datagram
handler(s, peer, msg)
else
if s:errno() == errno.EAGAIN or s:errno() == errno.EINTR then
-- socket is not ready
s:ireadable() - yield, epoll will wake us when new data arrives
else
-- socket error
local msg = s:error()
s:close() -- save resources and don 't wait GC
error("Socket error: " .. msg)
end
end
end
end

local function udp _server(host, port, handler)
local s = socket("AF INET', 'SOCK DGRAM', 0)
if not s then
return nil -- check errno:strerror()
end
if not s:bind(host, port) then
local e = s:errno() - save errno
s:close()
errno(e) -- restore errno
return nil -- check errno:strerror()
end

fiber.create(udp _server loop, s, handler) -- start a new background fiber
return s
end

A function for a client that connects to this server could look something like this ...

local function handler(s, peer, msg)
-- You don 't have to wait until socket is ready to send UDP
-- siwritable()
s:sendto(peer.host, peer.port, "Pong: " .. msg)

(continues on next page)

3.4. Application server 87

Tarantool, Release 2.1.1

continued from previous page
g

end

local server — udp _server('127.0.0.1", 3548, handler)
if not server then

error('Failed to bind: ' .. errno.strerror())
end

print(' Started")

require(' console ").start()

http _get.lua

Use the http module to get data via HTTP.

#!/usr/bin/env tarantool

local http _client — require(" http.client ")
local json = require('json")
local r = http_client.get('http://api.openweathermap.org/data/2.5/weather?q=0akland,us")
if r.status ~— 200 then
print(' Failed to get weather forecast ', r.reason)
return
end
local data = json.decode(r.body)
print(' Oakland wind speed: ', data.wind.speed)

http send.lua

Use the http module to send data via HTTP.

#!/usr/bin/env tarantool

local http _client = require(" http.client ")
local json = require('json")
local data — json.encode({ Key — 'Value'})
local headers = { Token = 'xxxx', ['X-Secret-Value'] = 42 }
local r = http _client.post("http://localhost:8081", data, { headers = headers})
if r.status —— 200 then
print 'Success'
end

http server.lua

Use the http rock (which must first be installed) to turn Tarantool into a web server.

#!/usr/bin/env tarantool

local function handler(self)
return selfirender{ json — { [' Your-IP-Is'] = self.peer.host } }
end

(continues on next page)

&8 Chapter 3. User’s Guide

https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Release 2.1.1

continued from previous page
g

local server = require('http.server').new(nil, 8080) -- listen *:8080
server:route({ path = '/' }, handler)

server:start()

-- connect to localhost:8080 and see json

http generate html.lua

Use the http rock (which must first be installed) to generate HTML pages from templates. The http rock
has a fairly simple template engine which allows execution of regular Lua code inside text blocks (like PHP).
Therefore there is no need to learn new languages in order to write templates.

#!/usr/bin/env tarantool

local function handler(self)

local fruits = { "Apple', 'Orange', 'Grapefruit', 'Banana'}
return selfirender{ fruits = fruits }

end

local server = require('http.server').new(nil, 8080) -- nil means '*’

server:route({ path — '/', file — 'index.htmllua' }, handler)

server:start()

An “HTML” file for this server, including Lua, could look like this (it would produce “1 Apple | 2 Orange |
3 Grapefruit | 4 Banana”).

<html>
<body>
<table border="1">
% for i,v in pairs(fruits) do
<tr>
<td><%— 1 %></td>
<td><%= v %></td>
</tr>
% end
< /table>
< /body>
< /html>

3.5 Server administration

Tarantool is designed to have multiple running instances on the same host.
Here we show how to administer Tarantool instances using any of the following utilities:
* systemd native utilities, or

* tarantoolctl, a utility shipped and installed as part of Tarantool distribution.

Note:
¢ Unlike the rest of this manual, here we use system-wide paths.

* Console examples here are for Fedora.

3.5. Server administration &9

https://github.com/tarantool/http/
https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Release 2.1.1

This chapter includes the following sections:

3.5.1 Instance configuration

For each Tarantool instance, you need two files:

¢ [Optional] An application file with instance-specific logic. Put this file into the /usr/share/tarantool/
directory.

For example, /usr/share/tarantool/my_app.lua (here we implement it as a Lua module that bootstraps
the database and exports start() function for APT calls):

local function start()
box.schema.space.create("somedata")
box.space.somedata:create _index("primary")

end

return {
start — start;
}

e An instance file with instance-specific initialization logic and parameters. Put this file, or a symlink to
it, into the instance directory (see instance dir parameter in tarantoolctl configuration file).

For example, /etc/tarantool/instances.enabled/my app.lua (here we load my app.lua module and
make a call to start() function from that module):

#!/usr/bin/env tarantool

box.cfg {
listen = 3301;
}

-- load my _app module and call start() function
-- with some app options controlled by sysadmins
local m = require('my app').start({...})

Instance file

After this short introduction, you may wonder what an instance file is, what it is for, and how tarantoolctl
uses it. After all, Tarantool is an application server, so why not start the application stored in /usr/share/
tarantool directly?

A typical Tarantool application is not a script, but a daemon running in background mode and processing
requests, usually sent to it over a TCP /IP socket. This daemon needs to be started automatically when the
operating system starts, and managed with the operating system standard tools for service management —
such as systemd or init.d. To serve this very purpose, we created instance files.

You can have more than one instance file. For example, a single application in /usr/share/tarantool can run
in multiple instances, each of them having its own instance file. Or you can have multiple applications in
/usr/share/tarantool — again, each of them having its own instance file.

An instance file is typically created by a system administrator. An application file is often provided by a
developer, in a Lua rock or an rpm/deb package.

90 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

An instance file is designed to not differ in any way from a Lua application. It must, however, configure
the database, i.e. contain a call to box.cfg{} somewhere in it, because it’s the only way to turn a Tarantool
script into a background process, and tarantoolctl is a tool to manage background processes. Other than
that, an instance file may contain arbitrary Lua code, and, in theory, even include the entire application
business logic in it. We, however, do not recommend this, since it clutters the instance file and leads to
unnecessary copy-paste when you need to run multiple instances of an application.

tarantoolct] configuration file

While instance files contain instance configuration, the tarantoolctl configuration file contains the config-
uration that tarantoolct]l uses to override instance configuration. In other words, it contains system-wide
configuration defaults. If tarantoolctl fails to find this file with the method described in section Start-
ing/stopping an instance, it uses default settings.

Most of the parameters are similar to those used by box.cfg{}. Here are the default settings (possibly
installed in /etc/default/tarantool or /etc/sysconfig/tarantool as part of Tarantool distribution — see OS-
specific default paths in Notes for operating systems):

default cfg = {

pid_file = "/var/run/tarantool”,
wal dir = "/var/lib/tarantool",
memtx_dir = "/var/lib/tarantool”,
vinyl dir = "/var/lib/tarantool",
0 = "/var/log/tarantoo
log ""/var/log/t tool",
username — 'tarantool",
language = "Lua',
instance _dir — " /etc/tarantool /instances.enabled"
where:
* pid_file

Directory for the pid file and control-socket file; tarantoolctl will add “/instance name” to the
directory name.

e wal dir

Directory for write-ahead .xlog files; tarantoolctl will add “/instance name” to the directory name.
* memtx_dir

Directory for snapshot .snap files; tarantoolctl will add “/instance name” to the directory name.
* vinyl dir

Directory for vinyl files; tarantoolctl will add “/instance name” to the directory name.

* log
The place where the application log will go; tarantoolctl will add *“/instance name.log” to the name.

¢ username

The user that runs the Tarantool instance. This is the operating-system user name rather than the
Tarantool-client user name. Tarantool will change its effective user to this user after becoming a
daemon.

* language
The interactive console language. Can be either Lua or SQL.

instance _dir

The directory where all instance files for this host are stored. Put instance files in this directory, or
create symbolic links.

3.5. Server administration 91

Tarantool, Release 2.1.1

The default instance directory depends on Tarantool’s WITH SYSVINIT build option: when ON, it is
/etc/tarantool /instances.enabled, otherwise (OFF or not set) it is /etc/tarantool/instances.available.
The latter case is typical for Tarantool builds for Linux distros with systemd.

To check the build options, say tarantool --version.

As a full-featured example, you can take example.lua script that ships with Tarantool and defines all con-
figuration options.

3.5.2 Starting/stopping an instance

While a Lua application is executed by Tarantool, an instance file is executed by tarantoolctl which is a
Tarantool script.

Here is what tarantoolctl does when you issue the command:

$ tarantoolctl start <instance_name>

1. Read and parse the command line arguments. The last argument, in our case, contains an instance
name.

2. Read and parse its own configuration file. This file contains tarantoolctl defaults, like the path to the
directory where instances should be searched for.

When tarantool is invoked by root, it looks for a configuration file in /etc/default/tarantool. When
tarantool is invoked by a local (non-root) user, it looks for a configuration file first in the current direc-
tory (SPWD/.tarantoolctl), and then in the current user’s home directory ($SHOME/.config/tarantool/
tarantool). If no configuration file is found there, or in the /usr/local/etc/default/tarantool file, then
tarantoolctl falls back to built-in defaults.

3. Look up the instance file in the instance directory, for example /etc/tarantool/instances.enabled. To
build the instance file path, tarantoolctl takes the instance name, prepends the instance directory and
appends “.lua” extension to the instance file.

4. Override box.cfg{} function to pre-process its parameters and ensure that instance paths are pointing to
the paths defined in the tarantoolctl configuration file. For example, if the configuration file specifies
that instance work directory must be in /var/tarantool, then the new implementation of box.cfg{}
ensures that work dir parameter in box.cfg{} is set to /var/tarantool/<instance name>, regardless
of what the path is set to in the instance file itself.

5. Create a so-called “instance control file”. This is a Unix socket with Lua console attached to it. This
file is used later by tarantoolctl to query the instance state, send commands to the instance and so on.

6. Set the TARANTOOLCTL environment variable to ‘true’. This allows the user to know that the
instance was started by tarantoolctl.

7. Finally, use Lua dofile command to execute the instance file.

If you start an instance using systemd tools, like this (the instance name is my app):

$ systemctl start tarantool@my app
$ ps axuf|grep exampl|e|
taranto+ 5350 1.3 0.3 1448872 7736 ? Ssl 20:05 0:28 tarantool my app.lua <running>

. this actually calls tarantoolctl like in case of tarantoolctl start my app.

To check the instance file for syntax errors prior to starting my app instance, say:

$ tarantoolctl check my app

92 Chapter 3. User’s Guide

https://github.com/tarantool/tarantool/blob/2.1/extra/dist/example.lua

Tarantool, Release 2.1.1

To enable my _app instance for auto-load during system startup, say:

$ systemctl enable tarantool@Qmy app

To stop a running my app instance, say:

$ tarantoolctl stop my app
$ # - OR -
$ systemctl stop tarantool@my app

To restart (i.e. stop and start) a running my app instance, say:

$ tarantoolctl restart my app
$ # - OR -
$ systemctl restart tarantool@my app

Running Tarantool locally

Sometimes you may need to run a Tarantool instance locally, e.g. for test purposes. Let’s configure a local
instance, then start and monitor it with tarantoolctl.

First, we create a sandbox directory on the user’s path:

$ mkdir ~/tarantool _test

. and set default tarantoolctl configuration in $HOME/.config/tarantool/tarantool. Let the file contents
be:

default cfg — {

pid_file = "/home/user/tarantool test/my app.pid",
wal _dir = "/home/user/tarantool test",
snap_dir — "/home/user/tarantool test",
vinyl dir = "/home/user/tarantool test",
log = "/home/user/tarantool _test/log",
instance dir = " /home/user/tarantool test"
Note:

* Specify a full path to the user’s home directory instead of “~ /.

¢ Omit username parameter. tarantoolctl normally doesn’t have permissions to switch current user when
invoked by a local user. The instance will be running under ‘admin’.

Next, we create the instance file ~/tarantool test/my app.lua. Let the file contents be:

box.cfg{listen = 3301}
box.schema.user.passwd('Gx5!")
box.schema.user.grant(' guest ', ' read,write,execute ', 'universe')
fiber — require(' fiber")
box.schema.space.create(' tester ")
box.space.tester:create _index('primary' {})
i—=0
while 0 == 0 do
fiber.sleep(5)

(continues on next page)

3.5. Server administration 93

Tarantool, Release 2.1.1

continued from previous page
g

i=1+1

print('insert ' .. i)

box.space.tester:insert{i, 'my app tuple'}
end

Let’s verify our instance file by starting it without tarantoolctl first:

$ cd ~/tarantool test

$ tarantool my app.lua

2017-04-06 10:42:15.762 [54085] main/101/my app.lua C> version 1.7.3-489-gd86e36d5b

2017-04-06 10:42:15.763 [54085] main/101/my app.lua C> log level 5

2017-04-06 10:42:15.764 [54085] main/101/my_app.lua I> mapping 268435456 bytes for tuple arena...
2017-04-06 10:42:15.774 [54085] iproto/101/main I> binary: bound to [::]:3301

2017-04-06 10:42:15.774 [54085] main/101/my app.lua I~ initializing an empty data directory
2017-04-06 10:42:15.789 [54085] snapshot/101/main I> saving snapshot *./00000000000000000000.snap.inprogress '
2017-04-06 10:42:15.790 [54085] snapshot/101 /main I done

2017-04-06 10:42:15.791 [54085] main/101/my app.lua I>> vinyl checkpoint done

2017-04-06 10:42:15.791 [54085] main/101/my app.lua I> ready to accept requests

insert 1

insert 2

insert 3

<..>

Now we tell tarantoolctl to start the Tarantool instance:

$ tarantoolctl start my app

Expect to see messages indicating that the instance has started. Then:

$ 1s -1 ~/tarantool _test/my app

Expect to see the .snap file and the .xlog file. Then:

$ less ~/tarantool _test/log/my app.log

Expect to see the contents of my app‘s log, including error messages, if any. Then:

$ tarantoolctl enter my app

tarantool> box.cfg{}

tarantool> console = require(' console")

tarantool > console.connect('localhost:3301")

tarantool> box.space.tester:select({0}, {iterator = 'GE"'})

Expect to see several tuples that my app has created.

Stop now. A polite way to stop my _app is with tarantoolctl, thus we say:

$ tarantoolctl stop my app

Finally, we make a cleanup.

$ rm -R tarantool _test

94 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

3.5.3 Logs

Tarantool logs important events to a file, e.g. /var/log/tarantool/my app.log. To build the log file path,
tarantoolct] takes the instance name, prepends the instance directory and appends “.log” extension.

Let’s write something to the log file:

$ tarantoolctl enter my app
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var/run/tarantool/my _app.control> require('log").info("Hello for the manual readers")

Then check the logs:

$ tail /var/log/tarantool/my app.log

2017-04-04 15:54:04.977 [29255] main/101/tarantoolct]l C> version 1.7.3-382-g68ef3f6a9

2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> log level 5

2017-04-04 15:54:04.978 [29255] main/101/tarantoolct]l I>> mapping 134217728 bytes for tuple arena...

2017-04-04 15:54:04.985 [29255] iproto/101/main I>> binary: bound to [::1]:3301

2017-04-04 15:54:04.986 [29255] main /101 /tarantoolct] I>> recovery start

2017-04-04 15:54:04.986 [29255] main/101/tarantoolct] I>> recovering from ° /var/lib/tarantool/my app/
—00000000000000000000.snap '

2017-04-04 15:54:04.988 [29255] main /101 /tarantoolct] I>> ready to accept requests

2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I>> set 'checkpoint interval' configuration option to 3600
2017-04-04 15:54:04.988 [29255] main/101/my app I> Run console at unix/:/var/run/tarantool/my app.control
2017-04-04 15:54:04.989 [29255] main/106/console/unix/:/var/ I~ started

2017-04-04 15:54:04.989 [29255] main C> entering the event loop

2017-04-04 15:54:47.147 [29255] main/107/console/unix/: I> Hello for the manual readers

When logging to a file, the system administrator must ensure logs are rotated timely and do not take up all
the available disk space. With tarantoolctl, log rotation is pre-configured to use logrotate program, which
you must have installed.

File /etc/logrotate.d/tarantool is part of the standard Tarantool distribution, and you can modify it to
change the default behavior. This is what this file is usually like:

/var /log/tarantool /*.log {
daily
size 512k
missingok
rotate 10
compress
delaycompress
create 0640 tarantool adm
postrotate

/usr/bin/tarantoolct] logrotate * basename ${1%%.*}"

endscript

}

If you use a different log rotation program, you can invoke tarantoolctl logrotate command to request
instances to reopen their log files after they were moved by the program of your choice.

Tarantool can write its logs to a log file, syslog or a program specified in the configuration file (see log
parameter).

By default, logs are written to a file as defined in tarantoolctl defaults. tarantoolctl automatically detects if
an instance is using syslog or an external program for logging, and does not override the log destination in

3.5. Server administration 95

Tarantool, Release 2.1.1

this case. In such configurations, log rotation is usually handled by the external program used for logging.
So, tarantoolctl logrotate command works only if logging-into-file is enabled in the instance file.

3.5.4 Security

Tarantool allows for two types of connections:

» With console.listen() function from console module, you can set up a port which can be used to open
an administrative console to the server. This is for administrators to connect to a running instance and
make requests. tarantoolctl invokes console.listen() to create a control socket for each started instance.

» With box.cfg{listen—. ..} parameter from box module, you can set up a binary port for connections
which read and write to the database or invoke stored procedures.

When you connect to an admin console:
¢ The client-server protocol is plain text.
¢ No password is necessary.
e The user is automatically ‘admin’.
¢ Each command is fed directly to the built-in Lua interpreter.

Therefore you must set up ports for the admin console very cautiously. If it is a TCP port, it should only
be opened for a specific IP. Ideally, it should not be a TCP port at all, it should be a Unix domain socket,
so that access to the server machine is required. Thus a typical port setup for admin console is:

’console.listen(' var /lib/tarantool /socket name.sock ")

and a typical connection URI is:

’ /var/lib/tarantool/socket name.sock

if the listener has the privilege to write on /var/lib/tarantool and the connector has the privilege to read on
/var/lib/tarantool. Alternatively, to connect to an admin console of an instance started with tarantoolctl,
use tarantoolctl enter.

To find out whether a TCP port is a port for admin console, use telnet. For example:

$ telnet 0 3303

Trying 0.0.0.0...

Connected to 0.

Escape character is ' ~]'.
Tarantool 2.1.0 (Lua console)
type "help' for interactive help

In this example, the response does not include the word “binary” and does include the words “Lua console”.
Therefore it is clear that this is a successful connection to a port for admin console, and you can now enter
admin requests on this terminal.

When you connect to a binary port:
¢ The client-server protocol is binary.
¢ The user is automatically ‘guest’.

e To change the user, it’s necessary to authenticate.

96 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

For ease of use, tarantoolctl connect command automatically detects the type of connection during handshake
and uses EVAL binary protocol command when it’s necessary to execute Lua commands over a binary
connection. To execute EVAL, the authenticated user must have global “EXECUTE” privilege.

Therefore, when ssh access to the machine is not available, creating a Tarantool user with global “EXECUTE”
privilege and non-empty password can be used to provide a system administrator remote access to an instance.

3.5.5 Server introspection

Using Tarantool as a client

Tarantool enters the interactive mode if:
¢ you start Tarantool without an instance file, or
* the instance file contains console.start().

Tarantool displays a prompt (e.g. “tarantool>") and you can enter requests. When used this way, Tarantool
can be a client for a remote server. See basic examples in Getting started.

The interactive mode is used by tarantoolctl to implement “enter” and “connect” commands.

Executing code on an instance

You can attach to an instance’s admin console and execute some Lua code using tarantoolctl:

$ # for local instances:

$ tarantoolctl enter my app

/bin/tarantoolctl: Found my app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my app.control
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var /run/tarantool/my app.control> 1 + 1

-2
unix/:/var/run/tarantool/my app.control>

$ # for local and remote instances:
$ tarantoolctl connect username:password@127.0.0.1:3306

You can also use tarantoolctl to execute Lua code on an instance without attaching to its admin console.
For example:

$ # executing commands directly from the command line
$ <command> | tarantoolct!l eval my app
<..>

$ # - OR -
$ # executing commands from a script file

$ tarantoolctl eval my app script.lua
<..>

Note: Alternatively, you can use the console module or the net.box module from a Tarantool server. Also,
you can write your client programs with any of the connectors. However, most of the examples in this manual

3.5. Server administration 97

Tarantool, Release 2.1.1

illustrate usage with either tarantoolctl connect or using the Tarantool server as a client.

Health checks

To check the instance status, say:

$ tarantoolctl status my app
my _app is running (pid: /var/run/tarantool/my app.pid)

$ # - OR -

$ systemctl status tarantool@my app

tarantool@my app.service - Tarantool Database Server

Loaded: loaded (/etc/systemd/system/tarantool@.service; disabled; vendor preset: disabled)
Active: active (running)

Docs: man:tarantool(1)

Process: 5346 ExecStart=/usr/bin/tarantoolctl start %I (code=exited, status=0/SUCCESS)
Main PID: 5350 (tarantool)

Tasks: 11 (limit: 512)

CGroup: /system.slice/system-tarantool.slice/tarantool@my app.service

+ 5350 tarantool my app.lua <running>

To check the boot log, on systems with systemd, say:

$ journalctl -u tarantool@my app -n 5

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:17:47 MSK. --

Jan 21 21:17:47 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:17:47 localhost.localdomain systemd[1]: Starting Tarantool Database Server...

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Found my app.lua in /etc/
—tarantool /instances.available

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Starting instance...

Jan 21 21:17:47 localhost.localdomain systemd[1]: Started Tarantool Database Server

For more details, use the reports provided by functions in the following submodules:
* box.cfg submodule (check and specify all configuration parameters for the Tarantool server)

* box.slab submodule (monitor the total use and fragmentation of memory allocated for storing data in
Tarantool)

* box.info submodule (introspect Tarantool server variables, primarily those related to replication)
* box.stat submodule (introspect Tarantool request and network statistics)

You can also try tarantool/prometheus, a Lua module that makes it easy to collect metrics (e.g. memory
usage or number of requests) from Tarantool applications and databases and expose them via the Prometheus
protocol.

Example

A very popular administrator request is box.slab.info(), which displays detailed memory usage statistics for
a Tarantool instance.

tarantool > box.slab.info()

- items_ size: 228128
items_used ratio: 1.8%
quota_ size: 1073741824

(continues on next page)

98 Chapter 3. User’s Guide

https://github.com/tarantool/prometheus

Tarantool, Release 2.1.1

continued from previous page
g

quota_used ratio: 0.8%
arena_used_ratio: 43.2%
items_used: 4208

quota_ used: 8388608
arena_ size: 2325176
arena_ used: 1003632

Tarantool takes memory from the operating system, for example when a user does many insertions. You can
see how much it has taken by saying (on Linux):

ps -eo args,%mem | grep "tarantool"

Tarantool almost never releases this memory, even if the user deletes everything that was inserted, or reduces
fragmentation by calling the Lua garbage collector via the collectgarbage function.

Ordinarily this does not affect performance. But, to force Tarantool to release memory, you can call
box.snapshot, stop the server instance, and restart it.

Profiling performance issues

Tarantool can at times work slower than usual. There can be multiple reasons, such as disk issues, CPU-
intensive Lua scripts or misconfiguration. Tarantool’s log may lack details in such cases, so the only indica-
tions that something goes wrong are log entries like this: W> too long DELETE: 8.546 sec. Here are tools
and techniques that can help you collect Tarantool’s performance profile, which is helpful in troubleshooting
slowdowns.

Note: Most of these tools — except fiber.info() — are intended for generic GNU/Linux distributions, but not
FreeBSD or Mac OS.

fiber.info()

The simplest profiling method is to take advantage of Tarantool’s built-in functionality. fiber.info() returns
information about all running fibers with their corresponding C stack traces. You can use this data to see
how many fibers are running and which C functions are executed more often than others.

First, enter your instance’s interactive administrator console:

’ $ tarantoolctl enter NAME

Once there, load the fiber module:

tarantool > fiber = require(' fiber")

After that you can get the required information with fiber.info().
At this point, you console output should look something like this:

tarantool > fiber = require(' fiber")

tarantool > fiber.info()

(continues on next page)

3.5. Server administration 99

https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 2.1.1

continued from previous page
g

- 360:
csw: 2098165
backtrace:
- '#0 0x4d1b77 in wal write(journal*, journal entry*)-+487"'
- '#1 0x4bbf68 in txn _commit(txn*)+152"
- '"#2 0x4bd5d8 in process rw(request®, space®, tuple**)+136"
- '#3 0x4bed48 in box_ processl+104"
- '#4 0x4d72f8 in lbox_replace+120'
- "#5 0x50£317 in]j_ BC_FUNCC+52"
fid: 360
memory:
total: 61744
used: 480
name: main
129:
csw: 113
backtrace: [|
fid: 129
memory:
total: 57648
used: 0

name: 'console/unix/:"

We highly recommend to assign meaningful names to fibers you create so that you can find them in the
fiber.info() list. In the example below, we create a fiber named myworker:

tarantool > fiber = require('fiber")

tarantool > f = fiber.create(function() while true do fiber.sleep(0.5) end end)

tarantool> f:name('myworker') <!-- assigning the name to a fiber

tarantool > fiber.info()
- 102:
csw: 14
backtrace:
- '#0 0x501ala in fiber yield timeout+90"'
- '#1 0x4f2008 in lbox_fiber sleep+72"'
- '#2 0xb112a7 in lj BC_ FUNCC-+52"
fid: 102
memory:
total: 57656
used: 0
name: myworker <!-- newly created background fiber
101:
csw: 284
backtrace: []
fid: 101
memory:

total: 57656

(continues on next page)

100 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

used: 0
name: interactive

You can kill any fiber with fiber.kill(fid):

tarantool > fiber.kill(102)

tarantool > fiber.info()
- 101:
csw: 324
backtrace: []
fid: 101
memory:
total: 57656
used: 0
name: interactive

If you want to dynamically obtain information with fiber.info(), the shell script below may come in handy.
It connects to a Tarantool instance specified by NAME every 0.5 seconds, grabs the fiber.info() output and
writes it to the fiber-info.txt file:

$ rm -f fiber.info.txt
$ watch -n 0.5 "echo 'require(\"fiber\").info()' | tarantoolctl enter NAME | tee -a fiber-info.txt"

If you can’t understand which fiber causes performance issues, collect the metrics of the fiber.info() output
for 10-15 seconds using the script above and contact the Tarantool team at support@tarantool.org.

Poor man’s profilers

pstack <pid>

To use this tool, first install it with a package manager that comes with your Linux distribution. This
command prints an execution stack trace of a running process specified by the PID. You might want to run
this command several times in a row to pinpoint the bottleneck that causes the slowdown.

Once installed, say:

’ $ pstack $(pidof tarantool INSTANCENAME lua)

Next, say:

’ $ echo $(pidof tarantool INSTANCENAME .lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME lua file.

You should get similar output:

Thread 19 (Thread 0x7f09d1bff700 (LWP 24173)):

#0 0x00007f0ala5423f2 in 77 () from /lib64/libgomp.so.1

#1 0x00007f0alab3fdc0 in ?7 () from /lib64/libgomp.so.1

#2 0x00007f0aladbadch in start _thread () from /lib64/libpthread.so.0

(continues on next page)

3.5. Server administration 101

mailto:support@tarantool.org

Tarantool, Release 2.1.1

continued from previous page
g

#3 0x00007f0ala050ced in clone () from /lib64/libc.so.6

Thread 18 (Thread 0x7f09d13fe700 (LWP 24174)):

#0 0x00007f0alab423f2 in ?? () from /1ib64/libgomp.so.1

#1 0x00007f0alab3fdc0 in ?7 () from /lib64/libgomp.so.1

#2 0x00007f0aladbadch in start thread () from /lib64/libpthread.so.0

#3 0x00007f0ala050ced in clone () from /1ib64/libc.so.6

<..>

Thread 2 (Thread 0x7f09c8bfe700 (LWP 24191)):

#0 0x00007f0alad5e6db in pthread cond wait@QGLIBC _2.3.2 () from /lib64/libpthread.so.0
#1 0x000000000045d901 in wal writer_pop(wal writer¥*) ()

#2 0x000000000045db01 in wal writer f(_va_list tag*) ()

#3 0x0000000000429abc in fiber cxx_invoke(int (*)(__va_list tag*), va list tag*) ()
#4 0x00000000004b52a0 in fiber loop ()

#5 0x00000000006099cf in coro_init ()

Thread 1 (Thread 0x7f0alc47fd80 (LWP 24172)):

#0 0x00007f0a1a0512¢3 in epoll _wait () from /1ib64/libe.so.6

#1 0x00000000006051c8 in epoll _poll ()

#2 0x0000000000607533 in ev_run ()

#3 0x0000000000428e13 in main ()

gdb -ex “bt” -p <pid>

As with pstack, the GNU debugger (also known as gdb) needs to be installed before you can start using it.
Your Linux package manager can help you with that.

Once the debugger is installed, say:

$ gdb -ex "set pagination 0" -ex "thread apply all bt" --batch -p $(pidof tarantool INSTANCENAME lua)

Next, say:

$ echo $(pidof tarantool INSTANCENAME.lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME .lua file.
After using the debugger, your console output should look like this:

[Thread debugging using libthread _db enabled]|
Using host libthread _db library "/lib/x86 64-linux-gnu/libthread db.so.1".

[cUT|

Thread 1 (Thread 0x7£72289ba940 (LWP 20535)):

#0 _int_malloc (av=av@entry=0x7{7226e0eb20 <main arena>, bytes=bytes@entry=504) at malloc.c:3697

#1 0x00007f7226acf2la in __libc_ calloc (n=<optimized out>, elem size=<optimized out>) at malloc.c:3234
#2 0x000000000046318 in vy merge iterator reserve (capacity=3, itr=0x7{72264af9e0) at /usr/src/tarantool/
—src/box/vinyl.c:7629

#3 vy _merge_iterator _add (itr—itr@entry—0x7f72264af9e0, is _mutable—is _mutable@Qentry—true, belong
—range=belong range@entry=false) at /usr/src/tarantool/src/box/vinyl.c:7660

#4 0x00000000004703df in vy read iterator add mem (itr=0x7f72264af990) at /usr/src/tarantool/src/box/
—vinyl.c:8387

#5 vy_read iterator use range (itr=0x7{72264af990) at /usr/src/tarantool/src/box/vinyl.c:8453

#6 0x000000000047657d in vy read iterator start (itr=<optimized out>) at /usr/src/tarantool/src/box/vinyl.
—c:8501

#7 0x00000000004766b5 in vy read iterator next (itr=itr@entry=0x7{72264af990,_
—result=result@entry=0x7{72264afad8) at /usr/src/tarantool/src/box/vinyl.c:8592

#8 0x000000000047689d in vy index get (tx—tx@entry—0x7{7226468158, index—index@entry—0x2563860, key—
< <optimized out>, part count—<optimized out>, result—result@entry—0x7f72264afad8) at /usr/src/tarantool

—src/box/vinyl.c:5705 (continues on next page)

102 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

#9 0x0000000000477601 in vy replace impl (request=<optimized out>>, request=<optimized out>,_
—stmt=0x7{72265a7150, space=0x2567eal, tx=0x7{7226468158) at /usr/src/tarantool/src/box/vinyl.c:5920

#10 vy _replace (tx—=0x7f7226468158, stmt—stmt@Qentry—=0x7{72265a7150, space—=0x2567eal, request—<optimized_
—out>) at /usr/src/tarantool/src/box/vinyl.c:6608

#11 0x00000000004615a9 in VinylSpace::executeReplace (this=<optimized out>, txn=<optimized out>, space=
< <optimized out>, request—<optimized out>) at /usr/src/tarantool/src/box/vinyl space.cc:108

#12 0x00000000004bd723 in process rw (request=request@entry=0x7{72265a7018,_
—space=space@entry=0x2567eal, result=result@entry=0x7{72264afbc8) at /usr/src/tarantool/src/box/box.cc:182
#13 0x00000000004bed48 in box _processl (request=0x7{72265a70f8, result=result@entry=0x7{72264afbc8) at /
—usr/src/tarantool /src/box/box.cc:700

#14 0x00000000004b£389 in box_replace (space id=space id@entry=>513, tuple=<optimized out>, tuple end=
—<optimized out>, result—=result@entry=0x7{72264afbc8) at /usr/src/tarantool/src/box/box.cc:754

#15 0x00000000004d72£8 in Ibox_replace (L=0x413c5780) at /usr/src/tarantool/src/box/lua/index.c:72

#16 0x000000000050£317 in 1j BC_FUNCC ()

#17 0x00000000004d37¢7 in execute lua_call (L=0x413c5780) at /usr/src/tarantool/src/box/lua/call.c:282

#18 0x000000000050£317 in 1lj BC_FUNCC ()

#19 0x0000000000529¢7b in lua_cpcall ()

#20 0x00000000004f6aa3 in luaT cpcall (L=L@entry=0x413c5780, func=func@entry=0x4d36d0 <execute lua
—call>, ud=ud@entry=0x7f72264afde0) at /usr/src/tarantool/src/lua/utils.c:962

#21 0x00000000004d3fe7 in box process lua (handler=0x4d36d0 <execute lua_call>,_
—out=out@entry=0x7{7213020600, request—request@entry—=0x413c5780) at /usr/src/tarantool/src/box/lua/call.
—c:382

#22 box_lua_call (request=request@entry=0x7f72130401d8, out=out@entry=0x7f7213020600) at /usr/src/
—tarantool /src/box/lua/call.c:405

#23 0x00000000004c0f27 in box_process_call (request=request@entry=0x7{72130401d8,_
—out=out@entry=0x7{7213020600) at /usr/src/tarantool/src/box/box.cc:1074

#24 0x000000000041326¢ in tx_process misc (m=0x7{7213040170) at /usr/src/tarantool/src/box/iproto.cc:942
#25 0x0000000000504554 in cmsg_ deliver (msg=0x7f7213040170) at /usr/src/tarantool/src/cbus.c:302

#26 0x0000000000504c2e in fiber pool f (ap=<error reading variable: value has been optimized out>>) at /usr/
—src/tarantool /src/fiber _pool.c:64

#27 0x000000000041122¢ in fiber cxx_invoke(fiber func, typedef ~ va list tag va_ list tag *) (f=

— <optimized out>, ap=<optimized out>) at /usr/src/tarantool/src/fiber.h:645

#28 0x00000000005011a0 in fiber loop (data=<optimized out>>) at /usr/src/tarantool/src/fiber.c:641

#29 0x0000000000688fbf in coro_init () at /usr/src/tarantool/third party/coro/coro.c:110

Run the debugger in a loop a few times to collect enough samples for making conclusions about why Tarantool
demonstrates suboptimal performance. Use the following script:

$ rm -f stack-trace.txt
$ watch -n 0.5 "gdb -ex 'set pagination 0' -ex 'thread apply all bt' --batch -p $(pidof tarantool_
—INSTANCENAME.lua) | tee -a stack-trace.txt"

Structurally and functionally, this script is very similar to the one used with fiber.info() above.

If you have any difficulties troubleshooting, let the script run for 10-15 seconds and then send the resulting
stack-trace.txt file to the Tarantool team at support@tarantool.org.

Warning: Use the poor man’s profilers with caution: each time they attach to a running process, this
stops the process execution for about a second, which may leave a serious footprint in high-load services.

gperftools

To use the CPU profiler from the Google Performance Tools suite with Tarantool, first take care of the
prerequisites:

3.5. Server administration 103

mailto:support@tarantool.org

Tarantool, Release 2.1.1

* For Debian/Ubuntu, run:

’ $ apt-get install libgoogle-perftoolsd

» For RHEL/CentOS/Fedora, run:

’ $ yum install gperftools-libs

Once you do this, install Lua bindings:

’ $ tarantoolctl rocks install gperftools

Now you’re ready to go. Enter your instance’s interactive administrator console:

’ $ tarantoolctl enter NAME

To start profiling, say:

tarantool > cpuprof = require(' gperftools.cpu')
tarantool> cpuprof.start(' /home/<username> /tarantool-on-production.prof")

It takes at least a couple of minutes for the profiler to gather performance metrics. After that, save the
results to disk (you can do that as many times as you need):

tarantool > cpuprof.flush()

To stop profiling, say:

’ tarantool > cpuprof.stop()

You can now analyze the output with the pprof utility that comes with the gperftools package:

’ $ pprof --text /usr/bin/tarantool /home/<username>/tarantool-on-production.prof

Note: On Debian/Ubuntu, the pprof utility is called google-pprof.

Your output should look similar to this:

Total: 598 samples

83 13.9% 13.9% 83 13.9% epoll _wait

54 9.0% 22.9% 102 17.1%
vy_mem_ tree_insert.constprop.35

32 5.4% 28.3% 34 5.7% __write_nocancel

28 4.7% 32.9% 42 7.0% vy _mem _iterator start from

26 4.3% 37.3% 26 4.3% _10_str_seekoff

21 3.5% 40.8% 21 3.5% tuple compare _field

19 3.2% 44.0% 19 3.2%
::TupleCompareWithKey::compare

19 3.2% 47.2% 38 6.4% tuple _compare _slowpath

12 2.0% 49.2% 23 3.8% __libc_calloc

9 1.5% 50.7% 9 1.5%
::‘TupleCompare::compare@42efc0

91.5% 52.2% 9 1.5% vy cache on_write

9 1.5% 53.7% 57 9.5% vy _merge_iterator next_key

8 1.3% 55.0% 8 1.3% __nss_passwd_lookup

6 1.0% 56.0% 25 4.2% gc_onestep

(continues on next page)

104 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

continued from previous page
g

6 1.0% 57.0% 6 1.0% 1j_tab_next
50.8% 57.9% 5 0.8% 1j_alloc_malloc
5 0.8% 58.7% 131 21.9% vy _prepare

perf

This tool for performance monitoring and analysis is installed separately via your package manager. Try
running the perf command in the terminal and follow the prompts to install the necessary package(s).

Note: By default, some perf commands are restricted to root, so, to be on the safe side, either run all
commands as root or prepend them with sudo.

To start gathering performance statistics, say:

$ perf record -g -p $(pidof tarantool INSTANCENAME .lua)

This command saves the gathered data to a file named perf.data inside the current working directory. To
stop this process (usually, after 10-15 seconds), press ctrl+C. In your console, you'll see:

~C[perf record: Woken up 1 times to write data |
[perf record: Captured and wrote 0.225 MB perf.data (1573 samples) |

Now run the following command:

$ perf report -n -g --stdio | tee perf-report.txt

It formats the statistical data in the perf.data file into a performance report and writes it to the perf-report.
txt file.

The resulting output should look similar to this:

Samples: 14K of event 'cycles '
Event count (approx.): 9927346847

Children Self Samples Command Shared Object Symbol

35.50% 0.55% 79 tarantool tarantool [.| lj gc_step

|
--34.95%--1j _gc_step

|
|--29.26%--gc_ onestep
--13.85%--gc_sweep

--5.59%--1j _alloc_ free

|

|

|

|--1.33%--1j _tab_free

|

| -1.01%--1j _alloc_free
|

-1.17%--1j _cdata_free

(continues on next page)

3.5. Server administration 105

Tarantool, Release 2.1.1

continued from previous page
g

--5.41%--gc_ finalize
I--1.06%-—1j_obj_equal
|__0.95%--lj __tab_set
--4.97%--rehashtab
--3.65%--1j _tab_resize
I--0.74%--1j_tab_set
|—-0.72%--lj __tab_newkey

--0.91%--propagatemark

--5.43%--propagatemark

|
--0.73%--gc_mark

Unlike the poor man’s profilers, gperftools and perf have low overhead (almost negligible as compared with
pstack and gdb): they don’t result in long delays when attaching to a process and therefore can be used
without serious consequences.

jit.p

The jit.p profiler comes with the Tarantool application server, to load it one only needs to say require('jit.
p') or require('jit.profile'). There are many options for sampling and display, they are described in the
documentation for The LuaJIT Profiler.

Example

Make a function that calls a function named f1 that does 500,000 inserts and deletes in a Tarantool space.
Start the profiler, execute the function, stop the profiler, and show what the profiler sampled.

box.space.t:drop()

box.schema.space.create('t")

box.space.t:create _index('i")

function f1() for i = 1,500000 do
box.space.t:insert{i}
box.space.t:delete{i}
end

return 1

end

function £3() f1() end

jit_p = require("jit.profile")

sampletable = {}

jit_p.start("f", function(thread, samples, vmstate)
local dump=jit_p.dumpstack(thread, "f", 1)
sampletable[dump] = (sampletable[dump] or 0) + samples

end)

13()

jit_p.stop()

for d,v in pairs(sampletable) do print(v, d) end

106 Chapter 3. User’s Guide

http://www.luatex.org/svn/trunk/source/libs/luajit/LuaJIT-src/doc/ext_profiler.html

Tarantool, Release 2.1.1

Typically the result will show that the sampling happened within f1() many times, but also within internal
Tarantool functions, whose names may change with each new version.

3.5.6 Daemon supervision
Server signals

Tarantool processes these signals during the event loop in the transaction processor thread:

Signal Effect

SIGHUP May cause log file rotation. See the example in reference on Tarantool
logging parameters.

SIGUSR1 May cause a database checkpoint. See box.snapshot.

SIGTERM May cause graceful shutdown (information will be saved first).

SIGINT (also known as keyboard | May cause graceful shutdown.

interrupt)

SIGKILL Causes an immediate shutdown.

Other signals will result in behavior defined by the operating system. Signals other than SIGKILL may be
ignored, especially if Tarantool is executing a long-running procedure which prevents return to the event
loop in the transaction processor thread.

Automatic instance restart

On systemd-enabled platforms, systemd automatically restarts all Tarantool instances in case of failure. To
demonstrate it, let’s try to destroy an instance:

$ systemctl status tarantool@my app|grep PID

Main PID: 5885 (tarantool)

$ tarantoolctl enter my app

/bin/tarantoolctl: Found my app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my app.control

/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var/run/tarantool/my app.control> os.exit(-1)

/bin/tarantoolctl: unix/:/var/run/tarantool/my app.control: Remote host closed connection

Now let’s make sure that systemd has restarted the instance:

$ systemctl status tarantool@my app|grep PID
Main PID: 5914 (tarantool)

Finally, let’s check the boot logs:

$ journalctl -u tarantool@my app -n 8

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:09:45 MSK. --

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my app.service: Unit entered failed state.

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my app.service: Failed with result 'exit-code'.
Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my app.service: Service hold-off time over,_
—scheduling restart.

Jan 21 21:09:45 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:09:45 localhost.localdomain systemd[1|: Starting Tarantool Database Server...

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Found my app.lua in /etc/
—tarantool /instances.available

(continues on next page)

3.5. Server administration 107

Tarantool, Release 2.1.1

continued from previous page
g

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Starting instance...
Jan 21 21:09:45 localhost.localdomain systemd[1]: Started Tarantool Database Server.

Core dumps
Tarantool makes a core dump if it receives any of the following signals: SIGSEGV, SIGFPE, SIGABRT or
SIGQUIT. This is automatic if Tarantool crashes.

On systemd-enabled platforms, coredumpct]l automatically saves core dumps and stack traces in case of a
crash. Here is a general “how to” for how to enable core dumps on a Unix system:

1. Ensure session limits are configured to enable core dumps, i.e. say ulimit -c¢ unlimited. Check “man 5
core” for other reasons why a core dump may not be produced.

2. Set a directory for writing core dumps to, and make sure that the directory is writable. On Linux, the
directory path is set in a kernel parameter configurable via /proc/sys/kernel/core_ pattern.

3. Make sure that core dumps include stack trace information. If you use a binary Tarantool distribution,
this is automatic. If you build Tarantool from source, you will not get detailed information if you pass
-DCMAKE BUILD TYPE=Release to CMake.

To simulate a crash, you can execute an illegal command against a Tarantool instance:

$ # ! please never do this on a production system !!!

$ tarantoolct!l enter my app

unix/:/var/run/tarantool/my app.control> require('fli").cast('char *', 0)[0] = 48
/bin/tarantoolctl: unix/:/var/run/tarantool/my app.control: Remote host closed connection

Alternatively, if you know the process ID of the instance (here we refer to it as $PID), you can abort a
Tarantool instance by running gdb debugger:

’ $ gdb -batch -ex "generate-core-file" -p $PID

or manually sending a SIGABRT signal:

’ $ kill -SIGABRT $P1D

Note: To find out the process id of the instance ($PID), you can:
¢ look it up in the instance’s box.info.pid,
e find it with ps -A | grep tarantool, or
* say systemctl status tarantool@my app|grep PID.

On a systemd-enabled system, to see the latest crashes of the Tarantool daemon, say:

$ coredumpctl list /usr/bin/tarantool

MTIME PID UID GID SIG PRESENT EXE

Sat 2016-01-23 15:21:24 MSK 20681 1000 1000 6 /usr/bin/tarantool
Sat 2016-01-23 15:51:56 MSK 21035 995 992 6 /usr/bin/tarantool

To save a core dump into a file, say:

$ coredumpctl -o filename.core info <pid>

108 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

Stack traces

Since Tarantool stores tuples in memory, core files may be large. For investigation, you normally don’t need
the whole file, but only a “stack trace” or “backtrace”.

To save a stack trace into a file, say:

$ gdb -se "tarantool" -ex "bt full" -ex "thread apply all bt" --batch -c¢ core> /tmp/tarantool trace.txt

where:
 “tarantool” is the path to the Tarantool executable,
 “core” is the path to the core file, and

* “/tmp/tarantool trace.txt” is a sample path to a file for saving the stack trace.

Note: Occasionally, you may find that the trace file contains output without debug symbols — the lines will
contain ”??” instead of names. If this happens, check the instructions on these Tarantool wiki pages: How
to debug core dump of stripped tarantool and How to debug core from different OS.

To see the stack trace and other useful information in console, say:

$ coredumpctl info 21035
PID: 21035 (tarantool)
UID: 995 (tarantool)
GID: 992 (tarantool)
Signal: 6 (ABRT)
Timestamp: Sat 2016-01-23 15:51:42 MSK (4h 36min ago)
Command Line: tarantool my app.lua <running>
Executable: /usr/bin/tarantool
Control Group: /system.slice/system-tarantool.slice/tarantool@my app.service
Unit: tarantool@my app.service
Slice: system-tarantool.slice
Boot ID: 7c686e2ef4dc4e3ea59122757e3067e2
Machine ID: a4a878729¢654c¢7093dc6693f6a8e5ee
Hostname: localhost.localdomain
Message: Process 21035 (tarantool) of user 995 dumped core.

Stack trace of thread 21035:

#0 0x00007f84993aa618 raise (libc.s0.6)

#1 0x00007f84993ac21a abort (libc.so.6)

#2 0x0000560d0a9e¢9233 _ZL12sig fatal cbi (tarantool)

#3 0x00007f849a211220 __restore rt (libpthread.so.0)

74 0x0000560d0aaabd9d 1j cconv_ct_ct (tarantool)

#5 0x0000560d022a687f 1j cconv_ct_tv (tarantool)

#6 0x0000560d0aaabe33 1j cf fli meta newindex (tarantool)
77 0x0000560d0aaae2f7 1j BC_FUNCC (tarantool)

#8 0x0000560d0aa9aabd lua_pcall (tarantool)

#9 0x0000560d0aa71400 Ibox call (tarantool)

710 0x0000560d0aa6ce36 lua_fiber run_f (tarantool)

#11 0x0000560d0a9e8d0c _ZL16fiber cxx_invokePFiP13 va list tagESO_ (tarantool)
712 0x0000560d0aa7b255 fiber loop (tarantool)

#13 0x0000560d0ab38edl coro_init (tarantool)

3.5. Server administration 109

https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-from-different-OS

Tarantool, Release 2.1.1

Debugger

To start gdb debugger on the core dump, say:

’ $ coredumpct! gdb <pid>

It is highly recommended to install tarantool-debuginfo package to improve gdb experience, for example:

’ $ dnf debuginfo-install tarantool

gdb also provides information about the debuginfo packages you need to install:

$ gdb -p <pid>

Missing separate debuginfos, use: dnf debuginfo-install
glibc-2.22.90-26.fc24.x86 64 krb5-libs-1.14-12.fc24.x86 64
libgce-5.3.1-3.£¢24.x86 64 libgomp-5.3.1-3.fc24.x86 64
libselinux-2.4-6.fc24.x86 _ 64 libstdc+--5.3.1-3.fc24.x86_ 64
libyaml-0.1.6-7.fc23.x86 64 ncurses-libs-6.0-1.20150810.fc24.x86 64
openssl-libs-1.0.2e-3.fc24.x86 64

Symbolic names are present in stack traces even if you don’t have tarantool-debuginfo package installed.

3.5.7 Disaster recovery
The minimal fault-tolerant Tarantool configuration would be a replication cluster that includes a master and
a replica, or two masters.

The basic recommendation is to configure all Tarantool instances in a cluster to create snapshot files at a
regular basis.

Here follow action plans for typical crash scenarios.

Master-replica

Configuration: One master and one replica.
Problem: The master has crashed.
Your actions:

1. Ensure the master is stopped for good. For example, log in to the master machine and use systemctl
stop tarantool@<instance name>.

2. Switch the replica to master mode by setting box.cfg.read only parameter to false and let the load be
handled by the replica (effective master).

3. Set up a replacement for the crashed master on a spare host, with replication parameter set to replica
(effective master), so it begins to catch up with the new master’s state. The new instance should have
box.cfg.read only parameter set to true.

You lose the few transactions in the master write ahead log file, which it may have not transferred to the
replica before crash. If you were able to salvage the master .xlog file, you may be able to recover these. In
order to do it:

1. Find out the position of the crashed master, as reflected on the new master.

a. Find out instance UUID from the crashed master xlog:

110 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

$ head -5 *.xlog | grep Instance
Instance: ed607cad-8b6d-48d8-ba0b-dae371b79155

b. On the new master, use the UUID to find the position:

tarantool
—dae371b79155 " }1][1]]
- 23425

<...>

box.info.vclock[box.space. _cluster.index.uuid:select{ ' ed607cad-8b6d-48d8-ba0b-

2. Play the records from the crashed .xlog to the new master, starting from the new master position:

a. Issue this request locally at the new master’s machine to find out instance ID of the new master:

tarantool > box.space. _cluster:select{}

- - [1, '88580b5c-4474-43ab-bd2b-2409a9af80d2 ']

b. Play the records to the new master:

$ tarantoolctl <new master uri> <xlog file> play --from 23425 --replica 1

Master-master

Configuration: Two masters.
Problem: Master#1 has crashed.
Your actions:

1. Let the load be handled by master#2 (effective master) alone.

2. Follow the same steps as in the master-replica recovery scenario to create a new master and salvage lost

data.

Data loss

Configuration: Master-master or master-replica.

Problem: Data was deleted at one master and this data loss was propagated to the other node (master or

replica).

The following steps are applicable only to data in memtx storage engine. Your actions:

1. Put all nodes in read-only mode and disable checkpointing with box.backup.start(). Disabling the
checkpointing is necessary to prevent the Tarantool garbage collector from removing files made with

older checkpoints.

2. Get the latest valid .snap file and use tarantoolctl cat command to calculate at which Isn the data loss

occurred.

3. Start a new instance (instance#1) and use tarantoolctl play command to play to it the contents of

.snap/ .xlog files up to the calculated lsn.

4. Bootstrap a new replica from the recovered master (instance#1).

3.5. Server administration

111

Tarantool, Release 2.1.1

3.5.8 Backups

Tarantool has an append-only storage architecture: it appends data to files but it never overwrites earlier
data. The Tarantool garbage collector removes old files after a checkpoint. You can prevent or delay the
garbage collector’s action by configuring the checkpoint daemon. Backups can be taken at any time, with
minimal overhead on database performance.

backup.start() and backup.stop()

Two functions are helpful for backups in certain situations.

box.backup.start() informs the server that some activities that might interfer with backup should be sus-
pended — suspend checkpointing, suspend Tarantool garbage collection, and effectively enter read-only mode.

Later box.backup.stop() informs the server that normal operations may resume. Starting with Tarantool
1.10.1 there is a new optional argument, box.backup.start(n), where n indicates the checkpoint to use relative
to the latest checkpoint — for example n = 0 means “backup will be based on the latest checkpoint”, n = 1
means “backup will be based on the first checkpoint before the latest checkpoint (counting backwards)”, and
so on, and the default value for n is zero.

box.backup.start() returns a table with the names of snapshot and vinyl files that should be copied. Example:

tarantool > box.backup.start()

- - ./00000000000000000015.snap
- ./00000000000000000000.vylog
- ./513/0/00000000000000000002.index
- ./513/0/00000000000000000002.run

Hot backup (memtx)

This is a special case when there are only in-memory tables.

The last snapshot file is a backup of the entire database; and the WAL files that are made after the last

snapshot are incremental backups. Therefore taking a backup is a matter of copying the snapshot and WAL
files.

1. Use tar to make a (possibly compressed) copy of the latest .snap and .xlog files on the memtx dir and
wal _dir directories.

2. If there is a security policy, encrypt the .tar file.
3. Copy the .tar file to a safe place.

Later, restoring the database is a matter of taking the .tar file and putting its contents back in the memtx _dir
and wal _dir directories.

Hot backup (vinyl/memtx)

Vinyl stores its files in vinyl dir, and creates a folder for each database space. Dump and compaction
processes are append-only and create new files. The Tarantool garbage collector may remove old files after
each checkpoint.

To take a mixed backup:

112 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

1. Issue box.backup.start() on the administrative console. This will suspend garbage collection till the
next box.backup.stop() and will return a list of files to back up.

2. Copy the files from the list to a safe location. This will include memtx snapshot files, vinyl run and
index files, at a state consistent with the last checkpoint.

3. Issue box.backup.stop() so the garbage collector can continue.

Continuous remote backup (memtx)

The replication feature is useful for backup as well as for load balancing.

Therefore taking a backup is a matter of ensuring that any given replica is up to date, and doing a cold
backup on it. Since all the other replicas continue to operate, this is not a cold backup from the end user’s
point of view. This could be done on a regular basis, with a cron job or with a Tarantool fiber.

Continuous backup (memtx)

The logged changes done since the last cold backup must be secured, while the system is running.

For this purpose, you need a file copy utility that will do the copying remotely and continuously, copying
only the parts of a write ahead log file that are changing. One such utility is rsync.

Alternatively, you need an ordinary file copy utility, but there should be frequent production of new snapshot
files or new WAL files as changes occur, so that only the new files need to be copied.

3.5.9 Upgrades

Upgrading a Tarantool database

If you created a database with an older Tarantool version and have now installed a newer version, make
the request box.schema.upgrade(). This updates Tarantool system spaces to match the currently installed
version of Tarantool.

For example, here is what happens when you run box.schema.upgrade() with a database created with Taran-
tool version 1.6.4 to version 1.7.2 (only a small part of the output is shown):

tarantool > box.schema.upgrade()

alter index primary on _space set options to {"unique'":true}, parts to [[0,"unsigned"]]
alter space _schema set options to {}

create view _ vindex...

grant read access to 'public' role for _vindex view

set schema version to 1.7.0

Upgrading a Tarantool instance

Tarantool is backward compatible between two adjacent versions. For example, you should have no or little
trouble when upgrading from Tarantool 1.6 to 1.7, or from Tarantool 1.7 to 2.x. Meanwhile Tarantool 2.x
may have incompatible changes when migrating from Tarantool 1.6. to 2.x directly.

3.5. Server administration 113

https://en.wikipedia.org/wiki/Rsync

Tarantool, Release 2.1.1

How to upgrade from Tarantool 1.7 to 2.x

1. Stop the Tarantool server.

2. Make a copy of all data (see an appropriate hot backup procedure in Backups) and the package from
which the current (old) version was installed (for rollback purposes).

3. Update the Tarantool server. See installation instructions at Tarantool download page.

4. Launch the updated Tarantool server using tarantoolctl or systemctl.

How to upgrade from Tarantool 1.6 to 2.x

The procedure is fully analogous to upgrading from 1.7 to 2.x.

How to upgrade from Tarantool 1.6 to 1.7

This procedure is for upgrading a standalone Tarantool instance in production from 1.6.x to 1.7.x. Notice
that this will always imply a downtime. To upgrade without downtime, you need several Tarantool servers
running in a replication cluster (see below).

Tarantool 1.7 has an incompatible .snap and .xlog file format: 1.6 files are supported during upgrade, but
you won’t be able to return to 1.6 after running under 1.7 for a while. It also renames a few configuration
parameters, but old parameters are supported. The full list of breaking changes is available in release notes
for Tarantool 1.7.

1. Check with application developers whether application files need to be updated due to incompatible
changes (see 1.7 release notes). If yes, back up the old application files.

2. Stop the Tarantool server.

3. Make a copy of all data (see an appropriate hot backup procedure in Backups) and the package from
which the current (old) version was installed (for rollback purposes).

4. Update the Tarantool server. See installation instructions at Tarantool download page.

5. Update the Tarantool database. Put the request box.schema.upgrade() inside a box.once() function
in your Tarantool initialization file. On startup, this will create new system spaces, update data type
names (e.g. num -> unsigned, str -> string) and options in Tarantool system spaces.

6. Update application files, if needed.

7. Launch the updated Tarantool server using tarantoolctl or systemctl.

Upgrading Tarantool in a replication cluster

Tarantool 1.7 can work as a replica for Tarantool 1.6 and vice versa. Replicas perform capability negotiation
on handshake, and new 1.7 replication features are not used with 1.6 replicas. This allows upgrading clustered
configurations.

This procedure allows for a rolling upgrade without downtime and works for any cluster configuration:
master-master or master-replica.

1. Upgrade Tarantool at all replicas (or at any master in a master-master cluster). See details in Upgrading
a Tarantool instance.

2. Verify installation on the replicas:

114 Chapter 3. User’s Guide

http://tarantool.org/download.html
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
http://tarantool.org/download.html

Tarantool, Release 2.1.1

a. Start Tarantool.
b. Attach to the master and start working as before.
The master runs the old Tarantool version, which is always compatible with the next major version.
3. Upgrade the master. The procedure is similar to upgrading a replica.
4. Verify master installation:
a. Start Tarantool with replica configuration to catch up.
b. Switch to master mode.

5. Upgrade the database on any master node in the cluster. Make the request box.schema.upgrade().
This updates Tarantool system spaces to match the currently installed version of Tarantool. Changes
are propagated to other nodes via the regular replication mechanism.

3.5.10 Notes for operating systems
Mac OS

On Mac OS, you can administer Tarantool instances only with tarantoolctl. No native system tools are
supported.

FreeBSD

To make tarantoolctl work along with init.d utilities on FreeBSD, use paths other than those suggested in
Instance configuration. Instead of /usr/share/tarantool/ directory, use /usr/local/etc/tarantool/ and create
the following subdirectories:

* default for tarantoolctl defaults (see example below),
* instances.available for all available instance files, and
* instances.enabled for instance files to be auto-started by sysvinit.

Here is an example of tarantoolctl defaults on FreeBSD:

default cfg = {

pid_file = "/var/run/tarantool", -- /var/run/tarantool/${INSTANCE}.pid
wal dir — ”/’var,'db,/ tarantool", -- var db/tarantool /${INSTANCE}/
snap_dir = ”’ var/ db/tarantool", - /var/db, tarantool /${INSTANCE}
vinyl dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
logger = "/var/log/tarantool", -- /var/log/tarantool /${INSTANCE}.log
username = "tarantool",

}

-- instances.available - all available instances
-- instances.enabled - instances to autostart by sysvinit
instance _dir = " /usr/local/etc/tarantool /instances.available"

Gentoo Linux

The section below is about a dev-db/tarantool package installed from the official layman overlay (named
tarantool).

3.5. Server administration 115

Tarantool, Release 2.1.1

The default instance directory is /etc/tarantool/instances.available, can be redefined in /etc/default/
tarantool.

Tarantool instances can be managed (start/stop/reload/status/...) using OpenRC. Consider the example
how to create an OpenRC-managed instance:

$ cd /etc/init.d
$ In -s tarantool your service name
$ In -s /usr/share/tarantool/your service name.lua /etc/tarantool/instances.available/your service name.lua

Checking that it works:

$ /etc/init.d/your service name start
$ tail -f -n 100 /var/log/tarantool/your service name.log

3.5.11 Bug reports

If you found a bug in Tarantool, you’re doing us a favor by taking the time to tell us about it.

Please create an issue at Tarantool repository at GitHub. We encourage you to include the following
information:

¢ Steps needed to reproduce the bug, and an explanation why this differs from the expected behavior
according to our manual. Please provide specific unique information. For example, instead of “I can’t
get certain information”, say “box.space.x:delete() didn’t report what was deleted”.

* Your operating system name and version, the Tarantool name and version, and any unusual details
about your machine and its configuration.

* Related files like a stack trace or a Tarantool log file.
If this is a feature request or if it affects a special category of users, be sure to mention that.

Usually within one or two workdays a Tarantool team member will write an acknowledgment, or some
questions, or suggestions for a workaround.

3.5.12 Troubleshooting guide

For this guide, you need to install Tarantool stat module:

$ sudo yum install tarantool-stat
$ # -- OR -
$ sudo apt-get install tarantool-stat

Problem: INSERT /UPDATE-requests result in ER_ MEMORY ISSUE error

Possible reasons

» Lack of RAM (parameters arena_used ratio and quota_used ratio in box.slab.info() report are get-
ting close to 100%).

To check these parameters, say:

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # -- OR --

$ tarantoolctl connect <URI>

116 Chapter 3. User’s Guide

https://github.com/tarantool/stat

Tarantool, Release 2.1.1

-- requesting arena_used _ratio value
tarantool> require('stat"').stat()['slab.arena used ratio']

-- requesting quota_used ratio value
tarantool> require('stat").stat()['slab.quota_used ratio']

Solution
Try either of the following measures:

 In Tarantool’s instance file, increase the value of box.cfg{memtx memory} (if memory resources are
available).

In versions of Tarantool before 1.10, the server needs to be restarted to change this parameter. The
Tarantool server will be unavailable while restarting from .xlog files, unless you restart it using hot
standby mode. In the latter case, nearly 100% server availability is guaranteed.

¢ Clean up the database.

* Check the indicators of memory fragmentation:

-- requesting quota_used ratio value
tarantool > require('stat').stat()['slab.quota_used ratio']

-- requesting items used_ratio value
tarantool™> require('stat').stat()['slab.items used ratio']

In case of heavy memory fragmentation (quota_used ratio is getting close to 100%, items used ratio
is about 50%), we recommend restarting Tarantool in the hot standby mode.

Problem: Tarantool generates too heavy CPU load

Possible reasons
The transaction processor thread consumes over 60% CPU.
Solution

Attach to the Tarantool instance with tarantoolctl utility, analyze the query statistics with box.stat() and
spot the CPU consumption leader. The following commands can help:

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # -- OR -

$ tarantoolctl connect <URI>

-- checking the RPS of calling stored procedures
tarantool> require('stat').stat()['stat.op.call.rps']

The critical RPS value is 75 000, boiling down to 10 000 - 20 000 for a rich Lua application (a Lua module
of 200+ lines).

-- checking RPS per query type
tarantool > require('stat').stat()['stat.op.<<query type>.rps']

The critical RPS value for SELECT /INSERT /UPDATE/DELETE requests is 100 000.

If the load is mostly generated by SELECT requests, we recommend adding a slave server and let it process
part of the queries.

3.5. Server administration 117

Tarantool, Release 2.1.1

If the load is mostly generated by INSERT/UPDATE/DELETE requests, we recommend sharding the

database.

Problem: Query processing times out

Possible reasons

Note: All reasons that we discuss here can be identified by messages in Tarantool’s log file, all starting with
the words 'Too long...".

1. Both fast and slow queries are processed within a single connection, so the readahead buffer is cluttered
with slow queries.

Solution

Try either of the following measures:

¢ Increase the readahead buffer size (box.cfg{readahead} parameter).

This parameter can be changed on the fly, so you don’t need to restart Tarantool. Attach to the
Tarantool instance with tarantoolctl utility and call box.cfg{} with a new readahead value:

$ # attaching to a Tarantool instance
$ tarantoolct] enter <instance name>
$ # -- OR -

$ tarantoolctl connect <URI>

-- changing the readahead value
tarantool > box.cfg{readahead = 10 * 1024 * 1024}

Example: Given 1000 RPS, 1 Kbyte of query size, and 10 seconds of maximal query processing
time, the minimal readahead buffer size must be 10 Mbytes.

¢ On the business logic level, split fast and slow queries processing by different connections.

2. Slow disks.

Solution

Check disk performance (use iostat, iotop or strace utility to check iowait parameter) and try to put
.xlog files and snapshot files on different physical disks (i.e. use different locations for wal dir and
memtx _dir).

Problem: Replication “lag” and “idle” contain negative values

This is about box.info.replication.(upstream.)lag and box.info.replication.(upstream.)idle values in
box.info.replication section.

Possible reasons

Operating system clock on the hosts is not synchronized, or the NTP server is faulty.

Solution

Check NTP server settings.

If you found no problems with the NTP server, just do nothing then. Lag calculation uses operating system
clock from two different machines. If they get out of sync, the remote master clock can get consistently
behind the local instance’s clock.

118

Chapter 3. User’s Guide

https://linux.die.net/man/1/iostat
https://linux.die.net/man/1/iotop
https://linux.die.net/man/1/strace

Tarantool, Release 2.1.1

Problem: Replication “idle” keeps growing, but no related log messages appear

This is about box.info.replication.(upstream.)idle value in box.info.replication section.
Possible reasons

Some server was assigned different TP addresses, or some server was specified twice in box.cfg{}, so duplicate
connections were established.

Solution

Upgrade Tarantool 1.6 to 1.7, where this error is fixed: in case of duplicate connections, replication is stopped
and the following message is added to the log: 'Incorrect value for option ' 'replication source' ': duplicate
connection with the same replica UUID'.

Problem: Replication statistics differ on replicas within a replica set

This is about a replica set that consists of one master and several replicas. In a replica set of this type,
values in box.info.replication section, like box.info.replication.lsn, come from the master and must be the
same on all replicas within the replica set. The problem is that they get different.

Possible reasons
Replication is broken.
Solution

Restart replication.

Problem: Master-master replication is stopped

This is about box.info.replication(.upstream).status = stopped.
Possible reasons

In a master-master replica set of two Tarantool instances, one of the masters has tried to perform an action
already performed by the other server, for example re-insert a tuple with the same unique key. This would
cause an error message like 'Duplicate key exists in unique index 'primary' in space <space name>'.

Solution

Restart replication with the following commands (at each master instance):

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ #--OR --

$ tarantoolctl connect <URI>

-- restarting replication

tarantool > original value — box.cfg.replication
tarantool > box.cfg{replication—{}}

tarantool > box.cfg{replication—original value}

We also recommend using text primary keys or setting up master-slave replication.

3.5. Server administration 119

Tarantool, Release 2.1.1

Problem: Tarantool works much slower than before

Possible reasons
Inefficient memory usage (RAM is cluttered with a huge amount of unused objects).
Solution

Call the Lua garbage collector with the collectgarbage(‘count’) function and measure its execution time with
the Tarantool functions clock.bench() or clock.proc().

Example of calculating memory usage statistics:

$ # attaching to a Tarantool instance
$ tarantoolct] enter <instance name>
$ # -- OR -

$ tarantoolctl connect <URI>

-- loading Tarantool's "clock" module with time-related routines
tarantool > local clock = require 'clock’

-- starting the timer

tarantool > local b = clock.proc()

-- launching garbage collection

tarantool> local ¢ = collectgarbage('count ")

-- stopping the timer after garbage collection is completed
tarantool > return ¢, clock.proc() - b

If the returned clock.proc() value is greater than 0.001, this may be an indicator of inefficient memory usage
(no active measures are required, but we recommend to optimize your Tarantool application code).

If the value is greater than 0.01, your application definitely needs thorough code analysis aimed at optimizing
memory usage.

3.6 Replication

Replication allows multiple Tarantool instances to work on copies of the same databases. The databases are
kept in sync because each instance can communicate its changes to all the other instances.

This chapter includes the following sections:

3.6.1 Replication architecture
Replication mechanism

A pack of instances which operate on copies of the same databases make up a replica set. Each instance in
a replica set has a role, master or replica.

A replica gets all updates from the master by continuously fetching and applying its write ahead log (WAL).
Each record in the WAL represents a single Tarantool data-change request such as INSERT, UPDATE
or DELETE, and is assigned a monotonically growing log sequence number (LSN). In essence, Tarantool
replication is row-based: each data-change request is fully deterministic and operates on a single tuple.
However, unlike a classical row-based log, which contains entire copies of the changed rows, Tarantool’s
WAL contains copies of the requests. For example, for UPDATE requests, Tarantool only stores the primary
key of the row and the update operations, to save space.

120 Chapter 3. User’s Guide

https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 2.1.1

Invocations of stored programs are not written to the WAL. Instead, records of the actual data-change
requests, performed by the Lua code, are written to the WAL. This ensures that possible non-determinism
of Lua does not cause replication to go out of sync.

Data definition operations on temporary spaces, such as creating/dropping, adding indexes, truncating, etc.,
are written to the WAL, since information about temporary spaces is stored in non-temporary system spaces,
such as box.space. _space. Data change operations on temporary spaces are not written to the WAL and are
not replicated.

Data change operations on replication-local spaces (spaces created with is_local = true) are written to the
WAL but are not replicated.

To create a valid initial state, to which WAL changes can be applied, every instance of a replica set requires
a start set of checkpoint files, such as .snap files for memtx and .run files for vinyl. A replica joining an
existing replica set, chooses an existing master and automatically downloads the initial state from it. This
is called an initial join.

When an entire replica set is bootstrapped for the first time, there is no master which could provide the
initial checkpoint. In such a case, replicas connect to each other and elect a master, which then creates
the starting set of checkpoint files, and distributes it to all the other replicas. This is called an automatic
bootstrap of a replica set.

When a replica contacts a master (there can be many masters) for the first time, it becomes part of a replica
set. On subsequent occasions, it should always contact a master in the same replica set. Once connected
to the master, the replica requests all changes that happened after the latest local LSN (there can be many
LSNs — each master has its own LSN).

Each replica set is identified by a globally unique identifier, called the replica set UUID. The identifier is
created by the master which creates the very first checkpoint, and is part of the checkpoint file. It is stored
in system space box.space. schema. For example:

tarantool > box.space. schema:select{ ' cluster'}

- - ['cluster', '6308ach9-9788-42fa-8101-2e0cb9d3c9a0 ']

Additionally, each instance in a replica set is assigned its own UUID, when it joins the replica set. It is called
an instance UUID and is a globally unique identifier. The instance UUID is checked to ensure that instances
do not join a different replica set, e.g. because of a configuration error. A unique instance identifier is also
necessary to apply rows originating from different masters only once, that is, to implement multi-master
replication. This is why each row in the write ahead log, in addition to its log sequence number, stores the
instance identifier of the instance on which it was created. But using a UUID as such an identifier would
take too much space in the write ahead log, thus a shorter integer number is assigned to the instance when
it joins a replica set. This number is then used to refer to the instance in the write ahead log. It is called
instance id. All identifiers are stored in system space box.space. cluster. For example:

tarantool > box.space. _cluster:select{}

- - [1, '88580b5c-4474-43ab-bd2b-2409a9af80d2 ']

Here the instance ID is 1 (unique within the replica set), and the instance UUID is 88580b5c-4474-43ab-
bd2b-2409a9af80d2 (globally unique).

Using instance IDs is also handy for tracking the state of the entire replica set. For example, box.info.vclock
describes the state of replication in regard to each connected peer.

3.6. Replication 121

Tarantool, Release 2.1.1

tarantool > box.info.vclock

- {1: 827, 2: 584}

Here vclock contains log sequence numbers (827 and 584) for instances with instance IDs 1 and 2.

Starting in Tarantool 1.7.7, it is possible for administrators to assign the instance UUID and the replica
set UUID values, rather than let the system generate them — see the description of the replicaset uuid
configuration parameter.

Replication setup

To enable replication, you need to specify two parameters in a box.cfg{} request:
¢ replication which defines the replication source(s), and
» read only which is true for a replica and false for a master.

Both these parameters are “dynamic”. This allows a replica to become a master and vice versa on the fly
with the help of a box.cfg{} request.

Later we will give a detailed example of bootstrapping a replica set.

Replication roles: master and replica
The replication role (master or replica) is set by the read only configuration parameter. The recommended
role is “read _only” (replica) for all but one instance in the replica set.

In a master-replica configuration, every change that happens on the master will be visible on the replicas,
but not vice versa.

W replica #1
master #1 -

e replica #2

A simple two-instance replica set with the master on one machine and the replica on a different machine
provides two benefits:

* failover, because if the master goes down then the replica can take over, and
¢ load balancing, because clients can connect to either the master or the replica for read requests.

In a master-master configuration (also called “multi-master”), every change that happens on either instance
will be visible on the other one.

122 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

master #1 4 [master #2
F F
e master #3 '

The failover benefit in this case is still present, and the load-balancing benefit is enhanced, because any
instance can handle both read and write requests. Meanwhile, for multi-master configurations, it is necessary
to understand the replication guarantees provided by the asynchronous protocol that Tarantool implements.

Tarantool multi-master replication guarantees that each change on each master is propagated to all instances
and is applied only once. Changes from the same instance are applied in the same order as on the originating
instance. Changes from different instances, however, can be mixed and applied in a different order on different
instances. This may lead to replication going out of sync in certain cases.

For example, assuming the database is only appended to (i.e. it contains only insertions), a multi-master
configuration is safe. If there are also deletions, but it is not mission critical that deletion happens in the
same order on all replicas (e.g. the DELETE is used to prune expired data), a master-master configuration
is also safe.

UPDATE operations, however, can easily go out of sync. For example, assignment and increment are not
commutative, and may yield different results if applied in different order on different instances.

More generally, it is only safe to use Tarantool master-master replication if all database changes are commu-
tative: the end result does not depend on the order in which the changes are applied. You can start learning
more about conflict-free replicated data types here.

Replication topologies: cascade, ring and full mesh
Replication topology is set by the replication configuration parameter. The recommended topology is a full
mesh, because it makes potential failover easy.

Some database products offer cascading replication topologies: creating a replica on a replica. Tarantool
does not recommend such setup.

3.6. Replication 123

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

Tarantool, Release 2.1.1

The problem with a cascading replica set is that some instances have no connection to other instances and
may not receive changes from them. One essential change that must be propagated across all instances in
a replica set is an entry in box.space. cluster system space with the replica set UUID. Without knowing
the replica set UUID, a master refuses to accept connections from such instances when replication topology
changes. Here is how this can happen:

. instance #1 instance #1
instance #

instance #2 instance #2

DC #1 Instance .2 instance #3 DC #2 instance #3

instance #1 + instance #2 — instance #3

We have a chain of three instances. Instance #1 contains entries for instances #1 and #2 in its _ cluster
space. Instances #2 and #3 contain entries for instances #1, #2 and #3 in their _cluster spaces.

. instance #1 instance #1
instance #

| - instance #2 instance #2
irstance #2 . -
DC #1 instance #3 DC #2 | instance #3

— e T —

instance #1 +— instance #2 — instance #3

X

Now instance #2 is faulty. Instance #3 tries connecting to instance #1 as its new master, but the master
refuses the connection since it has no entry for instance #3.

Ring replication topology is, however, supported:

124 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

DC #1 DC #2
I ";
instance #1 4 instance #2 4 instance #3

So, if you need a cascading topology, you may first create a ring to ensure all instances know each other’s
UUID, and then disconnect the chain in the place you desire.

A stock recommendation for a master-master replication topology, however, is a full mesh:

master #1 | [master #2
F 3 F 3
e master #3 +—

You then can decide where to locate instances of the mesh — within the same data center, or spread across a
few data centers. Tarantool will automatically ensure that each row is applied only once on each instance.
To remove a degraded instance from a mesh, simply change the replication configuration parameter.

This ensures full cluster availability in case of a local failure, e.g. one of the instances failing in one of the
data centers, as well as in case of an entire data center failure.

The maximal number of replicas in a mesh is 32.
3.6.2 Bootstrapping a replica set
Master-replica bootstrap

Let us first bootstrap a simple master-replica set containing two instances, each located on its own machine.
For easier administration, we make the instance files almost identical.

master #1 L p— replica #1

Here is an example of the master’s instance file:

3.6. Replication 125

Tarantool, Release 2.1.1

-- instance file for the master
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301 "', -- master URI
'replicator:password@192.168.0.102:3301 ' }, -- replica URI
read_only = false
}
box.once("schema", function()
box.schema.user.create(' replicator ', {password = 'password'})
box.schema.user.grant(' replicator ', 'replication') -- grant replication role
box.schema.space.create("test")
box.space.test:create _index("primary')
print(' box.once executed on master')
end)

where:

* the box.cfg() listen parameter defines a URI (port 3301 in our example), on which the master can
accept connections from replicas.

* the box.cfg() replication parameter defines the URIs at which all instances in the replica set can accept
connections. It includes the replica’s URI as well, although the replica is not a replication source right
now.

Note: For security reasons, we recommend that administrators prevent unauthorized replication
sources by associating a password with every user that has a replication role. That way, the URI for
replication parameter must have the long form username:password@host:port.

e the read only = false parameter setting enables data-change operations on the instance and makes
the instance act as a master, not as a replica. That is the only parameter setting in our instance files
that will differ.

¢ the box.once() function contains database initialization logic that should be executed only once during
the replica set lifetime.

In this example, we create a space with a primary index, and a user for replication purposes. We also say
print('box.once executed on master') so that it will later be visible on a console whether box.once() was
executed.

Note: Replication requires privileges. We can grant privileges for accessing spaces directly to the user who
will start the instance. However, it is more usual to grant privileges for accessing spaces to a role, and then
grant the role to the user who will start the replica.

Here we use Tarantool’s predefined role named “replication” which by default grants “read” privileges for all
database objects (“universe”), and we can change privileges for this role as required.

In the replica’s instance file, we set the read only parameter to “true”, and say print('box.once executed
on replica") so that later it will be visible that box.once() was not executed more than once. Otherwise the
replica’s instance file is identical to the master’s instance file.

-- instance file for the replica
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301 ", -- master URI
'replicator:password@192.168.0.102:3301 ' }, -- replica URI

(continues on next page)

126 Chapter 3. User’s Guide

Tarantool, Release 2.1.1

(continued from previous page)

