Tarantool
Bbinyck 1.7.5

map. 14, 2019



OrnaeneHune

Yro HoBoro B Tarantool 1.77
What’s new in Tarantool 1.6.9 after February 15, 20177
What’s new in Tarantool 1.67

O6i1mme cBegeHUst
4.1 Cepsep npunoxenuii + CYB /]
4.2  Bosmoxnocru CYB/]

PykoBocTBO moJsib30BaTeJIst
5.1 Ilpemmcaosue
5.2  Hagasmo paborst
5.3  ®yukuonan CYB/L
5.4  Cepsep npuioxenuit
5.5 AjMuHHCTPUPOBaHWE CEPBEPHON TaCTH
5.6 Pemmkanus
5.7  KouuekTopst
5.8 Bompocsr u orBeTnl

CrupaBoYHUKU

6.1  Built-in modules reference
6.2 CrpaBo4HHK 1O CTOPOHHUM OHOIHOTEKAM
6.3 CupaBovyHMK 10 HACTPOIKE
6.4 Utility tarantoolctl
6.5 Tips on Lua syntax

IIpakTukym

7.1 Ilpaktwueckue 3amanus Ha Lua
7.2  IlpakTuueckoe 3amanue wHa C
7.3 libslave tutorial

Contributor’s Guide
8.1 Copasounuk o C API

8.2 Internals

8.3 Build and contribute

8.4  Guidelines




Lua Module Index 402




Tarantool, Beinyck 1.7.5

3mech cobpana uHMOPMAIUS O CYNIECTBEHHBIX U3MEHEHUsIX, KOTOPbIE MPOU30LLIA B KOHKPETHBIX BEPCHAX
Tarantool’a.

Bonee menkne m3menenns u ucupasjeHns Ae()EeKTOB yKA3aHbI B OTYETAX O BLIMYICHHBIX CTAONTLHBIX DEJTi-
sax (milestone = closed) na GitHub.

Ornasnexne 1


https://github.com/tarantool/tarantool/milestones?state=closed
https://github.com/tarantool/tarantool/milestones?state=closed

rABA 1

Y10 HoBOro B Tarantool 1.77

The disk-based storage engine, which was called sophia or phia in earlier versions, is superseded by the vinyl
storage engine.

JlobaBJIeHBI HOBBIE TUITBI WHIAEKCUPYEMBIX TOJIEH.

O6nosnena Bepcusa LuaJIT.

Automatic replica set bootstrap (for easier configuration of a new replica set) is supported.

Oyukiys space_object:inc() obbsiBieHa ycrapeBiiei.

Oyukims space_object:dec() obbsBIEHA ycTapeBIeii.

The space_object:bsize() function is added.

The box.coredump () function is removed, for an alternative see Core dumps.

The hot_standby configuration option is added.

Configuration parameters revised:

e Parameters renamed:

slab_alloc_arena (in gigabytes) to memtx_memory (in bytes),
slab_alloc_minimal to memtx_min_tuple_size,
slab_alloc_maximal to memtx_max_tuple_size,
replication_source to replication,

snap_dir to memtx_dir,

logger to log,

logger_nonblock to log_nonblock,

snapshot_count to checkpoint_count,

snapshot_period to checkpoint_interval,

panic_on_wal_error and panic_on_snap_error united under force_recovery.




Tarantool, Beinyck 1.7.5

e Until Tarantool 1.8, you can use deprecated parameters for both initial and runtime configuration, but
Tarantool will display a warning. Also, you can specify both deprecated and up-to-date parameters,
provided that their values are harmonized. If not, Tarantool will display an error.




FJIABA 2

What's new in Tarantool 1.6.9 after February 15, 20177

Due to Tarantool issue#2040 Remove sophia engine from 1.6 there no longer is a storage engine named
sophia. It will be superseded in version 1.7 by the vinyl storage engine.



https://github.com/tarantool/tarantool/issues/2040

FABA 3

What's new in Tarantool 1.67

Tarantool 1.6 is no longer getting major new features, although it will be maintained. The developers are
concentrating on Tarantool version 1.7.




rnABA 4

Obuwme ceegeHuns

4.1 Cepsep npunoxenun + CYb/

Tarantool is a Lua application server integrated with a database management system. It has a «fiber»
model which means that many Tarantool applications can run simultaneously on a single thread, while each
instance of the Tarantool server itself can run multiple threads for input-output and background maintenance.
It incorporates the LuaJIT — «Just In Time» — Lua compiler, Lua libraries for most common applications,
and the Tarantool Database Server which is an established NoSQL DBMS. Thus Tarantool serves all the
purposes that have made node.js and Twisted popular, plus it supports data persistence.

Tarantool — 310 open-source mpoekT. M cXOmMHBIN KO, OTKPBIT [JI BCEX W PACIPOCTPAHAECTCSA OECILIATHO
corsnacuo Jsmnensuu BSD license. Tlonnepxusaembie miaardopmbr: GNU / Linux, Mac OS u FreeBSD.

Cosmarenem Tarantool’a — a rakzke ero OCHOBHBIM IOJIb30BaresieM — siBjisiercss kKomnanus Mail. Ru, kpym-
ueiimas Mureprer-komnanus Poccun (30 mua mosnb3oBareseil, 25 MIH 3J€KTPOHHBIX MHCEM B JIEHb, BEO-
caiir B criucke top 40 mexaynapomuoro Alexa-peiitunra). Tarantool ucmosb3yercsa st 00pabOTKU CaMbIX
«ropsanxy mauabix Mail.Ru, Takumx Kax JaHHbBIE MOJIH30BATE]HCKUX OHJIAWH-CECCHil, HACTPOWKY OHJIAMTH-
MPUJIOKEHUHN, KEITMPOBAHUE CEPBUCHBIX JIAHHBIX, AJITOPUTMbI PACIPEIEICHNs JAHHBIX W IMAPIUHTA, W T.7.
Tarantool Takzke ucrosab3yercs Bo BcE HosbiieM KoamdecTBe npoekTos Bue crer Mail.Ru. 9o, k npumepy,
OHJIANH-UTPHI, TN POBOI MAPKETHHT, conuaabubie ceru. Hecmorpst Ha o uro Mail.Ru comcupyer pa3pabot-
ky Tarantool’a, Bech mporecc pa3paboTku, B T.4. JaJbHeHIne mIaHbl U 0a3a 00HAPYKEHHBIX OIMMTHOOK, sIBJIS-
€TCs MOTHOCTHIO OTKPBIThIM. B Tarantool Bkiodenbr maTdn OT OOIBIIOrO 9HMC/Ia CTOPOHHUX PA3PaAbOTINKOB.
Yeunusimu coobiecrsa paspaborunkos Tarantool’a Gbliu Hamucanbt (4 Janee MOAIePKUBAIOTCs) OubioTe-
KU JIJIs1 TIOJKJIIOYEHUsT MO/TyJIeil Ha BHEITHUX S3bIKaX mporpammupoBanus. A coobiecrBo Lua-pazpaboTdukon
[IPE/IOCTABUJIO COTHH IIOJIE3HBIX [IAKETOB, DOJIBIIMHCTBO U3 KOTOPHIX MOXKHO HMCIIOJb30BATh B KAYECTBE Pac-
mmpennit qis Tarantool’a.

Tlons3oBareun Tarantool’a Moryr co3gaBarh, U3MEHATb W yAaasaTh Lua-dyHKOm#M mpaMo BO BpeMs HC-
noJiHeHus KoJa. Takyke OHH MOPYT YKa3bBaTh Lua-mporpaMMbl, KOTOPbIE OyIyT 3arpyKaTbCs BO BpeMsi
zamycka Tarantool’a. Takue mporpamMMbl MOT'YT CJIYZKHTH TPUITEPAMH, BLIMTOJIHITH (POHOBBIE 337a91 W B3a-
UMOJIEHCTBOBATE C JPYTUMHU MPOTPAMMAMU TI0 CETH. B OTIHYMe OT MHOTHX TOMYJISPHBIX Cpel pa3paboTku
MPUJTOKEHU N, KOTOPhIE UCIOIb3YIOT «PEAKTUBHBINY MPWHIIUIL, CETEBOE B3anMoaeiicTeue B Lua ycTrpoeHo mo-
CJIEJIOBATENIHHO, HO 04YeHb 3DPEKTUBHO, T.K. OHO HUCIOJIB3YET CPEIY B3aMMHOM MHOT03aJa9HOCTHU CAMOI0
Tarantool’a.



http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://api.mail.ru
http://www.alexa.com/siteinfo/mail.ru

Tarantool, Beinyck 1.7.5

Ojun u3 BerpauBaembix Lua-nakeroB — 310 API g dyskmuonana CYBJI. Takum o6pasom, HEKOTOpPbIE
paspaborunku paccmarpuBaior Tarantool kak CYBJI ¢ momyaspHBIM S3BIKOM [IJIsT HAMACAHWUS XPAHUMBIX
MpOIIeAyp, APYTHe PAacCMATPUBAIOT €ro Kak Lua-wHTepnperarop, a TPEeThH — KAK BAPUAHT 3aMEHBI CPa3y
HECKOJIbKHMX KOMIIOHEHTOB B MHOTMO3BEHHBIX BeO-mpuiokeHusx. [Iponssoanrensbaocts Tarantool’a moxker m1o-
CTUTATh COTEH THICIY TPAH3AKIUN B CEKYH/y HA HOyTOYKe, U ee MOXKHO HAPAIIMBATH «BBEPX» WJIU «BIIUPbHY>
34 CYET HOBbIX CepBEpPHbIX (epMm.

4.2 Bo3moxHoctu CYB/]

KowmmonenT «box» — cepBepnas gacts ¢ dynrmuonasom CYBJl — sro Baxkuas gacts Tarantool’a, xoTs on
MOKeT paboTaTrh n 6e3 JTAaHHOTO KOMIIOHEHTA.

API nna dynkiuonana CYB/L nosBossier xpanurh Lua-00beKThI, yIPABIATDh KOJJIEKIUAMUA 00BEKTOB, CO-
3aBATh W yIAJISThH BTOPUYHBIE KJIIOUW, IEJIaTh aTOMAPHBIE W3MEHEHHUs, KOH(DUTYPUPOBATh U MOHUTOPUTH
PEIIMKAIIMIO, TIPOU3BOIUTH KOHTPOJMPYEMOe TiepekJiiouenue npu orkase (failover), a Takzke MCIONHATH KO
Ha Lua, KOTOpBIH BBI3BIBAETCA COOBITUAMU B 0ase. A /s MPO3PAYHOrO JOCTYIA K YIAJEHHLIM (remote)
sK3eMILIgpaM 0a3 maHHbX paspaborad API mj1s BbI30Ba yIaI€HHBIX POIENYD.

B apxurekrype cepsepuoii yactu CYBJI Tarantool’a peasm3oBaHa KOHIENIIUs <«IBUKKOB» 0a3bl JAHHBIX
(storage engines), rje B pa3sHbIX CUTYalUAX UCIOIB3YIOTCA PA3HbIEe HAGOPHI AJTOPUTMOB M CTPYKTYPbI JaH-
ubix. B Tarantool’e ecTh /1Ba BCTPOEHHBIX JBMIKKA: IN-1Memory JBHUKOK, KOTOPBIH JEpyKUT BCe JAHHBIE U
MH/IEKCHI B OTIEPDATHBHOMN MAMSTH, U JBYXYDOBHEBBII JBUKOK [Jis B-/iepeBbeB, KOTOpbIil 00pabaThIBaeT J1aH-
ubie pazmepom B 10-1000 pa3 6osbiie TOro, 9T0 MOXKET MOMECTUTHCSA B OMEPATUBHON mamsTu. Bee nBukku
B Tarantool’e mozepKuBaOT TPAH3AKIMU U PEIIUKAIUIO, IOCKOJIbKY OHU HCIIOJIb3YIOT €IUHBIA MEXaHU3M
yunpexaaromeii 3anucu (WAL = write ahead log). 9ro mexanusm obecnedusaer cOrjacOBAHHOCTb U CO-
XPaHHOCTDH JAHHBIX TIPH cOosiX. Takum 00pa3oM, M3MEHEHWsT He CUNTAIOTCS 3aBEPINeHHBIMH, TOKA HE MTPOXO/IUT
zamuch B jor WAL. Tloacncrema TOrnpoBanust TaKKe MOIEPKUBAET TPYNIIOBbIE KOMMHUTHI.

Tarantool’s in-memory storage engine (memtx) keeps all the data in random-access memory, and
therefore has very low read latency. It also keeps persistent copies of the data in non-volatile storage, such
as disk, when users request «snapshotss. If an instance of the server stops and the random-access memory
is lost, then restarts, it reads the latest snapshot and then replays the transactions that are in the log —
therefore no data is lost.

Tarantool’s in-memory engine is lock-free in typical situations. Instead of the operating system’s
concurrency primitives, such as mutexes, Tarantool uses cooperative multitasking to handle thousands of
connections simultaneously. There is a fixed number of independent execution threads. The threads do not
share state. Instead they exchange data using low-overhead message queues. While this approach limits the
number of cores that the instance will use, it removes competition for the memory bus and ensures peak
scalability of memory access and network throughput. CPU utilization of a typical highly-loaded Tarantool
instance is under 10%. Searches are possible via secondary index keys as well as primary keys.

Tarantool’s disk-based storage engine is a fusion of ideas from modern filesystems, log-structured merge
trees and classical B-trees. All data is organized into ranges. Each range is represented by a file on disk.
Range size is a configuration option and normally is around 64MB. Each range is a collection of pages,
serving different purposes. Pages in a fully merged range contain non-overlapping ranges of keys. A range
can be partially merged if there were a lot of changes in its key range recently. In that case some pages
represent new keys and values in the range. The disk-based storage engine is append only: new data never
overwrites old data. The disk-based storage engine is named vinyl.

Tarantool IO EP2KUBACT pa60Ty C COCTaBHBIMM KJIIOUaMHM B HMHJEKcCaX. Bosmoxkabie Trnbl KiIiodeii:

HASH, TREE, BITSET u RTREE.

Tarantool Takzke 1oepkuBaeT aCHHXPOHHYIO PEIUIMKAWIO — KAaK JIOKAJIbHYIO0, TAK U HA y/AJEHHBIX
ceppepax. [Ipu 3TOM pennkamio MOKHO HACTPOUTH TIO IPUHITUITY MacTepP-MacTep, KOTAa HECKOIHKO Y37I0B
MOTYT HE TOJIHKO 00PabaTHIBATH BXOAAIIYI0 HArPY3KY, HO W MOJIYyYaTh JTaHHBIE OT JAPYTUX y3JI0B.

4.2. Bo3moxhnoctu CYB/[ 7



rMABA D

PyKO BOACTBO NOJ1Ib30BATENA

5.1 lMpepuncnosue

Jlobpo moxkasoears B Mup Tarantool! Ceiiuac Bl unraere «PykoBoICTBO moOab30BaTesIsA». MbI cOBETyeM
HAYMHATH UMEHHO C HETO, a 3aTeM MepeXonuTh K «CnpasouwHukams, €CIIA BaM TTOHAI00ATCsa Oojiee OapOOHbBIE
CBEJIeHUS.

5.1.1 Kak nonb30BaTbCa AOKyMeHTauue

To get started, you can install and launch Tarantool using a Docker container, a binary package, or the
online Tarantool server at http://try.tarantool.org. Either way, as the first tryout, you can follow the
introductory exercises from Chapter 2 «Getting starteds. If you want more hands-on experience, proceed to
Tutorials after you are through with Chapter 2.

B zaase 8 «Pynxyuornan CYB/[s pacckazano o Bo3moxkHOCTsiX Tarantool’a kak NoSQL CYB/L, a B znase 4
«Cepsep npuaoscenutis 0 BodmokuHOCTsAX Tarantool’a kak cepBepa npuioxkenuii Lua.

Chapter § «Server administration» and Chapter 6 «Replications are primarily for administrators.

Chapter 7 «Connectorss is strictly for users who are connecting from a different language such as C or Perl
or Python — other users will find no immediate need for this chapter.

Chapter 8 «FAQ» gives answers to some frequently asked questions about Tarantool.

OmBITHBIM 2Ke MOJIb30BATEAM OyayT moJie3ubl « Cnpasounukuys, «Pyrxosodcmeo yuacmuuka npoexmay u KOM-
MEHTAaPUU B UCXOIHOM KOJIE.

5.1.2 Kak cBsizaTbCsi ¢ coobuiecTtBom pa3pabotyukos Tarantool’a
OcraButb coobienue 0 HafileHbIX AedeKTax uin CAesaTh 3alPOC HA HOBBIN (DYHKIIMOHAJ MOXKHO TyT: http:
//github.com/tarantool/tarantool/issues

Toobmarhesa HanpaMyo ¢ KoMaH1oil paspaborku Tarantool’a moxkuo B telegram mm ma dbopymax (anrio-
AZBIYIHOM WA 1)'\'('("K(')HTLI(HI(')]\I).



http://try.tarantool.org
http://github.com/tarantool/tarantool/issues
http://github.com/tarantool/tarantool/issues
http://telegram.me/tarantool
https://groups.google.com/forum/#!forum/tarantool
https://groups.google.com/forum/#!forum/tarantool
https://googlegroups.com/group/tarantool-ru

Tarantool, Beinyck 1.7.5

5.1.3 Conventions used in this manual

Square brackets [ and | enclose optional syntax.
Two dots in a row .. mean the preceding tokens may be repeated.

A vertical bar | means the preceding and following tokens are mutually exclusive alternatives.

5.2 Hawano paborbl

In this chapter, we explain how to install Tarantool, how to start it, and how to create a simple database.

This chapter contains the following sections:

5.2.1 Using a Docker image

For trial and test purposes, we recommend using official Tarantool images for Docker. An official image
contains a particular Tarantool version (1.6 or 1.7) and all popular external modules for Tarantool. Everything
is already installed and configured in Linux. These images are the easiest way to install and use Tarantool.

ITpumeuanme: If you're new to Docker, we recommend going over this tutorial before proceeding with this
chapter.

Launching a container

If you don’t have Docker installed, please follow the official installation guide for your OS.

To start a fully functional Tarantool instance, run a container with minimal options:

$ docker run \
--name mytarantool \
-d -p 3301:3301 \
-v /data/dir/on/host:/var/lib/tarantool \
tarantool/tarantool:1.7

This command runs a new container named ,mytarantool®. Docker starts it from an official image named
ytarantool /tarantool:1.7¢, with Tarantool version 1.7 and all external modules already installed.

Tarantool will be accepting incoming connections on localhost:3301. You may start using it as a key-value
storage right away.

Tarantool persists data inside the container. To make your test data available after you stop the container, this
command also mounts the host’s directory /data/dir/on/host (you need to specify here an absolute path
to an existing local directory) in the container’s directory /var/lib/tarantool (by convention, Tarantool
in a container uses this directory to persist data). So, all changes made in the mounted directory on the
container’s side are applied to the host’s disk.

Tarantool’s database module in the container is already configured and started. You needn’t do it manually,
unless you use Tarantool as an application server and run it with an application.

5.2. Hauyano pa6orbi 9



https://github.com/tarantool/docker
https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/#/step-1-get-docker

Tarantool, Beinyck 1.7.5

Attaching to Tarantool

To attach to Tarantool that runs inside the container, say:

$ docker exec -i -t mytarantool console

This command:
e Instructs Tarantool to open an interactive console port for incoming connections.
e Attaches to the Tarantool server inside the container under ,admin®“ user via a standard Unix socket.

Tarantool displays a prompt:

tarantool.sock>

Now you can enter requests on the command line.

Ilpnmeuanume: On production machines, Tarantool’s interactive mode is for system administration only.
But we use it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

While you're attached to the console, let’s create a simple test database.

First, create the first space (named ,tester) and the first index (named ,primary®):

tarantool.sock> s = box.schema.space.create('tester')
tarantool.sock> s:create_index('primary', {

> type = 'hash',

> parts = {1, 'unsigned'}

>3

Next, insert three tuples (our name for «records») into the space:

tarantool.sock> t = s:insert({1, 'Roxette'})
tarantool.sock> t s:insert ({2, 'Scorpions', 2015})
tarantool.sock> t = s:insert({3, 'Ace of Base', 1993})

1l

To select a tuple from the first space of the database, using the first defined key, say:

tarantool.sock> s:select{3}

The terminal screen now looks like this:

tarantool.sock> s = box.schema.space.create('tester')
2017-01-17 12:04:18.1568 ... creating './00000000000000000000.x1og.inprogress’

tarantool.sock> s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

tarantool.sock> t = s:insert{l, 'Roxette'}

tarantool.sock> t = s:insert{2, 'Scorpiomns', 2015}

(continues on next page)

10 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool.sock> t = s:insert{3, 'Ace of Base', 1993}

tarantool.sock> s:select{3}

- - [3, '"Ace of Base', 1993]

tarantool.sock>

To add another index on the second field, say:

tarantool.sock> s:create_index('secondary', {
> type = 'hash',
> parts = {2, 'string'}
> 1

Stopping a container

When the testing is over, stop the container politely:

$ docker stop mytarantool

This was a temporary container, and its disk/memory data were flushed when you stopped it. But since you
mounted a data directory from the host in the container, Tarantool’s data files were persisted to the host’s
disk. Now if you start a new container and mount that data directory in it, Tarantool will recover all data
from disk and continue working with the persisted data.

5.2.2 Using a binary package

For production purposes, we recommend official binary packages. You can choose from three Tarantool
versions: 1.6 (stable), 1.7 (release candidate) or 1.8 (alpha). An automatic build system creates, tests and
publishes packages for every push into a corresponding branch (1.6, 1.7 or 1.8) at Tarantool’s GitHub
repository.

To download and install the package that’s appropriate for your OS, start a shell (terminal) and enter the
command-line instructions provided for your OS at Tarantool’s download page.

Starting Tarantool

To start a Tarantool instance, say this:

$ # <f you downloaded a binary with apt-get or yum, say this:

$ /usr/bin/tarantool

$ # if you downloaded and untarred a binary tarball to ~/tarantool, say this:
$ ~/tarantool/bin/tarantool

Tarantool starts in the interactive mode and displays a prompt:

tarantool>

5.2. Hauyano pa6orbi 11



http://tarantool.org/download.html
https://github.com/tarantool/tarantool
https://github.com/tarantool/tarantool
http://tarantool.org/download.html

Tarantool, Beinyck 1.7.5

Now you can enter requests on the command line.

Ilpnmeuanume: On production machines, Tarantool’s interactive mode is for system administration only.
But we use it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

Jlamee paccKa3bIBaeTCsI, KaK CO3ATh MPOCTYI0 TECTOBYIO 0a3y MAHHBIX MOCJe ycTaHOBKH Tarantool’a.

Create a new directory (it’s just for tests, so you can delete it when the tests are over):

$ mkdir ~/tarantool_sandbox
$ cd ~/tarantool_sandbox

To start Tarantool’s database module and make the instance accept TCP requests on port 3301, say this:

tarantool> box.cfg{listen = 3301}

First, create the first space (named ,tester) and the first index (named ,primary®):

tarantool> s = box.schema.space.create('tester')
tarantool> s:create_index('primary', {

> type = 'hash’',

> parts = {1, 'unsigned'}

>3

Next, insert three tuples (our name for «records») into the space:

tarantool> t = s:insert({1, 'Roxette'})
tarantool> t = s:insert({2, 'Scorpions', 20153})
tarantool> t = s:insert({3, 'Ace of Base', 1993})

|

To select a tuple from the first space of the database, using the first defined key, say:

tarantool> s:select{3}

The terminal screen now looks like this:

tarantool> s = box.schema.space.create('tester')
2017-01-17 12:04:18.1568 ... creating './00000000000000000000.x1og.inprogress’

tarantool>s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

s:insert{l, 'Roxette'}

tarantool> t

tarantool> t = s:insert{2, 'Scorpions', 2015}

tarantool> t s:insert{3, 'Ace of Base', 1993}

tarantool> s:select{3}

(continues on next page)

12 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- - [3, '"Ace of Base', 1993]

tarantool>

To add another index on the second field, say:

tarantool> s:create_index('secondary', {
> type = 'hash',
> parts = {2, 'string'}
> P

YcTaHoBKa yaaneHHoro coeguHeHust

In the request box.cfg{listen = 3301} that we made earlier, the 1isten value can be any form of a URI
(uniform resource identifier). In this case, it’s just a local port: port 3301. You can send requests to the listen
URI via:

(1) telnet,
(2) a connector,
(3) another instance of Tarantool (using the console module), or
(4) tarantoolctl utility.
Let’s try (4).

Switch to another terminal. On Linux, for example, this means starting another instance of a Bash shell.
You can switch to any working directory in the new terminal, not necessarily to ~/tarantool_sandbox.

Start the tarantoolctl utility:

$ tarantoolctl conmect '3301°'

This means «use tarantoolctl connect to connect to the Tarantool instance that’s listening on
localhost:3301».

Beemure cieayrommit 3ampoc:

tarantool> box.space.tester:select{2}

This means «send a request to that Tarantool instance, and display the results. The result in this case is
one of the tuples that was inserted earlier. Your terminal screen should now look like this:

$ tarantoolctl connect 3301
/usr/local/bin/tarantoolctl: connected to localhost:3301
localhost:3301> box.space.tester:select{2}

- - [2, 'Scorpions', 2015]

localhost:3301>

You can repeat box.space...:insert{} and box.space...:select{} indefinitely, on either Tarantool
instance.

When the testing is over:

5.2. Hauyano pa6orbi 13




Tarantool, Beinyck 1.7.5

To drop the space: s:drop()

To stop tarantoolctl: Ctrl+C or Ctrl+D

To stop Tarantool (an alternative): the standard Lua function os.exit()

To stop Tarantool (from another terminal): sudo pkill -f tarantool

To destroy the test: rm -r ~/tarantool_sandbox

5.3 ®PyHkyumonan CYB/]

In this chapter, we introduce the basic concepts of working with Tarantool as a database manager.

This chapter contains the following sections:

5.3.1 Mopaenb AaHHbIX
B srom pasmene ommcbiBaercs To, Kak B Tarantool’e oprann3oBaHO XpaHeHHe JAHHBIX W KaKHWe OMepallun C
JAHHBIM OH IO/ ICPIKUBAET.

If you tried to create a database as suggested in our «Getting starteds exercises, then your test database
now looks like this:

SPACE 'tester’

INDEX 'primary’

TUPLE [ 1, "Roxette’ |

TUPLE [ 2, "Scorpions’, 2015 ]
TUPLE [ 3, "Ace of Base', 1983 ]

INDEX 'secondary’

KEY [ 'Roxette' ]

KEY [ 'Scorpions']
KEY [ 'Ace of Base']

MpocTpaHcTBO

A space — ,tester” in our example — is a container.

When Tarantool is being used to store data, there is always at least one space. Each space has a unique
name specified by the user. Besides, each space has a unique numeric identifier which can be specified by

14 FnaBsa 5. PykoBopgctso nosib3oBatens


http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Beinyck 1.7.5

the user, but usually is assigned automatically by Tarantool. Finally, a space always has an engine: memtz
(default) — in-memory engine, fast but limited in size, or vinyl — on-disk engine for huge data sets.

A space is a container for tuples. To be functional, it needs to have a primary index. It can also have
secondary indexes.

Tuple
A tuple plays the same role as a “row” or a “record”, and the components of a tuple (which we call “fields”)
play the same role as a “row column” or “record field”, except that:

e fields can be composite structures, such as arrays or maps, and

e fields don’t need to have names.

Any given tuple may have any number of fields, and the fields may be of different types. The identifier of a
field is the field’s number, base 1 (in Lua and other 1-based languages) or base 0 (in PHP or C/C++). For
example, “1” or «0» can be used in some contexts to refer to the first field of a tuple.

Tuples in Tarantool are stored as MsgPack arrays.

When Tarantool returns a tuple value in console, it uses the YAML format, for example: [3, 'Ace of
Base', 1993].

Nnpekc

An index is a group of key values and pointers.

As with spaces, you should specify the index name, and let Tarantool come up with a unique numeric
identifier («index id»).

An index always has a type. The default index type is ,TREE“. TREE indexes are provided by all Tarantool
engines, can index unique and non-unique values, support partial key searches, comparisons and ordered
results. Additionally, memtx engine supports HASH, RTREE and BITSET indexes.

An index may be multi-part, that is, you can declare that an index key value is composed of two or more
fields in the tuple, in any order. For example, for an ordinary TREE index, the maximum number of parts
is 255.

An index may be unique, that is, you can declare that it would be illegal to have the same key value twice.

The first index defined on a space is called the primary key index, and it must be unique. All other indexes
are called secondary indexes, and they may be non-unique.

An index definition may include identifiers of tuple fields and their expected types (see allowed indezed field
types below).

In our example, we first defined the primary index (named ,primary*) based on field #1 of each tuple:

tarantool> i = s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

The effect is that, for all tuples in space ,tester”, field #1 must exist and must contain an unsigned integer.
The index type is ,hash®, so values in field #1 must be unique, because keys in HASH indexes are unique.

After that, we defined a secondary index (named ,secondary”) based on field #2 of each tuple:

tarantool> i = s:create_index('secondary', {type = 'tree', parts = {2, 'string'}})

5.3. ®yukuymonan CYB/[ 15


https://en.wikipedia.org/wiki/MessagePack
https://en.wikipedia.org/wiki/YAML

Tarantool, Beinyck 1.7.5

The effect is that, for all tuples in space ,tester, field #2 must exist and must contain a string. The index
type is ,tree”, so values in field #2 must not be unique, because keys in TREE indexes may be non-unique.

ITpumeuanme: Space definitions and index definitions are stored permanently in Tarantool’s system spaces
_space and _index (for details, see reference on boz.space submodule).

You can add, drop, or alter the definitions at runtime, with some restrictions. See syntax details in reference
on box module.

Twunbl gaHHbIX

Tarantool is both a database and an application server. Hence a developer often deals with two type sets:
the programming language types (e.g. Lua) and the types of the Tarantool storage format (MsgPack).

Lua vs MsgPack

Scalar / compound | MsgPack type | Lua type Example value
scalar nil «nily msgpack.NULL
scalar boolean «boolean» true

scalar string «stringy SA B C

scalar integer «numbers 12345

scalar double «numbers 1.2345
compound map «tabley (with string keys) {, @ 5, ,b“ 6}
compound array «tables (with integer keys) | [1, 2, 3, 4, 5]
compound array tuple («cdatay) [12345, ,A B C“]

In Lua, a nil type has only one possible value, also called nil (displayed as null on Tarantool’s command line,
since the output is in the YAML format). Nils may be compared to values of any types with == (is-equal) or
~= (is-not-equal), but other operations will not work. Nils may not be used in Lua tables; the workaround
is to use msgpack.NULL

A boolean is either true or false.

A string is a variable-length sequence of bytes, usually represented with alphanumeric characters inside
single quotes. In both Lua and MsgPack, strings are treated as binary data, with no attempts to determine
a string’s character set or to perform any string conversion. So, string sorting and comparison are done
byte-by-byte, without any special collation rules applied. (Example: numbers are ordered by their point on
the number line, so 2345 is greater than 500; meanwhile, strings are ordered by the encoding of the first
byte, then the encoding of the second byte, and so on, so ,,2345“ is less than ,,500“.)

In Lua, a number is double-precision floating-point, but Tarantool allows both integer and floating-point
values. Tarantool will try to store a Lua number as floating-point if the value contains a decimal point or
is very large (greater than 100 trillion = 1el4), otherwise Tarantool will store it as an integer. To ensure
that even very large numbers are stored as integers, use the tonumber64 function, or the LL (Long Long)
suffix, or the ULL (Unsigned Long Long) suffix. Here are examples of numbers using regular notation,
exponential notation, the ULL suffix and the tonumber64 function: -55, -2.7e+20, 100000000000000ULL,
tonumber64 ('18446744073709551615").

Lua tables with string keys are stored as MsgPack maps; Lua tables with integer keys starting with 1 — as
MsgPack arrays. Nils may not be used in Lua tables; the workaround is to use msgpack. NULL

16 FnaBsa 5. PykoBopgctso nosib3oBatens


http://www.lua.org/pil/2.1.html
http://www.lua.org/pil/2.2.html
http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.5.html
http://www.lua.org/pil/2.5.html
http://luajit.org/ext_ffi.html#call

Tarantool, Beinyck 1.7.5

A tuple is a light reference to a MsgPack array stored in the database. It is a special type (cdata) to avoid
conversion to a Lua table on retrieval. A few functions may return tables with multiple tuples. For more
tuple examples, see box.tuple.

ITpumeuanme: Tarantool uses the MsgPack format for database storage, which is variable-length. So, for
example, the smallest number requires only one byte, but the largest number requires nine bytes.

Examples of insert requests with different data types:

tarantool> box.space.K:insert{1,nil,true,'A B C',12345,1.2345}

- [1, null, true, 'A B C', 12345, 1.2345]

tarantool> box.space.K:insert{2,{['a']=5,['b']1=6}}

- [2, {ra': 5, 'b': 6}]

tarantool> box.space.K:insert{3,{1,2,3,4,5}}

- [3, [1, 2, 3, 4, 5]]

Indexed field types

Indexes restrict values which Tarantool’s MsgPack may contain. This is why, for example, ,unsigned“ is a
separate indexed field type, compared to ‘integer’ data type in MsgPack: they both store ‘integer’ values,
but an ,unsigned index contains only non-negative integer values and an ‘integer’ index contains all integer
values.

Here’s how Tarantool indexed field types correspond to MsgPack data types.

5.3. ®yukuymonan CYB/[ 17




Tarantool, Beinyck 1.7.5

Indexed field | MsgPack data type (and possible values) Tun Mpu-
type VH- me-
gekca | pol:
unsigned (may | integer (integer between 0 and 18446744073709551615, i.e. about 18 | TREE,| 12345(
also be called | quintillion) BITSET
‘uint’ or ‘num’, or
but ‘num’ is HASH
deprecated)
integer (may | integer (integer between -9223372036854775808 and | TREE | -
also be called | 18446744073709551615) or 2763
‘int’) HASH
number integer (integer between -9223372036854 775808 and | TREE | 1.234
18446744073709551615) or -44
double (single-precision floating point number or double-precision | HASH | 1.447¢
floating point number)
string (may | string (any set of octets, up to the maximum length) TREE | ‘A B
also be called or C
‘str’) HASH | ‘65
66
67’
array array (list of numbers representing points in a geometric figure) RTREE {10,
11}
{3,
5, 9,
10}
scalar boolean (true or false) TREE | true
integer (integer between -9223372036854775808 and | or -1
18446744073709551615) HASH | 1.234
double (single-precision floating point number or double-precision ¢
floating point number) ‘py’
string (any set of octets)
Note: When there is a mix of types, the key order is: booleans, then
numbers, then strings.

Persistence

In Tarantool, updates to the database are recorded in the so-called write ahead log (WAL) files. This ensures
data persistence. When a power outage occurs or the Tarantool instance is killed incidentally, the in-memory
database is lost. In this situation, WAL files are used to restore the data. Namely, Tarantool reads the WAL
files and redoes the requests (this is called the «recovery process»). You can change the timing of the WAL
writer, or turn it off, by setting wal _mode.

Tarantool also maintains a set of snapshot files. These files contain an on-disk copy of the entire data set for
a given moment. Instead of reading every WAL file since the databases were created, the recovery process
can load the latest snapshot file and then read only those WAL files that were produced after the snapshot
file was made. After checkpointing, old WAL files can be removed to free up space.

To force immediate creation of a snapshot file, you can use Tarantool’s boz.snapshot() request. To enable
automatic creation of snapshot files, you can use Tarantool’s checkpoint daemon. The checkpoint daemon
sets intervals for forced checkpoints. It makes sure that the states of both memtx and vinyl storage engines
are synchronized and saved to disk, and automatically removes old WAL files.

Snapshot files can be created even if there is no WAL file.

18

FnaBsa 5. PykoBopgctso nosib3oBatens

h

+44



Tarantool, Beinyck 1.7.5

ITpumeuanme: The memtx engine makes only regular checkpoints with the interval set in checkpoint daemon
configuration.

The vinyl engine runs checkpointing in the background at all times.

See the Internals section for more details about the WAL writer and the recovery process.

Onepauun

Data operations

The basic data operations supported in Tarantool are:
e one data-retrieval operation (SELECT), and
e five data-manipulation operations (INSERT, UPDATE, UPSERT, DELETE, REPLACE).
All of them are implemented as functions in box.space submodule.
Examples
e INSERT: Add a new tuple to space ,tester.
The first field, field[1], will be 999 (MsgPack type is integer).
The second field, field[2], will be , Taranto* (MsgPack type is string).

tarantool> box.space.tester:insert{999, 'Taranto'}

e UPDATE: Update the tuple, changing field field[2].

The clause «{999}», which has the value to look up in the index of the tuple’s primary-key field, is
mandatory, because update () requests must always have a clause that specifies a unique key, which in
this case is field[1].

The clause «{{,=“, 2, ,Tarantino“}}» specifies that assignment will happen to field[2] with the new
value.

tarantool> box.space.tester:update({999}, {{'=', 2, 'Tarantino'}})

e UPSERT: Upsert the tuple, changing field field[2] again.

The syntax of upsert () is similar to the syntax of update (). However, the execution logic of these two
requests is different. UPSERT is either UPDATE or INSERT, depending on the database’s state. Also,
UPSERT execution is postponed after transaction commit, so, unlike update(), upsert() doesn’t
return data back.

’tarantool> box.space.tester:upsert ({999}, {{'=', 2, 'Tarantism'}}) ‘

e REPLACE: Replace the tuple, adding a new field.

This is also possible with the update () request, but the update () request is usually more complicated.

tarantool> box.space.tester:replace{999, 'Tarantella', 'Tarantula'} ‘

e SELECT: Retrieve the tuple.

The clause «{999}» is still mandatory, although it does not have to mention the primary key.

5.3. ®yukuymonan CYB/[ 19



Tarantool, Beinyck 1.7.5

’tarantool> box.space.tester:select{999}

e DELETE: Delete the tuple.

In this example, we identify the primary-key field.

’tarantool> box.space.tester:delete{999}

All the functions operate on tuples and accept only unique key values. So, the number of tuples in the space
is always 0 or 1, since the keys are unique.

Functions insert(), upsert() and replace() accept only primary-key values. Functions select(),
delete() and update() may accept either a primary-key value or a secondary-key value.

IIpumeuanme: Besides Lua, you can use Perl, PHP, Python or other programming language connectors.
The client server protocol is open and documented. See this annotated BNF .

Onepauun c nugekcamn

Index operations are automatic: if a data-manipulation request changes a tuple, then it also changes the
index keys defined for the tuple.

The simple index-creation operation that we’ve illustrated before is:

:samp: “box.space.{umMa-npocrparcral}:create_index('{umsa-ungercal}l')"

This creates a unique TREE index on the first field of all tuples (often called «Field#1»), which is assumed
to be numeric.

The simple SELECT request that we’ve illustrated before is:

:extsamp: “box.space.{*{umsa-npocTrparcTBa}*}:select ({*{3Hauenue}*1}) "

This looks for a single tuple via the first index. Since the first index is always unique, the maximum number
of returned tuples will be: one.

The following SELECT variations exist:

1. TloMmumoO yc0BUS PABEHCTBA, IIPH ITOMCKE MOI'YT UCIIOJb30BATHCH W JPyIHe yCJIOBUS CDABHEHUS.

box.space. space-name :select(value, {iterator = 'GT'})

The comparison operators are LT, LE, EQ, REQ, GE, GT (for «less than», «less than or equal»,
«equal», «reversed equaly, «greater than or equaly, «greater than» respectively). Comparisons make
sense if and only if the index type is ‘TREE®“

DTOT BapUAHT TIONCKA MOYKET BEPHYThH O0Jiee OMHOTrO KopTexka. B TakoM ciiydae KOpTexKu OyIyT OTCOp-
TUPOBAHDI B MOPsJIKe yObIBaHUS 110 KJI04y (ecm ucnosb3osasca oneparop LT, LE unu REQ), mubo B
Hopsijike BO3pacTanus (BO BCEX OCTAJbHBIX CJIydasX).

. Ilouck mMoxkeT MPOM3BOAUTHCS IO BTOPUIHOMY HUHIEKCY.

box.space. space-name .index. index-name : select (value)

HpI/I TIONCKE IO TEPBUYHOMY WHJIIEKCY UMA MHIIEKCAa MOXKHO HE YKa3bIBATh. HpI/I IIOUCKE K€ 110 BTOPpHUYI-
HOMY UHJEKCY UMA MHIAECKCA YKa3bIBaTh HeO6XO,I[I/IMO.

3. Ilouck MoxKeT MPOM3BOIUTHCH KAK IO BCEMY KJIIOGY, TAK U IO €r0 9acTsM.

20

FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

-- Suppose an index has two parts
tarantool> box.space.space-name .index. index-name .parts

- - type: unsigned

fieldno: 1
- type: string
fieldno: 2

-- Suppose the space has three tuples
box.space. space-name : select ()

- - [1, 'A']
- [1, 'B']
- [2, ']

4. The search may be for all fields, using a table for the value:
box.space. space-name :select ({1, 'A'})
JIu6o ke 1o oHOMY HOJI0 (B 9TOM CJIy4Yae UCHOJIb3yeTcs Tab/uia Wik CKaJIIpHOe 3HAYEHUE):
box.space. space-name :select (1)

In the second case, the result will be two tuples: {1, 'A'} and {1, 'B'}.

You can specify even zero fields, causing all three tuples to be returned. (Notice that partial key searches

are available only in TREE indexes.)
Examples

e IIpumep paborsr ¢ BITSET-unnekcom:

tarantool> box.schema.space.create('bitset_example')

tarantool> box.space.bitset_example:create_index('primary')

tarantool> box.space.bitset_example:create_index('bitset',{unique=false,type='BITSET
', parts={2, 'unsigned'}})

tarantool> box.space.bitset_example:insert{1,1}

tarantool> box.space.bitset_example:insert{2,4}

tarantool> box.space.bitset_example:insert{3,7}

tarantool> box.space.bitset_example:insert{4,3}

tarantool> box.space.bitset_example.index.bitset:select(2, {iterator='BITS_ANY_SET'}
o)

Mb1 nostyuum cireyfornuit pe3ysibrat:

- - [3, 7]
- [4, 3]

nockosbKy (7 AND 2) we pasuo 0 u (3 AND 2) He pasro 0.
o IIpumep paborsr ¢ RTREE-unnekcom:

tarantool> box.schema.space.create('rtree_example')

tarantool> box.space.rtree_example:create_index('primary')

tarantool> box.space.rtree_example:create_index('rtree',{unique=false,type='RTREE',
—parts={2, 'ARRAY'}})

tarantool> box.space.rtree_example:insert{l, {3, 5, 9, 10}}

(continues on next page)

5.3. ®yukuymonan CYB/[

21



Tarantool, Beinyck 1.7.5

(mpomosKEeHNe C IPeABLAYIIeH CTPAHHUIE)

tarantool> box.space.rtree_example:insert{2, {10, 11}}
tarantool> box.space.rtree_example.index.rtree:select({4, 7, 5, 9}, {iterator = 'GT

)

Mps1 nosrydum citeayfornuii pe3yaIbTaT:

- - [1, [3, 5, 9, 10]1]

because a rectangle whose corners are at coordinates 4,7,5,9 is entirely within a rectangle
whose corners are at coordinates 3,5,9,10.

Additionally, there exist index iterator operations. They can only be used with code in Lua and C/C++.
Index iterators are for traversing indexes one key at a time, taking advantage of features that are specific
to an index type, for example evaluating Boolean expressions when traversing BITSET indexes, or going in
descending order when traversing TREE indexes.

See also other index operations like alter() and drop() in reference for boz.index submodule.

Complexity factors

In reference for boz.space and boz.index submodules, there are notes about which complexity factors might
affect the resource usage of each function.

Complexity Effect
factor
Pasmep | The number of index keys is the same as the number of tuples in the data set. For a TREE
uumekca | index, if there are more keys, then the lookup time will be greater, although of course the
effect is not linear. For a HASH index, if there are more keys, then there is more RAM used,
but the number of low-level steps tends to remain constant.

Twun wn- | Typically, a HASH index is faster than a TREE index if the number of tuples in the space is
JIEKCa, greater than one.

Koou- Ordinarily, only one index is accessed to retrieve one tuple. But to update the tuple, there
9eCTBO must be N accesses if the space has N different indexes.

obopamte- | Note re storage engine: Vinyl optimizes away such accesses if secondary index fields are
uuit K | unchanged by the update. So, this complexity factor applies only to memtx, since it always

MHJIEK- makes a full-tuple copy on every update.

cam

Komnu- A few requests, for example SELECT, can retrieve multiple tuples. This factor is usually less
9€CTBO important than the others.

obparrie-

HUA K

KOpTe-

KaM

Ha- Baxkubiv mapamerpom s 3anucu 8 WAL asnsercsa wal _mode. Eciu 3anucs 8 WAL orkitio-
CTPOIi- YeHA WM 33J]aHa 3alliCh C 33JIePXKKOi, HO 3TOT (HPaKTOp He TakK BaykeH. ECjm Ke 3aluchb B
KU WAL mpoussoanTcest Ipu KazKIOM 3ampoce Ha U3MEHEHNEe JaHHBIX, TO TMPU KayKIOM TaKOM 3a-
WAL pOCe TPUXOAUTCS KIATh, TOKA 0TpaboTaeT obparrenne K 6ojiee MeIJIEHHOMY TUCKY, U JAHHBIH

($aKTOp CTAHOBHUTCS BaKHEE BCEX OCTAJIBHBIX.

22 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

5.3.2 KoHTposib TpaH3akuwii

Transactions in Tarantool occur in fibers on a single thread. That is why Tarantool has a guarantee of
execution atomicity. That requires emphasis.

Threads, fibers and yields

How does Tarantool process a basic operation? As an example, let’s take this query:

’tarantool> box.space.tester:update({3}, {{'=', 2, 'size'}, {'=', 3, 0}})

This is equivalent to an SQL statement like:

’UPDATE tester SET "field[2]" = 'size', "field[3]" = O WHERE "field[1]" = 3

This query will be processed with three operating system threads:

1. If we issue the query on a remote client, then the network thread on the server side receives the
query, parses the statement and changes it to a server executable message which has already been
checked, and which the server instance can understand without parsing everything again.

2. The network thread ships this message to the instance’s «transaction processor» thread using a
lock-free message bus. Lua programs execute directly in the transaction processor thread, and do not
require parsing and preparation.

The instance’s transaction processor thread uses the primary-key index on field[1] to find the location
of the tuple. It determines that the tuple can be updated (not much can go wrong when you’re merely
changing an unindexed field value to something shorter).

3. The transaction processor thread sends a message to the write-ahead logging (WAL) thread to commit
the transaction. When done, the WAL thread replies with a COMMIT or ROLLBACK result, which
is returned to the client.

Notice that there is only one transaction processor thread in Tarantool. Some people are used to the idea that
there can be multiple threads operating on the database, with (say) thread #1 reading row #x, while thread
#2 writes row #y. With Tarantool, no such thing ever happens. Only the transaction processor thread can
access the database, and there is only one transaction processor thread for each Tarantool instance.

Like any other Tarantool thread, the transaction processor thread can handle many fibers. A fiber is a set of
computer instructions that may contain «yield» signals. The transaction processor thread will execute all
computer instructions until a yield, then switch to execute the instructions of a different fiber. Thus (say)
the thread reads row #x for the sake of fiber #1, then writes row #y for the sake of fiber #2.

Yields must happen, otherwise the transaction processor thread would stick permanently on the same fiber.
There are two types of yields:

e implicit yields: every data-change operation or network-access causes an implicit yield, and every
statement that goes through the Tarantool client causes an implicit yield.

e explicit yields: in a Lua function, you can (and should) add «yield» statements to prevent hogging.
This is called cooperative multitasking.

Cooperative multitasking

Cooperative multitasking means: unless a running fiber deliberately yields control, it is not preempted by
some other fiber. But a running fiber will deliberately yield when it encounters a “yield point™: a transaction
commit, an operating system call, or an explicit «yield» request. Any system call which can block will be

5.3. ®yukuymonan CYB/[ 23



Tarantool, Beinyck 1.7.5

performed asynchronously, and any running fiber which must wait for a system call will be preempted, so
that another ready-to-run fiber takes its place and becomes the new running fiber.

This model makes all programmatic locks unnecessary: cooperative multitasking ensures that there will be
no concurrency around a resource, no race conditions, and no memory consistency issues.

When requests are small, for example simple UPDATE or INSERT or DELETE or SELECT, fiber scheduling
is fair: it takes only a little time to process the request, schedule a disk write, and yield to a fiber serving
the next client.

However, a function might perform complex computations or might be written in such a way that yields
do not occur for a long time. This can lead to unfair scheduling, when a single client throttles the rest of
the system, or to apparent stalls in request processing. Avoiding this situation is the responsibility of the
function’s author.

Transactions

In the absence of transactions, any function that contains yield points may see changes in the database state
caused by fibers that preempt. Multi-statement transactions exist to provide isolation: each transaction sees
a consistent database state and commits all its changes atomically. At commit time, a yield happens and all
transaction changes are written to the write ahead log in a single batch.

To implement isolation, Tarantool uses a simple optimistic scheduler: the first transaction to commit wins.
If a concurrent active transaction has read a value modified by a committed transaction, it is aborted.

The cooperative scheduler ensures that, in absence of yields, a multi-statement transaction is not preempted
and hence is never aborted. Therefore, understanding yields is essential to writing abort-free code.

IIpumeuanme: You can’t mix storage engines in a transaction today.

Implicit yields
The only explicit yield requests in Tarantool are fiber.sleep() and fiber.yield(), but many other requests
«imply» yields because Tarantool is designed to avoid blocking.
Database operations usually do not yield, but it depends on the engine:
e In memtx, reads or writes do not require I/O and do not yield.

¢ In vinyl, not all data is in memory, and SELECT often incurs a disc I/O, and therefore yields, while
a write may stall waiting for memory to free up, thus also causing a yield.

In the «autocommit» mode, all data change operations are followed by an automatic commit, which yields.
So does an explicit commit of a multi-statement transaction, box.commit().

Many functions in modules fio, net box, console and socket (the «os» and «networks requests) yield.
Example #1

e FEngine = memtzr select() insert() has one yield, at the end of insertion, caused by implicit commit;
select () has nothing to write to the WAL and so does not yield.

e Engine = vinyl select() insert() has between one and three yields, since select () may yield if the
data is not in cache, insert () may yield waiting for available memory, and there is an implicit yield
at commit.

e The sequence begin() insert() insert() commit() yields only at commit if the engine is memtx,
and can yield up to 3 times if the engine is vinyl.

24 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

Example #2

Assume that in space ‘tester’ there are tuples in which the third field represents a positive dollar amount.
Let’s start a transaction, withdraw from tuple#1, deposit in tuple#2, and end the transaction, making its
effects permanent.

tarantool> function txn_example(from, to, amount_of_money)

> box.begin()
>  box.space.tester:update(from, {{'-', 3, amount_of_moneyl}})
>  box.space.tester:update(to, {{'+', 3, amount_of_moneyl}})
> box.commit ()
> return "ok"
> end

tarantool> txn_example ({999}, {1000}, 1.00)

_ Mok"

If wal_mode = ‘none’, then implicit yielding at commit time does not take place, because there are no writes
to the WAL.

If a task is interactive — sending requests to the server and receiving responses — then it involves network 10,
and therefore there is an implicit yield, even if the request that is sent to the server is not itself an implicit
yield request. Therefore, the sequence:

select
select
select

causes blocking (in memtx), if it is inside a function or Lua program being executed on the server instance,
but causes yielding (in both memtx and vinyl) if it is done as a series of transmissions from a client, including
a client which operates via telnet, via one of the connectors, or via the MySQL and PostgreSQL rocks, or
via the interactive mode when using Tarantool as a client.

After a fiber has yielded and then has regained control, it immediately issues testcancel.

5.3.3 OrpaHuyeHue goctyna

Understanding security details is primarily an issue for administrators. Meanwhile, ordinary users should
at least skim this section to get an idea of how Tarantool makes it possible for administrators to prevent
unauthorized access to the database and to certain functions.

In a nutshell:

e There is a method to guarantee with password checks that users really are who they say they are
(“authentication”).

e There is a _user system space, where usernames and password-hashes are stored.
e There are functions for saying that certain users are allowed to do certain things (“privileges”).

e There is a _priv system space, where privileges are stored. Whenever a user tries to do an operation,
there is a check whether the user has the privilege to do the operation (“access control”).

Further on, we explain all of this in more detail.

5.3. ®yukuymonan CYB/[ 25




Tarantool, Beinyck 1.7.5

Users

There is a current user for any program working with Tarantool, local or remote. If a remote connection is
using a binary port, the current user, by default, is ,guest®. If the connection is using an admin-console port,
the current user is ,admin“. When executing a Lua initialization script, the current user is also ‘admin’.

The current user name can be found with boz.session.user().

The current user can be changed:
e For a binary port connection — with AUTH protocol command, supported by most clients;
e For an admin-console connection and in a Lua initialization script — with boz.session.su;

e For a stored function invoked with CALL command over a binary port — with SETUID property enabled
for the function, which makes Tarantool temporarily replace the current user with the function’s creator,
with all creator’s privileges, during function execution.

Passwords

Each user (except ,,guest”) may have a password. The password is any alphanumeric string.

Tarantool passwords are stored in the _wuser system space with a cryptographic hash function so that, if the
password is ‘x’, the stored hash-password is a long string like ‘1IL3OvhkIPOKh+Vn9Avlkx69M /Ck="‘. When
a client connects to a Tarantool instance, the instance sends a random salt value which the client must mix
with the hashed-password before sending to the instance. Thus the original value ‘x’ is never stored anywhere
except in the user’s head, and the hashed value is never passed down a network wire except when mixed
with a random salt.

IIpumeuanume: For more details of the password hashing algorithm (e.g. for the purpose of writing a new
client application), read the scramble.h header file.

This system prevents malicious onlookers from finding passwords by snooping in the log files or snooping on
the wire. It is the same system that MySQL introduced several years ago, which has proved adequate
for medium-security installations. Nevertheless, administrators should warn users that no system is
foolproof against determined long-term attacks, so passwords should be guarded and changed occasionally.
Administrators should also advise users to choose long unobvious passwords, but it is ultimately up to the
users to choose or change their own passwords.

There are two functions for managing passwords in Tarantool: boz.schema.user.password() for changing a
user’s password and boz.schema.user.passwd() for getting a hash-password.

Owners and privileges

In Tarantool, all objects are organized into a hierarchy of ownership. Ordinarily the owner of every object
is its creator. The creator of the initial database state (we call it ‘universe’) — including the database itself,
the system spaces, the users — is ‘admin’.

An object’s owner can share some rights on the object by granting privileges to other users. The following
privileges are implemented:

e Read an object,
e Write, i.e. modify contents of an object,

e Execute, i.e. use an object (if the privilege makes sense for the object; for example, spaces can not be
«executed», but functions can).

26 FnaBsa 5. PykoBopgctso nosib3oBatens


https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Salt_%28cryptography%29
https://github.com/tarantool/tarantool/blob/1.7/src/scramble.h
http://dev.mysql.com/doc/refman/5.7/en/password-hashing.html

Tarantool, Beinyck 1.7.5

IIpumeuanume: Currently, «drops and «grants» privileges can not be granted to other users. This possibility
will be added in future versions of Tarantool.

This is how the privilege system works under the hood. To be able to create objects, a user needs to have
write access to Tarantool’s system spaces. The ,admin“ user, who is at the top of the hierarchy and who
is the ultimate source of privileges, shares write access to a system space (e.g. _space) with some users.
Now the users can insert data into the system space (e.g. creating new spaces) and themselves become
creators/definers of new objects. For the objects they created, the users can in turn share privileges with
other users.

This is why only an object’s owner can drop the object, but other ordinary users cannot. Meanwhile, ,admin“
can drop any object or delete any other user, because ,admin“ is the creator and ultimate owner of them all.

The syntax of all grant()/revoke() commands in Tarantool follows this basic idea.
e Their first argument is the user who gets the grant or whose grant is revoked.
e Their second argument is the type of privilege granted, or a list of privileges.
e Their third argument is the object type on which the privilege is granted, or the word ,universe®.

e Their fourth argument is the object name if the object type was specified (,universe“ has no name,
because there is only one ,universe®, but you need to specify names for functions/users/spaces/etc).

Example #1

Here we say that user ,,guest” can do common operations on any object.

box.schema.user.grant('guest', 'read,write,execute', 'universe')

Example #2

Here we create a Lua function that will be executed under the user id of its creator, even if called by another
user.

First, we create two spaces (,u“ and ,i“) and grant a no-password user (internal®) full access to them. Then
we define a function (,read and modify“) and the no-password user becomes this function’s creator. Finally,
we grant another user (,public_user”) access to execute Lua functions created by the no-password user.

box.schema.space.create('u')
box.schema.space.create('i')
box.space.u:create_index('pk')
box.space.i:create_index('pk')

box.schema.user.create('internal')

box.schema.user.grant('internal', 'read,write', 'space', 'u')
box.schema.user.grant('internal', 'read,write', 'space', 'i')
box.schema.user.grant('internal', 'read,write', 'space', '_func')

function read_and_modify (key)

local u = box.space.u

local i = box.space.i

local fiber = require('fiber')

local t = u:get{key}

if t "= nil then
u:put{key, box.session.uid()}
i:put{key, fiber.time()}

end

(continues on next page)

5.3. ®yukuymonan CYB/[ 27




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

end

box.session.su('internal')
box.schema.func.create('read_and_modify', {setuid= truel})
box.session.su('admin')

box.schema.user.create('public_user', {password = 'secret'})
box.schema.user.grant('public_user', 'execute', 'function', 'read_and_modify')
Roles

A role is a container for privileges which can be granted to regular users. Instead of granting or revoking
individual privileges, you can put all the privileges in a role and then grant or revoke the role.

Role information is stored in the _wuser space, but the third field in the tuple — the type field — is ‘role’
rather than ‘user’.

An important feature in role management is that roles can be nested. For example, role R1 can be granted
a privilege «role R2», so users with the role R1 will subsequently get all privileges from both roles R1 and
R2. In other words, a user gets all the privileges that are granted to a user’s roles, directly or indirectly.

Example

-- This example will work for a user with many privileges, such as 'admin'
-- Create space T with a primary indezx

box.schema.space.create('T')

box.space.T:create_index('primary', {})

-- Create user Ul so that later we can change the current user to Ul
box.schema.user.create('Ul')

-- Create two roles, R1 and R2

box.schema.role.create('R1')

box.schema.role.create('R2')

-- Grant role R2 to role R1 and role R1 to user Ul (order doesn't matter)
box.schema.role.grant('R1', 'execute', 'role', 'R2')
box.schema.user.grant('Ul', 'execute', 'role', 'R1'")

-- Grant read/write privileges for space T to role R2

-- (but not to role R1 and not to user Ul)

box.schema.role.grant('R2', 'read,write', 'space', 'T')

-- Change the current user to user Ul

box.session.su('Ul')

-- An insertion to space T will now succeed because, due to nested roles,
-- user Ul has write privilege on space T

box.space.T:insert{1}

For details about Tarantool functions related to role management, see reference on boz.schema submodule.

Sessions and security

A session is the state of a connection to Tarantool. It contains:
e an integer id identifying the connection,
e the current user associated with the connection,
e text description of the connected peer, and

e session local state, such as Lua variables and functions.

28 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

In Tarantool, a single session can execute multiple concurrent transactions. Each transaction is identified by
a unique integer id, which can be queried at start of the transaction using boz.session.sync().

IIpumeuanme: To track all connects and disconnects, you can use connection and authentication triggers.

5.3.4 Tpurrepbl

Triggers, also known as callbacks, are functions which the server executes when certain events happen.

There are three types of triggers in Tarantool:

connection triggers, which are executed when a session begins or ends,
authentication triggers, which are executed during authentication, and

replace triggers, which are for database events.

All triggers have the following characteristics:

Triggers associate a function with an event. The request to «define a trigger» implies
passing the trigger’s function to one of the «on event()» functions: box.session.on_ connect(),
box.session.on__ auth(), box.session.on_ disconnect(), or space_ object:on_replace().

Triggers are defined only by the ,admin® user.

Triggers are stored in the Tarantool instance’s memory, not in the database. Therefore triggers
disappear when the instance is shut down. To make them permanent, put function definitions and
trigger settings into Tarantool’s initialization script.

Triggers have low overhead. If a trigger is not defined, then the overhead is minimal: merely a pointer
dereference and check. If a trigger is defined, then its overhead is equivalent to the overhead of calling
a function.

There can be multiple triggers for one event. In this case, triggers are executed in the reverse order
that they were defined in.

Triggers must work within the event context. However, effects are undefined if a function contains
requests which normally could not occur immediately after the event, but only before the return from
the event. For example, putting os.exit() or boz.rollback() in a trigger function would be bringing in
requests outside the event context.

Triggers are replaceable. The request to «redefine a triggers implies passing a new trigger function and
an old trigger function to one of the «on_event()» functions.

The «on_event()» functions all have parameters which are function pointers, and they all return
function pointers. Remember that a Lua function definition such as «function f() x = x + 1 end» is
the same as «f = function () x = x + 1 end» — in both cases £ gets a function pointer. And «trigger
= box.session.on_connect(f)» is the same as «trigger = box.session.on_connect(function () x = x +
1 end)» — in both cases trigger gets the function pointer which was passed.

To get a list of triggers, you can use:

on_ connect() — with no arguments — to return a table of all connect-trigger functions;
on_auth() to return all authentication-trigger functions;
on_ disconnect() to return all disconnect-trigger functions;

on_replace() to return all replace-trigger functions.

5.3.

®ynkuymonan CYB[, 29


http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Beinyck 1.7.5

Example

Here we log connect and disconnect events into Tarantool server log.

log = require('log')

function on_connect_impl()
log.info("connected "..box.session.peer()..", sid "..box.session.id())
end

function on_disconnect_impl()
log.info("disconnected, sid "..box.session.id())
end

function on_auth_impl (user)
log.info("authenticated sid "..box.session.id().." as "..user)
end

function on_connect() pcall(on_connect_impl) end
function on_disconnect() pcall(on_disconnect_impl) end
function on_auth(user) pcall(on_auth_impl, user) end

box.session.on_connect (on_connect)
box.session.on_disconnect (on_disconnect)
box.session.on_auth(on_auth)

5.3.5 OrpaHunyerus

Number of parts in an index

For TREE or HASH indexes, the maximum is 255 (box.schema.INDEX_PART_MAX). For
ref: RTREE <box_index-rtree> indexes, the maximum is 1 but the field is an ARRAY of up
to 20 dimensions. For BITSET indexes, the maximum is 1.

Number of indexes in a space
128 (box.schema.INDEX_MAX).
Number of fields in a tuple

The theoretical maximum is 2,147,483,647 (box.schema.FIELD_MAX). The practical maximum is
whatever is specified by the space’s field _count member, or the maximal tuple length.

Number of bytes in a tuple

The maximal number of bytes in a tuple is roughly equal to memtz maz_tuple size or
vinyl_max_tuple_size (with a metadata overhead of about 20 bytes per tuple, which is
added on top of useful bytes). By default, the value of either memtx_max_tuple_size or
vinyl_max_tuple_size is 1,048,576. To increase it, specify a larger value when starting the
Tarantool instance. For example, box.cfg{memtx_max_tuple_size=2*1048576}.

Number of bytes in an index key

If a field in a tuple can contain a million bytes, then the index key can contain a million bytes,
so the maximum is determined by factors such as Number of bytes in a tuple, not by the index
support.

Number of spaces

The theoretical maximum is 2147483647 (box.schema.SPACE_MAX) but the practical maximum
is around 65,000.

30 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

Number of connections
The practical limit is the number of file descriptors that one can set with the operating system.
Space size

The total maximum size for all spaces is in effect set by memtz_memory, which in turn is limited
by the total available memory.

Update operations count

The maximum number of operations that can be in a single update is 4000
(BOX_UPDATE_QOP_CNT_MAX).

Number of users and roles
32 (BOX_USER_MAX).

Length of an index name or space name or user name
65000 (box.schema.NAME_MAX).

Number of replicas in a replica set

32 (box.schema.REPLICA_MAX).

5.4 CepBep nNpuo>KeHuii

In this chapter, we introduce the basics of working with Tarantool as a Lua application server.

This chapter contains the following sections:

5.4.1 Launching an application

Using Tarantool as an application server, you can write your own applications. Tarantool’s native language
for writing applications is Lua, so a typical application would be a file that contains your Lua script. But
you can also write applications in C or C++.

Ilpumeuanue: If you're new to Lua, we recommend going over the interactive Tarantool tutorial before
proceeding with this chapter. To launch the tutorial, say tutorial() in Tarantool console:

tarantool> tutorial ()

Let’s create and launch our first Lua application for Tarantool. Here’s a simplest Lua application, the good
old «Hello, world!»:

5.4. Cepsep npusnoxeHnii 31



http://www.lua.org/about.html

Tarantool, Beinyck 1.7.5

#!/usr/bin/env tarantool
print ('Hello, world!')

We save it in a file. Let it be myapp.lua in the current directory.
Now let’s discuss how we can launch our application with Tarantool.
Launching in Docker

If we run Tarantool in a Docker container, the following command will start Tarantool without any
application:

# create a temporary container and Tun it in interactive mode
$ docker run --rm -t -i tarantool/tarantool

To run Tarantool with our application, we can say:

# create a temporary container and

# launch Tarantool with our application

$ docker run --rm -t -i \
-v “pwd’ /myapp.lua:/opt/tarantool/myapp.lua \
-v /data/dir/on/host:/var/lib/tarantool \
tarantool/tarantool tarantool /opt/tarantool/myapp.lua

Here two resources on the host get mounted in the container:
e our application file (\ pwd\" /myapp.lua) and
e Tarantool data directory (/data/dir/on/host).

By convention, the directory for Tarantool application code inside a container is /opt/tarantool, and the
directory for data is /var/lib/tarantool.

Launching a binary program

If we run Tarantool from a binary package or from a source build, we can launch our application:
e in the script mode,
e as a server application, or
e as a daemon service.

The simplest way is to pass the filename to Tarantool at start:

Tarantool starts, executes our script in the script mode and exits.

Now let’s turn this script into a server application. We use boz.cfg from Tarantool’s built-in Lua module
to:

e launch the database (a database has a persistent on-disk state, which needs to be restored after we
start an application) and

e configure Tarantool as a server that accepts requests over a TCP port.

We also add some simple database logic, using space.create() and create_index() to create a space with a
primary index. We use the function boz.once() to make sure that our logic will be executed only once when
the database is initialized for the first time, so we don’t try to create an existing space or index on each
invocation of the script:

32 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

Now we launch our application in the same manner as before:

This time, Tarantool executes our script and keeps working as a server, accepting TCP requests on port
3301. We can see Tarantool in the current session’s process list:

But the Tarantool instance will stop if we close the current terminal window. To detach Tarantool and our
application from the terminal window, we can launch it in the daemon mode. To do so, we add some
parameters to box.cfg{}:

e background = true that actually tells Tarantool to work as a daemon service,

e log = 'dir-name' that tells the Tarantool daemon where to store its log file (other log settings are
available in Tarantool log module), and

e pid_file = 'file-name' that tells the Tarantool daemon where to store its pid file.

Hampuwmep:

box.cfg {
listen = 3301
background = true,
log = '1.1log',
pid_file = '1.pid'

We launch our application in the same manner as before:

Tarantool executes our script, gets detached from the current shell session (you won’t see it with ps | grep
"tarantool") and continues working in the background as a daemon attached to the global session (with
SID = 0):

Now that we have discussed how to create and launch a Lua application for Tarantool, let’s dive deeper into
programming practices.

5.4.2 Creating an application

Further we walk you through key programming practices that will give you a good start in writing Lua
applications for Tarantool. For an adventure, this is a story of implementing... a real microservice based
on Tarantool! We implement a backend for a simplified version of Pokémon Go, a location-based augmented
reality game released in mid-2016. In this game, players use a mobile device’s GPS capability to locate,
capture, battle and train virtual monsters called «pokémons, who appear on the screen as if they were in
the same real-world location as the player.

To stay within the walk-through format, let’s narrow the original gameplay as follows. We have a map with
pokémon spawn locations. Next, we have multiple players who can send catch-a-pokémon requests to the
server (which runs our Tarantool microservice). The server replies whether the pokémon is caught or not,
increases the player’s pokémon counter if yes, and triggers the respawn-a-pokémon method that spawns a
new pokémon at the same location in a while.

We leave client-side applications outside the scope of this story. Yet we promise a mini-demo in the end to
simulate real users and give us some fun. :-)

First, what would be the best way to deliver our microservice?

5.4. Cepsep npusnoxeHnii 33



https://en.wikipedia.org/wiki/Pok\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 1 e\egroup \spacefactor \accent@spacefactor mon_Go

Tarantool, Beinyck 1.7.5

Modules, rocks and applications

To make our game logic available to other developers and Lua applications, let’s put it into a Lua module.

A module (called «rock» in Lua) is an optional library which enhances Tarantool functionality. So, we
can install our logic as a module in Tarantool and use it from any Tarantool application or module. Like
applications, modules in Tarantool can be written in Lua (rocks), C or C++.

Modules are good for two things:
e casier code management (reuse, packaging, versioning), and
e hot code reload without restarting the Tarantool instance.

Technically, a module is a file with source code that exports its functions in an API. For example, here is a
Lua module named mymodule.lua that exports one function named myfun:

local exports = {}

exports.myfun = function(input_string)
print('Hello', input_string)

end

return exports

To launch the function myfun() — from another module, from a Lua application, or from Tarantool itself,
— we need to save this module as a file, then load this module with the require() directive and call the
exported function.

For example, here’s a Lua application that uses myfun() function from mymodule.lua module:

-- loading the module
local mymodule = require('mymodule')

-- calling myfun() from within test() function
local test = function()

mymodule .myfun ()
end

A thing to remember here is that the require () directive takes load paths to Lua modules from the package.
path variable. This is a semicolon-separated string, where a question mark is used to interpolate the module
name. By default, this variable contains system-wide Lua paths and the working directory. But if we put
our modules inside a specific folder (e.g. scripts/), we need to add this folder to package.path before any
calls to require():

package.path = 'scripts/7.lua;' .. package.path

For our microservice, a simple and convenient solution would be to put all methods in a Lua module (say
pokemon.lua) and to write a Lua application (say game.lua) that initializes the gaming environment and
starts the game loop.

Now let’s get down to implementation details. In our game, we need three entities:

e map, which is an array of pokémons with coordinates of respawn locations; in this version of the game,
let a location be a rectangle identified with two points, upper-left and lower-right;

e player, which has an ID, a name, and coordinates of the player’s location point;

e pokémon, which has the same fields as the player, plus a status (active/inactive, that is present on
the map or not) and a catch probability (well, let’s give our pokémons a chance to escape :-) )

34 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

We’ll store these entities as tuples in Tarantool spaces. But to deliver our backend application as a
microservice, the good practice would be to send/receive our data in the universal JSON format, thus
using Tarantool as a document storage.

Avro schemas

To store JSON data as tuples, we will apply a savvy practice which reduces data footprint and ensures all
stored documents are valid. We will use Tarantool module avro-schema which checks the schema of a JSON
document and converts it to a Tarantool tuple. The tuple will contain only field values, and thus take a
lot less space than the original document. In avro-schema terms, converting JSON documents to tuples is
«flattening», and restoring the original documents is «unflattenings. The usage is quite straightforward:

(1) For each entity, we need to define a schema in Apache Avro schema syntax, where we list the entity’s
fields with their names and Avro data types.

(2) At initialization, we call avro-schema.create() that creates objects in memory for all schema entities,
and compile() that generates flatten/unflatten methods for each entity.

(3) Further on, we just call flatten/unflatten methods for a respective entity on receiving/sending the
entity’s data.

Here’s what our schema definitions for the player and pokémon entities look like:

local schema = {
player = {
type="record",
name="player_schema",
fields={
{name="id", type="long"},
{name="name", type="string"},

{
name="location'",
type= {
type="record",
name="player_location",
fields={
{name="x", type="double"},
{name="y", type='"double"}
}
}
}

}
},
pokemon = {
type="record",
name="pokemon_schema",
fields={
{name="id", type="long"},
{name="status", type="string"},
{name="name", type="string"},
{name="chance", type="double"},
{
name="location'",
type= {
type="record",
name="pokemon_location",
fields={

(continues on next page)

5.4. Cepsep npusnoxeHnii 35



https://github.com/tarantool/avro-schema
https://en.wikipedia.org/wiki/Apache_Avro
http://avro.apache.org/docs/current/spec.html#schema_primitive

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

{name="x", type="double"},
{name="y", type='"double"}

And here’s how we create and compile our entities at initialization:

-- load avro-schema module with require()
local avro = require('avro_schema')

-- create models
local ok_m, pokemon = avro.create(schema.pokemon)
local ok_p, player = avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok_cm, compiled_pokemon = avro.compile (pokemon)
local ok_cp, compiled_player = avro.compile(player)
if ok_cm and ok_cp then
-- start the game
<ouo>
else
log.error('Schema compilation failed')
end
else
log.info('Schema creation failed')
end
return false

As for the map entity, it would be an overkill to introduce a schema for it, because we have only one map
in the game, it has very few fields, and — which is most important — we use the map only inside our logic,
never exposing it to external users.

Next, we need methods to implement the game logic. To simulate object-oriented programming in our Lua
code, let’s store all Lua functions and shared variables in a single local variable (let’s name it as game). This
will allow us to address functions or variables from within our module as self.func_name or self.var_name.
Like this:

local game = {
-- a local wvariable
num_players = 0,

-- a method that prints a local wvariable
hello = function(self)

print ('Hello! Your player number is ' .. self.num_players .. '.')
end,

-- a method that calls another method and returns a local wvariable
sign_in = function(self)
self.num_players = self.num_players + 1

(continues on next page)

36 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

self:hello()
return self.num_players
end

In OOP terms, we can now regard local variables inside game as object fields, and local functions as object
methods.

IIpumeuanme: In this manual, Lua examples use local variables. Use global variables with caution, since
the module’s users may be unaware of them.

To enable/disable the use of undeclared global variables in your Lua code, use Tarantool’s strict module.

So, our game module will have the following methods:

e catch() to calculate whether the pokémon was caught (besides the coordinates of both the player and
pokémon, this method will apply a probability factor, so not every pokémon within the player’s reach
will be caught);

e respawn() to add missing pokémons to the map, say, every 60 seconds (we assume that a frightened
pokémon runs away, so we remove a pokémon from the map on any catch attempt and add it back to
the map in a while);

e notify() to log information about caught pokémons (like «Player 1 caught pokémon A»);

e start() to initialize the game (it will create database spaces, create and compile avro schemas, and
launch respawn()).

Besides, it would be convenient to have methods for working with Tarantool storage. For example:
e add_pokemon() to add a pokémon to the database, and
e map() to populate the map with all pokémons stored in Tarantool.

We'll need these two methods primarily when initializing our game, but we can also call them later, for
example to test our code.

Bootstrapping a database

Let’s discuss game initialization. In start () method, we need to populate Tarantool spaces with pokémon
data. Why not keep all game data in memory? Why use a database? The answer is: persistence. Without
a database, we risk losing data on power outage, for example. But if we store our data in an in-memory
database, Tarantool takes care to persist it on disk whenever it’s changed. This gives us one more benefit:
quick startup in case of failure. Tarantool has a smart algorithm that quickly loads all data from disk into
memory on startup, so the warm-up takes little time.

We'll be using functions from Tarantool built-in boz module:

e box.schema.create_space('pokemons') to create a space named pokemon for storing information
about pokémons (we don’t create a similar space for players, because we intend to only send/receive
player information via APT calls, so we needn’t store it);

® box.space.pokemons:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
to create a primary HASH index by pokémon ID;

e box.space.pokemons:create_index('status', {type = 'tree', parts = {2, 'str'}}) to
create a secondary TREE index by pokémon status.

5.4. Cepsep npusnoxeHnii 37




Tarantool, Beinyck 1.7.5

Notice the parts = argument in the index specification. The pokémon ID is the first field in a Tarantool
tuple since it’s the first member of the respective Avro type. So does the pokémon status. The actual JSON
document may have ID or status fields at any position of the JSON map.

The implementation of start() method looks like this:

-- create game object
start = function(self)
-- create spaces and indezes
box.once('init', function()
box.schema.create_space('pokemons')
box.space.pokemons:create_index(
"primary", {type = 'hash', parts = {1, 'unsigned'}}

)
box.space.pokemons:create_index(
"status", {type = "tree", parts = {2, 'str'}}
)
end)

-- create models
local ok_m, pokemon = avro.create(schema.pokemon)
local ok_p, player = avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok_cm, compiled_pokemon = avro.compile (pokemon)
local ok_cp, compiled_player = avro.compile(player)
if ok_cm and ok_cp then
-- start the game
<.o.0.0>
else
log.error('Schema compilation failed')
end
else
log.info('Schema creation failed')
end
return false
end

GIS

Now let’s discuss catch(), which is the main method in our gaming logic.

Here we receive the player’s coordinates and the target pokémon’s ID number, and we need to answer whether
the player has actually caught the pokémon or not (remember that each pokémon has a chance to escape).

First thing, we validate the received player data against its Avro schema. And we check whether such a
pokémon exists in our database and is displayed on the map (the pokémon must have the active status):

catch = function(self, pokemon_id, player)
-- check player data
local ok, tuple = self.player_model.flatten(player)
if not ok then
return false
end
-- get pokemon data
local p_tuple = box.space.pokemons:get (pokemon_id)
if p_tuple == nil then

(continues on next page)

38 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

return false

end

local ok, pokemon = self.pokemon_model.unflatten(p_tuple)

if not ok then
return false

end

if pokemon.status "= self.state.ACTIVE then
return false

end

-- more catch logic to follow

<o.0>

end

Next, we calculate the answer: caught or not.
To work with geographical coordinates, we use Tarantool gis module.

To keep things simple, we don’t load any specific map, assuming that we deal with a world map. And we do
not validate incoming coordinates, assuming again that all received locations are within the planet Earth.

We use two geo-specific variables:

e wgs84, which stands for the latest revision of the World Geodetic System standard, WGS84. Basically,
it comprises a standard coordinate system for the Earth and represents the Earth as an ellipsoid.

e nationalmap, which stands for the US National Atlas Equal Area. This is a projected coordinates
system based on WGS84. It gives us a zero base for location projection and allows positioning our
players and pokémons in meters.

Both these systems are listed in the EPSG Geodetic Parameter Registry, where each system has a unique
number. In our code, we assign these listing numbers to respective variables:

wgs84 = 4326,
nationalmap = 2163,

For our game logic, we need one more variable, catch_distance, which defines how close a player must get
to a pokémon before trying to catch it. Let’s set the distance to 100 meters.

catch_distance = 100,

Now we're ready to calculate the answer. We need to project the current location of both player (p_pos)
and pokémon (m_pos) on the map, check whether the player is close enough to the pokémon (using
catch_distance), and calculate whether the player has caught the pokémon (here we generate some random
value and let the pokémon escape if the random value happens to be less than 100 minus pokémon’s chance
value):

-- project locations
local m_pos = gis.Point(
{pokemon.location.x, pokemon.location.y}, self.wgs84
) :transform(self.nationalmap)
local p_pos = gis.Point(
{player.location.x, player.location.y}, self.wgs84
) :transform(self.nationalmap)

-- check catch distance condition

if p_pos:distance(m_pos) > self.catch_distance then
return false

end

(continues on next page)

5.4. Cepsep npusnoxeHnii 39



https://github.com/tarantool/gis
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://epsg.io/2163

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

-- try to catch pokemon
local caught = math.random(100) >= 100 - pokemon.chance
if caught then
-- update and notify on success
box.space.pokemons :update (
pokemon_id, {{'=', self.STATUS, self.state.CAUGHT}}
)
self:notify(player, pokemon)
end
return caught

Index iterators

By our gameplay, all caught pokémons are returned back to the map. We do this for all pokémons on the
map every 60 seconds using respawn() method. We iterate through pokémons by status using Tarantool
index iterator function index:pairs and reset the statuses of all «caught»> pokémons back to «actives using
box.space.pokemons:update ().

respawn = function(self)
fiber.name('Respawn fiber')
for _, tuple in box.space.pokemons.index.status:pairs(
self.state.CAUGHT) do
box.space.pokemons:update (
tuple[self.ID],
{{'=', self.STATUS, self.state.ACTIVE}}

end
end

For readability, we introduce named fields:
ID =1, STATUS = 2,

The complete implementation of start() now looks like this:

-- create game object
start = function(self)
-- create spaces and indezxes
box.once('init', function()
box.schema.create_space('pokemons')
box.space.pokemons: create_index (
"primary", {type = 'hash', parts = {1, 'unsigned'}}

)
box.space.pokemons: create_index (
"status", {type = "tree", parts = {2, 'str'}}
)
end)

-- create models

local ok_m, pokemon = avro.create(schema.pokemon)

local ok_p, player = avro.create(schema.player)

if ok_m and ok_p then
-- compile models
local ok_cm, compiled_pokemon = avro.compile (pokemon)
local ok_cp, compiled_player = avro.compile(player)

(continues on next page)

40 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

if ok_cm and ok_cp then
-- start the game
self.pokemon_model = compiled_pokemon
self.player_model = compiled_player
self .respawn()
log.info('Started')
return true
else
log.error('Schema compilation failed')
end
else
log.info('Schema creation failed')
end
return false
end

Fibers

But wait! If we launch it as shown above — self.respawn() — the function will be executed only once,
just like all the other methods. But we need to execute respawn() every 60 seconds. Creating a fiber is the
Tarantool way of making application logic work in the background at all times.

A fiber exists for executing instruction sequences but it is not a thread. The key difference is that threads
use preemptive multitasking, while fibers use cooperative multitasking. This gives fibers the following two
advantages over threads:

e Better controllability. Threads often depend on the kernel’s thread scheduler to preempt a busy thread
and resume another thread, so preemption may occur unpredictably. Fibers yield themselves to run
another fiber while executing, so yields are controlled by application logic.

e Higher performance. Threads require more resources to preempt as they need to address the system
kernel. Fibers are lighter and faster as they don’t need to address the kernel to yield.

Yet fibers have some limitations as compared with threads, the main limitation being no multi-core mode.
All fibers in an application belong to a single thread, so they all use the same CPU core as the parent thread.
Meanwhile, this limitation is not really serious for Tarantool applications, because a typical bottleneck for
Tarantool is the HDD, not the CPU.

A fiber has all the features of a Lua coroutine and all programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

Well, performance or controllability are of little importance in our case. We’ll launch respawn() in a fiber
to make it work in the background all the time. To do so, we’ll need to amend respawn():

respawn = function(self)

-- let's give our fiber a name;

-- this will produce neat output in fiber.info()

fiber.name('Respawn fiber')

while true do

for _, tuple in box.space.pokemons.index.status:pairs(
self.state.CAUGHT) do
box.space.pokemons : update (

tuple[self.ID],
{{'=', self.STATUS, self.state.ACTIVE}}

(continues on next page)

5.4. Cepsep npusnoxeHnii 41



http://www.lua.org/pil/contents.html#9

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

end
fiber.sleep(self.respawn_time)
end
end

and call it as a fiber in start():

start = function(self)
-- create spaces and indezxes

<oow2

-- create models
<ol

-- compile models
< L2

-- start the game
self.pokemon_model = compiled_pokemon
self.player_model = compiled_player
fiber.create(self.respawn, self)
log.info('Started')

-- errors tf schema creation or compilation fails
< o>

end

Logging

One more helpful function that we used in start() was log.info() from Tarantool log module. We also
need this function in notify() to add a record to the log file on every successful catch:

-- event notification
notify = function(self, player, pokemon)

log.info("Player 'Js' caught 'Js'", player.name, pokemon.name)
end

We use default Tarantool log settings, so we’ll see the log output in console when we launch our application
in script mode.

Great! We’ve discussed all programming practices used in our Lua module (see pokemon.lua).

Now let’s prepare the test environment. As planned, we write a Lua application (see game.lua) to initialize
Tarantool’s database module, initialize our game, call the game loop and simulate a couple of player requests.

To launch our microservice, we put both pokemon.lua module and game.lua application in the current
directory, install all external modules, and launch the Tarantool instance running our game.lua application
(this example is for Ubuntu):

$ 1s

game.lua pokemon.lua

$ sudo apt-get install tarantool-gis

$ sudo apt-get install tarantool-avro-schema
$ tarantool game.lua

Tarantool starts and initializes the database. Then Tarantool executes the demo logic from game.lua: adds
a pokémon named Pikachu (its chance to be caught is very high, 99.1), displays the current map (it contains

42 FnaBsa 5. PykoBopgctso nosib3oBatens



https://github.com/Sulverus/pokemon/blob/master/src/pokemon.lua
https://github.com/Sulverus/pokemon/blob/master/game.lua

Tarantool, Beinyck 1.7.5

one active pokémon, Pikachu) and processes catch requests from two players. Playerl is located just near
the lonely Pikachu pokémon and Player2 is located far away from it. As expected, the catch results in this
output are «trues for Playerl and «false» for Player2. Finally, Tarantool displays the current map which is
empty, because Pikachu is caught and temporarily inactive:

$ tarantool game.lua

2017-01-09 20:19:24.605 [6282] main/101/game.lua C> version 1.7.3-43-gfbfalel

2017-01-09 20:19:24.605 [6282] main/101/game.lua C> log level 5

2017-01-09 20:19:24.605 [6282] main/101/game.lua I> mapping 1073741824 bytes for tuple arena...
2017-01-09 20:19:24.609 [6282] main/101/game.lua I> initializing an empty data directory
2017-01-09 20:19:24.634 [6282] snapshot/101/main I> saving snapshot ~./00000000000000000000. snap.
—inprogress'

2017-01-09 20:19:24.635 [6282] snapshot/101/main I> done

2017-01-09 20:19:24.641 [6282] main/101/game.lua I> ready to accept requests

2017-01-09 20:19:24.786 [6282] main/101/game.lua I> Started

- {'id': 1, 'status': 'active', 'location': {'y': 2, 'x': 1}, 'name': 'Pikachu', 'chance': 99.1}

2017-01-09 20:19:24.789 [6282] main/101/game.lua I> Player 'Playerl' caught 'Pikachu’
true
false

-0

2017-01-09 20:19:24.789 [6282] main C> entering the event loop

nginx

In the real life, this microservice would work over HTTP. Let’s add nginx web server to our environment
and make a similar demo. But how do we make Tarantool methods callable via REST API? We use nginx
with Tarantool nginx upstream module and create one more Lua script (app.lua) that exports three of our
game methods — add_pokemon (), map() and catch() — as REST endpoints of the nginx upstream module:

local game = require('pokemon')
box.cfg{listen=3301}
game:start ()

-- add, map and catch functions emxposed to REST API
function add(request, pokemon)
return {
result=game:add_pokemon (pokemon)

end

function map(request)
return {
map=game :map ()

end

function catch(request, pid, player)
local id = tonumber (pid)
if id == nil then
return {result=false}
end

(continues on next page)

5.4. Cepsep npusnoxeHnii 43



https://nginx.org/en/
https://github.com/tarantool/nginx_upstream_module
https://github.com/Sulverus/pokemon/blob/master/src/app.lua

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

return {
result=game:catch(id, player)

end

An easy way to configure and launch nginx would be to create a Docker container based on a Docker image
with nginx and the upstream module already installed (see http/Dockerfile). We take a standard nginx.conf,
where we define an upstream with our Tarantool backend running (this is another Docker container, see
details below):

upstream tnt {
server pserver:3301 max_fails=1 fail_timeout=60s;
keepalive 250000;

and add some Tarantool-specific parameters (see descriptions in the upstream module’s README file):

server {
server_name tnt_test;

listen 80 default deferred reuseport so_keepalive=on backlog=65535;

location = / {
root /usr/local/nginx/html;

location /api {
# answers check infinity timeout
tnt_read_timeout 60m;
if ( $request_method = GET ) {

tnt_method "map";

}
tnt_http_rest_methods get;
tnt_http_methods all;
tnt_multireturn_skip_count 2;
tnt_pure_result on;
tnt_pass_http_request on parse_args;
tnt_pass tnt;

Likewise, we put Tarantool server and all our game logic in a second Docker container based on the official
Tarantool 1.7 image (see src/Dockerfile) and set the container’s default command to tarantool app.lua.
This is the backend.

Non-blocking 10

To test the REST API, we create a new script (client.lua), which is similar to our game.lua application, but
makes HTTP POST and GET requests rather than calling Lua functions:

local http = require('curl') .http()
local json = require('json')

local URI = os.getenv('SERVER_URI')
local fiber = require('fiber')

(continues on next page)

44 Fnasa 5. PykoBogcTeBo nosb3osarens



https://hub.docker.com/r/tarantool/tarantool-nginx/
https://github.com/Sulverus/pokemon/blob/master/http/Dockerfile
https://github.com/Sulverus/pokemon/blob/master/http/nginx.conf
https://github.com/tarantool/nginx_upstream_module#directives
https://github.com/tarantool/docker
https://github.com/tarantool/docker
https://github.com/Sulverus/pokemon/blob/master/src/Dockerfile
https://github.com/Sulverus/pokemon/blob/master/client/client.lua

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

local playerl = {
name="Playerl",
id=1,
location = {
x=1.0001,
y=2.0003

}
local player2 = {
name="Player2",
id=2,
location = {
x=30.123,
y=40.456

local pokemon = {
name="Pikachu'",
chance=99.1,
id=1,
status="active",
location = {
x=1,
y=2

function request(method, body, id)
local resp = http:request(
method, URI, body

)
if id "= nil then
print(string.format ('Player %d result: %s',
id, resp.body))
else
print (resp.body)
end
end

local players = {}
function catch(player)
fiber.sleep(math.random(5))

print ('Catch pokemon by player ' .. tostring(player.id))
request (

'POST', '{"method": "catch",

"params": [1, '..json.encode(player)..']l}"',

tostring(player.id)
)
table.insert(players, player.id)
end

print ('Create pokemon')
request ('POST', '{"method": "add",

"params": ['..json.encode(pokemon)..']}")
request ('GET', '')

(continues on next page)

5.4. Cepsep npusnoxeHnii 45




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

fiber.create(catch, playerl)
fiber.create(catch, player2)

-- wait for players
while #players "= 2 do

fiber.sleep(0.001)
end

request ('GET', '')
os.exit ()

When you run this script, you’ll notice that both players have equal chances to make the first attempt at
catching the pokémon. In a classical Lua script, a networked call blocks the script until it’s finished, so the
first catch attempt can only be done by the player who entered the game first. In Tarantool, both players play
concurrently, since all modules are integrated with Tarantool cooperative multitasking and use non-blocking

1/0.

Indeed, when Playerl makes its first REST call, the script doesn’t block. The fiber running catch()
function on behalf of Playerl issues a non-blocking call to the operating system and yields control to the
next fiber, which happens to be the fiber of Player2. Player2’s fiber does the same. When the network
response is received, Playerl’s fiber is activated by Tarantool cooperative scheduler, and resumes its work.
All Tarantool modules use non-blocking I/O and are integrated with Tarantool cooperative scheduler. For
module developers, Tarantool provides an API.

For our HTTP test, we create a third container based on the official Tarantool 1.7 image (see client /Dockerfile)
and set the container’s default command to tarantool client.lua.

= o= =

To run this test locally, download our pokemon project from GitHub and say:

$ docker-compose build
$ docker-compose up

Docker Compose builds and runs all the three containers: pserver (Tarantool backend), phttp (nginx) and
pclient (demo client). You can see log messages from all these containers in the console, pclient saying that
it made an HTTP request to create a pokémon, made two catch requests, requested the map (empty since
the pokémon is caught and temporarily inactive) and exited:

pclient_1 | Create pokemon

<002

pclient_1 | {"result":true}

pclient_1 | {"map":[{"id":1,"status":"active","location":{"y":2,"x":1},"name":"Pikachu","chance

—":99.100000}1%

pclient_1 | Catch pokemon by player 2
pclient_1 | Catch pokemon by player 1
pclient_1 | Player 1 result: {"result":true}
pclient_1 | Player 2 result: {"result":false}
pclient_1 | {"map":[]}

pokemon_pclient_1 exited with code 0

Congratulations! Here’s the end point of our walk-through. As further reading, see more about installing
and contributing a module.

See also reference on Tarantool modules and C API, and don’t miss our Lua cookbook recipes.

46 FnaBsa 5. PykoBopgctso nosib3oBatens



https://github.com/tarantool/docker
https://github.com/Sulverus/pokemon/blob/master/client/Dockerfile
https://github.com/Sulverus/pokemon

Tarantool, Beinyck 1.7.5

5.4.3 Installing a module

Modules in Lua and C that come from Tarantool developers and community contributors are available in
the following locations:

e Tarantool modules repository, and

e Tarantool deb/rpm repositories.

Installing a module from a repository

See README in tarantool/rocks repository for detailed instructions.

Installing a module from deb/rpm

Follow these steps:

1.
2.

Install Tarantool as recommended on the download page.

Install the module you need. Look up the module’s name on Tarantool rocks page and put the prefix
«tarantool-» before the module name to avoid ambiguity:

# for Ubuntu/Debian:
$ sudo apt-get install tarantool-<module-name>

# for RHEL/Cent0S/Amazon:
$ sudo yum install tarantool-<module-name>

For example, to install the module shard on Ubuntu, say:

’$ sudo apt-get install tarantool-shard

Tenepnb MoxKHO:

e load any module with

’tarantool> local-name = require('module-name')

search locally for installed modules using package.path (Lua) or package.cpath (C):

tarantool> package.path

- ./?.lua;./?/init.lua; /usr/local/share/tarantool/?.lua;/usr/local/share/
tarantool/?/init.lua;/usr/share/tarantool/?.lua;/usr/share/tarantool/?/ini
t.lua;/usr/local/share/lua/5.1/7.1lua;/usr/local/share/lua/5.1/7/init.lua;/
usr/share/lua/5.1/7?.1lua;/usr/share/lua/5.1/?/init.lua;

tarantool> package.cpath

- ./7.s0;/usr/local/1ib/x86_64-1linux-gnu/tarantool/?.so;/usr/1ib/x86_64-1i
nux-gnu/tarantool/?.so;/usr/local/lib/tarantool/?.so;/usr/local/1ib/x86_64
-linux-gnu/lua/5.1/7.s0;/usr/1ib/x86_64-linux-gnu/lua/5.1/7.s0;/usr/local/
1lib/1ua/5.1/?.s0;

5.4,

Cepsep npunoxeHuii 47


https://github.com/tarantool/rocks#managing-modules-with-tarantool-174
http://tarantool.org/download.html
http://tarantool.org/rocks.html
http://github.com/tarantool/shard

Tarantool, Beinyck 1.7.5

IIpumeuanme: Question-marks stand for the module name that was specified earlier when saying
require('module-name').

5.4.4 Contributing a module

We have already discussed how to create a simple module in Lua for local usage. Now let’s discuss how to
create a more advanced Tarantool module and then get it published on Tarantool rocks page and included
in official Tarantool images for Docker.

To help our contributors, we have created modulekit, a set of templates for creating Tarantool modules in
Lua and C.

ITpumeuanme: As a prerequisite for using modulekit, install tarantool-dev package first. For example,
in Ubuntu say:

$ sudo apt-get install tarantool-dev

Contributing a module in Lua

See README in «luakit» branch of tarantool /modulekit repository for detailed instructions and examples.

Contributing a module in C

In some cases, you may want to create a Tarantool module in C rather than in Lua. For example, to work
with specific hardware or low-level system interfaces.

See README in «ckit» branch of tarantool /modulekit repository for detailed instructions and examples.

Ilpnmeuanne: Bol moxkere aHajormyabiM 006pas3oMm co3gasarb Momyau Ha C+-+ mpu yc/lIOBHH, YTO B KX
Kojie He OyIyT BBIOPACKIBATHCS HUCKJIIOUEHUSI.

5.4.5 KHura peuentos

Here are contributions of Lua programs for some frequent or tricky situations.

You can execute any of these programs by copying the code into a .lua file, and then entering chmod +x
./program-name .lua and ./program-name .lua on the terminal.

The first line is a «hashbangs:

#!/usr/bin/env tarantool

This runs Tarantool Lua application server, which should be on the execution path.

Use freely.

48 FnaBsa 5. PykoBopgctso nosib3oBatens


http://tarantool.org/rocks.html
http://github.com/tarantool/docker
http://github.com/tarantool/modulekit
http://github.com/tarantool/modulekit/blob/luakit/README.md
http://github.com/tarantool/modulekit/blob/ckit/README.md

Tarantool, Beinyck 1.7.5

hello world.lua

The standard example of a simple program.

#!/usr/bin/env tarantool

print ('Hello, World!')

console _start.lua

Use box.once() to initialize a database (creating spaces) if this is the first time the server has been run. Then
use console.start() to start interactive mode.

#!/usr/bin/env tarantool

-- Configure database
box.cfg {

listen = 3313
}

box.once("bootstrap", function()
box.schema.space.create('tweedledum')
box.space.tweedledum: create_index ('primary’,
{ type = 'TREE', parts = {1, 'unsigned'}})
end)

require('console') .start()

fio_read.lua

Use the fio module to open, read, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio')

local errno = require('errno')

local f = fio.open('/tmp/xxxx.txt', {'0_RDONLY' })
if not f then

error("Failed to open file: "..errno.strerror())
end
local data = f:read(4096)
f:close()
print (data)

fio write.lua

Use the fio module to open, write, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio')
local errno = require('errno')
local f = fio.open('/tmp/xxxx.txt', {'O_CREAT', 'O_WRONLY', 'O_APPEND'},

(continues on next page)

5.4. Cepsep npusnoxeHnii 49




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tonumber ('0666', 8))
if not f then

error("Failed to open file: "..errno.strerror())
end
f:write("Hello\n");
f:close()
ffi_printf.lua

Use the LuaJIT ffi library to call a C built-in function: printf(). (For help understanding ffi, see the FFI
tutorial.)

#!/usr/bin/env tarantool

local ffi = require('ffi')
ffi.cdef[[
int printf(const char *format, ...);

1]

ffi.C.printf ("Hello, %s\n", os.getenv("USER"));

ffi_gettimeofday.lua

Use the LuaJIT ffi library to call a C function: gettimeofday(). This delivers time with millisecond precision,
unlike the time function in Tarantool’s clock module.

#!/usr/bin/env tarantool

local ffi = require('ffi')
ffi.cdef[[
typedef long time_t;
typedef struct timeval {
time_t tv_sec;
time_t tv_usec;
} timeval;
int gettimeofday(struct timeval *t, void *tzp);

1]

local timeval_buf = ffi.new("timeval")
local now = function()

ffi.C.gettimeofday(timeval_buf, nil)

return tonumber (timeval_buf.tv_sec * 1000 + (timeval_buf.tv_usec / 1000))
end

fi_zlibua

Use the LuaJIT ffi library to call a C library function. (For help understanding ffi, see the FFT tutorial.)

#!/usr/bin/env tarantool

local ffi = require("ffi")
ffi.cdef[[

(continues on next page)

50 FnaBsa 5. PykoBopgctso nosib3oBatens



http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html
http://luajit.org/ext_ffi_tutorial.html
http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

unsigned long compressBound(unsigned long sourceLen);
int compress2(uint8_t #*dest, unsigned long *destLen,
const uint8_t *source, unsigned long sourcelen, int level);
int uncompress(uint8_t *dest, unsigned long *destlen,
const uint8_t *source, unsigned long sourcelen);
1]

local zlib = ffi.load(ffi.os == "Windows" and "zlibl" or "z")

-- Lua wrapper for compress2()
local function compress(txt)
local n = zlib.compressBound (#txt)
local buf = ffi.new("uint8_t[?]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.compress2(buf, buflen, txt, #txt, 9)
assert(res == 0)
return ffi.string(buf, buflen[0])
end

-- Lua wrapper for uncompress
local function uncompress(comp, n)
local buf = ffi.new("uint8_t[?]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.uncompress(buf, buflen, comp, #comp)
assert(res == 0)
return ffi.string(buf, buflen[0])
end

-- Simple test code.
local txt = string.rep("abcd", 1000)

print ("Uncompressed size: ", #txt)
local ¢ = compress(txt)
print ("Compressed size: ", #c)

local txt2 = uncompress(c, #txt)
assert (txt2 == txt)

ffi__meta.lua

Use the LuaJIT ffi library to access a C object via a metamethod (a method which is defined with a
metatable).

#!/usr/bin/env tarantool

local ffi = require("ffi")

ffi.cdef[[

typedef struct { double x, y; } point_t;
1]

local point

local mt = {

_add = function(a, b) return point(a.x+b.x, a.ytb.y) end,
len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,

__index = {
area = function(a) return a.x*a.x + a.y*a.y end,

}’

(continues on next page)

5.4. Cepsep npusnoxeHnii 51



http://luajit.org/ext_ffi.html

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

point = ffi.metatype("point_t", mt)

local a = point(3, 4)
print(a.x, a.y) -->3 4

print (#a) --> 5
print(a:area()) --> 25
local b = a + point (0.5, 8)
print (#b) --> 12.5

print_ arrays.lua

Create Lua tables, and print them. Notice that for the ,array“ table the iterator function is ipairs(), while for
the ,map* table the iterator function is pairs(). (ipairs() is faster than pairs(), but pairs() is recommended
for map-like tables or mixed tables.) The display will look like: «1 Apple | 2 Orange | 3 Grapefruit | 4 Banana
| k3 v3 | k1 v1 | k2 v2».

#!/usr/bin/env tarantool

array = { 'Apple', 'Orange', 'Grapefruit', 'Banana'}
for k, v in ipairs(array) do print(k, v) end

map = { k1 = 'vl', k2 = 'v2', k3 = 'v3' }
for k, v in pairs(map) do print(k, v) end

count _array.lua

Use the ,,#* operator to get the number of items in an array-like Lua table. This operation has O(log(N))
complexity.

#!/usr/bin/env tarantool

array = { 1, 2, 3}
print (#array)

count array with nils.lua

Missing elements in arrays, which Lua treats as «nilss, cause the simple «#» operator to deliver improper
results. The «print(#t)» instruction will print «4»; the «print(counter)» instruction will print «3»; the
«print(max)» instruction will print «10». Other table functions, such as table.sort(), will also misbehave
when «nils» are present.

#!/usr/bin/env tarantool

local t = {}

tl1] =1
tl4] =4
t[10] = 10
print (#t)

local counter = 0
for k,v in pairs(t) do counter = counter + 1 end
print (counter)

(continues on next page)

52 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

local max = 0
for k,v in pairs(t) do if k > max then max = k end end
print (max)

count array with nulls.lua

Use explicit NULL values to avoid the problems caused by Lua’s nil == missing value behavior. Although
json.NULL == nil is true, all the print instructions in this program will print the correct value: 10.

#!/usr/bin/env tarantool

local json = require('json')
local t = {}
t[1] = 1; t[2] = json.NULL; t[3]= json.NULL;

t[4] = 4; t[5] = json.NULL; t[6]= json.NULL;
t[6] = 4; t[7] = json.NULL; t[8]= json.NULL;
t[9] = json.NULL

t[10] = 10

print (#t)

local counter = 0

for k,v in pairs(t) do counter = counter + 1 end

print (counter)

local max = 0

for k,v in pairs(t) do if k > max then max = k end end
print (max)

count_map.lua

Get the number of elements in a map-like table.

#!/usr/bin/env tarantool

local map = { a = 10, b = 15, ¢ = 20 }
local size = 0

for _ in pairs(map) do size = size + 1; end
print(size)

swap.lua

Use a Lua peculiarity to swap two variables without needing a third variable.

#!/usr/bin/env tarantool

local x = 1

local y = 2
X, Y=Y, X
print(x, y)

5.4. Cepsep npusnoxeHnii 53




Tarantool, Beinyck 1.7.5

class.lua

Create a class, create a metatable for the class, create an instance of the class. Another illustration is at
http://lua-users.org/wiki/LuaClassesWithMetatable.

#!/usr/bin/env tarantool

-- define class objects

local myclass_somemethod = function(self)
print('test 1', self.data)

end

local myclass_someothermethod = function(self)
print('test 2', self.data)
end

local myclass_tostring = function(self)
return 'MyClass <'..self.data..'>'
end

local myclass_mt = {
__tostring = myclass_tostring;
__index = {
somemethod = myclass_somemethod;
someothermethod = myclass_someothermethod;

-- create a nmew object of myclass

local object = setmetatable({ data = 'data'}, myclass_mt)
print (object:somemethod())

print (object.data)

garbage.lua

Force Lua garbage collection with the collectgarbage function.

#!/usr/bin/env tarantool

collectgarbage('collect')

fiber producer and consumer.lua

Start one fiber for producer and one fiber for consumer. Use fiber.channel() to exchange data and synchronize.
One can tweak the channel size (ch_size in the program code) to control the number of simultaneous tasks
waiting for processing.

#!/usr/bin/env tarantool

local fiber = require('fiber')

local function consumer_loop(ch, i)
-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do

(continues on next page)

54 FnaBsa 5. PykoBopgctso nosib3oBatens



http://lua-users.org/wiki/LuaClassesWithMetatable
https://www.lua.org/manual/5.1/manual.html#2.10
https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

local data = ch:get()
if data == nil then

break
end
print('consumed', i, data)
fiber.sleep(math.random()) -- simulate some work
end

end

local function producer_loop(ch, i)
-- 4nittalize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do
local data = math.random()
ch:put (data)
print('produced', i, data)
end
end

local function start()
local consumer_n = 5
local producer_n = 3

-- Create a channel
local ch_size = math.max(consumer_n, producer_n)
local ch = fiber.channel(ch_size)

-- Start consumers

for i=1, consumer_n,l do
fiber.create(consumer_loop, ch, i)

end

-- Start producers
for i=1, producer_n,1 do
fiber.create(producer_loop, ch, i)
end
end

start ()
print('started')

socket tcpconnect.lua

Use socket.tcp_ connect() to connect to a remote host via TCP. Display the connection details and the result
of a GET request.

#!/usr/bin/env tarantool

local s = require('socket').tcp_connect('google.com', 80)
print (s:peer() .host)

print (s:peer() .family)

print (s:peer() .type)

print (s:peer() .protocol)

print (s:peer() .port)

print(s:write("GET / HTTP/1.0\r\n\r\n"))

(continues on next page)

5.4. Cepsep npusnoxeHnii 55




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

print(s:read('\r\n'))
print(s:read('\r\n'))

socket tcp echo.lua

Use socket.tcp connect() to set up a simple TCP server, by creating a function that handles requests and
echos them, and passing the function to socket.tcp server(). This program has been used to test with 100,000
clients, with each client getting a separate fiber.

#!/usr/bin/env tarantool

local function handler(s, peer)
s:write("Welcome to test server, " .. peer.host .."\n")
while true do
local line = s:read('\n')

if line == nil then
break -- error or eof

end

if not s:write("pong: "..line) then
break -- error or eof

end

end
end

local server, addr = require('socket').tcp_server('localhost', 3311, handler)

getaddrinfo.lua

Use socket.getaddrinfo() to perform non-blocking DNS resolution, getting both the AF INET6 and
AF _INET information for ,,google.com. This technique is not always necessary for tcp connections because
socket.tep_ connect() performs socket.getaddrinfo under the hood, before trying to connect to the first
available address.

#!/usr/bin/env tarantool

local s = require('socket').getaddrinfo('google.com', 'http', { type = 'SOCK_STREAM' })
print ('host=',s[1] .host)

print ('family="',s[1].family)
print ('type=',s[1].type)

print ('protocol="',s[1].protocol)
print ('port="',s[1].port)

print ('host="',s[2] .host)
print('family=',s[2].family)
print ('type=',s[2].type)

print ('protocol="',s[2].protocol)
print ('port=',s[2].port)

socket udp echo.lua

Tarantool does not currently have a wudp_server function, therefore socket udp echo.lua is more
complicated than socket tcp echo.lua. It can be implemented with sockets and fibers.

56 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

#!/usr/bin/env tarantool

local socket = require('socket')
local errno = require('errno')
local fiber = require('fiber')

local function udp_server_loop(s, handler)
fiber.name ("udp_server")
while true do
-- try to Tead a datagram first
local msg, peer = s:recvfrom()

if msg == "" then
-- socket was closed via s:close()
break

elseif msg "= nil then

-- got a mnew datagram
handler(s, peer, msg)

else
if s:errno() == errno.EAGAIN or s:errno() == errno.EINTR then
-- socket is not ready
s:readable() -- yield, epoll will wake us when new data arrives
else
-- socket error
local msg = s:error()
s:close() -- save resources and don't wart GC
error("Socket error: " .. msg)
end
end
end

end

local function udp_server (host, port, handler)
local s = socket('AF_INET', 'SOCK_DGRAM', 0)
if not s then

return nil -- check errno:strerror()
end
if not s:bind(host, port) then
local e = s:errno() -- save errno
s:close()
errno(e) -- restore errno
return nil -- check errno:strerror()
end
fiber.create(udp_server_loop, s, handler) -- start o new background fiber
return s

end

A function for a client that connects to this server could look something like this ...

local function handler(s, peer, msg)
-- You don't have to wait until socket is ready to send UDP
-- s:writable()
s:sendto(peer.host, peer.port, "Pong: " .. msg)

end

local server = udp_server('127.0.0.1', 3548, handler)
if not server then

(continues on next page)

5.4. Cepsep npusnoxeHnii 57



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

error('Failed to bind: ' .. errno.strerror())
end

print ('Started')

require('console') .start()

http _get.lua

Use the hitp module to get data via HTTP.

#!/usr/bin/env tarantool

local http_client = require('http.client')
local json = require('json')
local r = http_client.get('http://api.openweathermap.org/data/2.5/weather?q=0akland,us')
if r.status "= 200 then
print('Failed to get weather forecast ', r.reason)
return
end
local data = json.decode(r.body)
print ('Oakland wind speed: ', data.wind.speed)

http _send.lua

Use the hittp module to send data via HTTP.

#!/usr/bin/env tarantool

local http_client = require('http.client')
local json = require('json')
local data = json.encode({ Key = 'Value'})
local headers = { Token = 'xxxx', ['X-Secret-Value'] = 42 }
local r = http_client.post('http://localhost:8081', data, { headers = headers})
if r.status == 200 then
print 'Success'
end

http _server.lua

Use the http rock (which must first be installed) to turn Tarantool into a web server.

#!/usr/bin/env tarantool

local function handler(self)
return self:render{ json = { ['Your-IP-Is'] = self.peer.host } }

end
local server = require('http.server').new(nil, 8080) -- listen *:8080
server:route({ path = '/' }, handler)

server:start ()
-- connect to localhost:8080 and see json

58 FnaBsa 5. PykoBopgctso nosib3oBatens



https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Beinyck 1.7.5

http _generate _html.lua

Use the http rock (which must first be installed) to generate HTML pages from templates. The http rock
has a fairly simple template engine which allows execution of regular Lua code inside text blocks (like PHP).
Therefore there is no need to learn new languages in order to write templates.

#!/usr/bin/env tarantool

local function handler(self)

local fruits = { 'Apple', 'Orange', 'Grapefruit', 'Banana'}
return self:render{ fruits = fruits }
end
local server = require('http.server').new(nil, 8080) -- nil means '*'
server:route({ path = '/', file = 'index.html.lua' }, handler)

server:start ()

An «<HTML> file for this server, including Lua, could look like this (it would produce «1 Apple | 2 Orange |
3 Grapefruit | 4 Bananas).

<html>
<body>
<table border="1">
% for i,v in pairs(fruits) do
<tr>
<td><%= i W></td>
<td><Y= v Y></td>
</tr>
% end
</table>
</body>
</html>

5.5 AgmMmuHuncTpupoBaHmne cepBepHOV 4acTu

Tarantool is designed to have multiple running instances on the same host.
Here we show how to administer Tarantool instances using any of the following utilities:
e systemd native utilities, or

e tarantoolctl, a utility shipped and installed as part of Tarantool distribution.

IIpumeuanue:
e Unlike the rest of this manual, here we use system-wide paths.

e Console examples here are for Fedora.

This chapter includes the following sections:

5.5.1 Instance configuration

For each Tarantool instance, you need two files:

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 59



https://github.com/tarantool/http/
https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Beinyck 1.7.5

e |[Optional] An application file with instance-specific logic. Put this file into the /usr/share/tarantool/
directory.

For example, /usr/share/tarantool/my_app.lua (here we implement it as a Lua module that
bootstraps the database and exports start () function for API calls):

local function start()
box.schema.space.create("somedata')
box.space.somedata:create_index("primary")
<ooW2>

end

return {
start = start;

}

e An instance file with instance-specific initialization logic and parameters. Put this file, or a symlink to
it, into the /etc/tarantool/instances.enabled directory.

For example, /etc/tarantool/instances.enabled/my_app.lua (here we load my_app.lua module
and make a call to start () function from that module):

#!/usr/bin/env tarantool

box.cfg {
listen = 3301;
}

-- load my_app module and call start() function
-- with some app options controlled by sysadmins
local m = require('my_app').start({...})

Instance file

After this short introduction, you may wonder what an instance file is, what it is for, and how tarantoolctl
uses it. After all, Tarantool is an application server, so why not start the application stored in /usr/share/
tarantool directly?

A typical Tarantool application is not a script, but a daemon running in background mode and processing
requests, usually sent to it over a TCP/IP socket. This daemon needs to be started automatically when the
operating system starts, and managed with the operating system standard tools for service management —
such as systemd or init.d. To serve this very purpose, we created instance files.

You can have more than one instance file. For example, a single application in /usr/share/tarantool can
run in multiple instances, each of them having its own instance file. Or you can have multiple applications
in /usr/share/tarantool — again, each of them having its own instance file.

An instance file is typically created by a system administrator. An application file is often provided by a
developer, in a Lua rock or an rpm/deb package.

An instance file is designed to not differ in any way from a Lua application. It must, however, configure the
database, i.e. contain a call to boz.cfg{} somewhere in it, because it’s the only way to turn a Tarantool script
into a background process, and tarantoolctl is a tool to manage background processes. Other than that,
an instance file may contain arbitrary Lua code, and, in theory, even include the entire application business
logic in it. We, however, do not recommend this, since it clutters the instance file and leads to unnecessary
copy-paste when you need to run multiple instances of an application.

60 FnaBa 5. Pykosopgcrso nosnb3osarens



Tarantool, Beinyck 1.7.5

tarantoolct! configuration file

While instance files contain instance configuration, tarantoolctl configuration file contains the
configuration that tarantoolctl uses to override instance configuration. In other words, it contains system-
wide configuration defaults.

Most of the parameters are similar to those used by boz.cfg{}. Here are the default settings (installed to
/etc/default/tarantool as part of Tarantool distribution):

default_cfg = {
pid_file = "/var/run/tarantool",
wal_dir = "/var/lib/tarantool",
memtx_dir = "/var/lib/tarantool",
vinyl_dir = "/var/lib/tarantool",
log = "/var/log/tarantool",
username = 'tarantool",

}

instance_dir = "/etc/tarantool/instances.enabled"

where:
e pid_file

Directory for the pid file and control-socket file; tarantoolctl will add “/instance name” to the
directory name.
e wal_dir
Directory for write-ahead .xlog files; tarantoolctl will add «/instance name» to the directory
name.
e memtx_dir
Directory for snapshot .snap files; tarantoolctl will add «/instance names to the directory name.
e vinyl_dir

Directory for vinyl files; tarantoolctl will add «/instance names to the directory name.

e log
The place where the application log will go; tarantoolctl will add «/instance name.log» to the
name.

e username

The user that runs the Tarantool instance. This is the operating-system user name rather than the
Tarantool-client user name. Tarantool will change its effective user to this user after becoming a
daemon.

e instance_dir

The directory where all instance files for this host are stored. Put instance files in this directory, or
create symbolic links.

As a fullfeatured example, you can take example.lua script that ships with Tarantool and defines all
configuration options.

5.5.2 Starting/stopping an instance

While a Lua application is executed by Tarantool, an instance file is executed by tarantoolctl which is a
Tarantool script.

Here is what tarantoolctl does when you issue the command:

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 61



https://github.com/tarantool/tarantool/blob/1.7/extra/dist/example.lua

Tarantool, Beinyck 1.7.5

$ tarantoolctl start <instance_name>

1. Read and parse the command line arguments. The last argument, in our case, contains an instance
name.

2. Read and parse its own configuration file. This file contains tarantoolctl defaults, like the path to
the directory where instances should be searched for.

The default tarantoolctl configuration file is installed in /etc/default/tarantool. This file is used
when tarantoolctl is invoked by root. When invoked by a local user, tarantoolctl first looks for
its defaults file in the current directory ($PWD/.tarantoolctl), and then in the current user’s home
directory ($HOME/.config/tarantool/tarantool). If not found, tarantoolctl falls back to built-in
defaults.

3. Look up the instance file in the instance directory, e.g. /etc/tarantool/instances.enabled. To
build the instance file path, tarantoolctl takes the instance name, prepends the instance directory
and appends «.lua» extension to the instance file.

4. Override boz. cfg{} function to pre-process its parameters and ensure that instance paths are pointing to
the paths defined in the tarantoolctl configuration file. For example, if the configuration file specifies
that instance work directory must be in /var/tarantool, then the new implementation of box.
cfg{} ensures that work dir parameter in box.cfg{} is set to /var/tarantool/<instance_name>,
regardless of what the path is set to in the instance file itself.

5. Create a so-called «instance control file». This is a Unix socket with Lua console attached to it. This
file is used later by tarantoolctl to query the instance state, send commands to the instance and so
on.

6. Finally, use Lua dofile command to execute the instance file.

If you start an instance using systemd tools, like this (the instance name is my_app):

$ systemctl start tarantool@my_app
$ ps axuf|grep exampll[e]
taranto+ 5350 1.3 0.3 1448872 7736 7 Ssl 20:06  0:28 tarantool my_app.lua <running>

... this actually calls tarantoolctl like in case of tarantoolctl start my_app.

To check the instance file for syntax errors prior to starting my_app instance, say:

’$ tarantoolctl check my_app

To enable my_app instance for auto-load during system startup, say:

’$ systemctl enable tarantool@my_app

To stop a running my_app instance, say:

$ tarantoolctl stop my_app
$ # - OR -
$ systemctl stop tarantool@my_app

To restart (i.e. stop and start) a running my_app instance, say:

$ tarantoolctl restart my_app
$ # - OR -
$ systemctl restart tarantool@my_app

62 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

Running Tarantool locally

Sometimes you may need to run a Tarantool instance locally, e.g. for test purposes. Let’s configure a local
instance, then start and monitor it with tarantoolctl.

First, we create a sandbox directory on the user’s path:

$ mkdir ~/tarantool_test

and set default tarantoolctl configuration in $HOME/.config/tarantool/tarantool. Let the file
contents be:

default_cfg = {

pid_file = "/home/user/tarantool_test/my_app.pid",
wal_dir = "/home/user/tarantool_test",
snap_dir = "/home/user/tarantool_test",
vinyl_dir = "/home/user/tarantool_test",
log = "/home/user/tarantool_test/log",
}
instance_dir = "/home/user/tarantool_test"
IIpumeuanue:

e Specify a full path to the user’s home directory instead of «~/».

e Omit username parameter. tarantoolctl normally doesn’t have permissions to switch current user
when invoked by a local user. The instance will be running under ,admin“.

Next, we create the instance file ~/tarantool_test/my_app.lua. Let the file contents be:

box.cfg{listen = 3301}
box.schema.user.passwd('Gx5!")
box.schema.user.grant('guest', 'read,write,execute', 'universe')
fiber = require('fiber')
box.schema.space.create('tester')
box.space.tester:create_index('primary',{})
i=20
while 0 == 0 do

fiber.sleep(5)

i=1i+1

print('insert ' .. i)

box.space.tester:insert{i, 'my_app tuple'}
end

Let’s verify our instance file by starting it without tarantoolctl first:

$ cd ~/tarantool_test

$ tarantool my_app.lua

2017-04-06 10:42:15.762 [54085] main/101/my_app.lua C> version 1.7.3-489-gd86e36d5b

2017-04-06 10:42:15.763 [54085] main/101/my_app.lua C> log level 5

2017-04-06 10:42:15.764 [54085] main/101/my_app.lua I> mapping 268435456 bytes for tuple arena...
2017-04-06 10:42:15.774 [54085] iproto/101/main I> binary: bound to [::]1:3301

2017-04-06 10:42:15.774 [54085] main/101/my_app.lua I> initializing an empty data directory
2017-04-06 10:42:15.789 [54085] snapshot/101/main I> saving snapshot ~./00000000000000000000.snap.
—inprogress'

2017-04-06 10:42:15.790 [54085] snapshot/101/main I> done

2017-04-06 10:42:15.791 [54085] main/101/my_app.lua I> vinyl checkpoint done

(continues on next page)

5.5. AgMuHuCTpupoBaHue cepBepHOii YacTu 63




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

2017-04-06 10:42:15.791 [54085] main/101/my_app.lua I> ready to accept requests
insert 1

insert 2

insert 3

< L2

Now we tell tarantoolctl to start the Tarantool instance:

’$ tarantoolctl start my_app

Expect to see messages indicating that the instance has started. Then:

’$ 1s -1 ~/tarantool_test/my_app

Expect to see the .snap file and the .xlog file. Then:

’$ less ~/tarantool_test/log/my_app.log

Expect to see the contents of my_app‘s log, including error messages, if any. Then:

$ tarantoolctl enter my_app

tarantool> box.cfg{}

tarantool> console = require('console')

tarantool> console.connect('localhost:3301")

tarantool> box.space.tester:select ({0}, {iterator = 'GE'})

Expect to see several tuples that my_app has created.

Stop now. A polite way to stop my_app is with tarantoolctl, thus we say:

’$ tarantoolctl stop my_app

Finally, we make a cleanup.

’$ rm -R tarantool_test

5.5.3 Logs

Tarantool logs important events to a file, e.g. /var/log/tarantool/my_app.log. To build the log file path,
tarantoolctl takes the instance name, prepends the instance directory and appends “.log” extension.

Let’s write something to the log file:

$ tarantoolctl enter my_app
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> require('log').info("Hello for the manual readers")

3areM npoBepUM COIEPKHUMOE KypHAIA!

$ tail /var/log/tarantool/my_app.log

2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> version 1.7.3-382-g68ef3f6a9

2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> log level 5

2017-04-04 15:54:04.978 [29255] main/101/tarantoolctl I> mapping 134217728 bytes for tuple arena...

(continues on next page)

64 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

2017-04-04 15:54:04.985 [29255] iproto/101/main I> binary: bound to [::1]:3301

2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I> recovery start

2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I> recovering from ~/var/lib/tarantool/my_
—app/00000000000000000000 . snap"

2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I> ready to accept requests

2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I> set 'checkpoint_interval' configuration,
—option to 3600

2017-04-04 15:54:04.988 [29255] main/101/my_app I> Run console at unix/:/var/run/tarantool/my_app.
—control

2017-04-04 15:54:04.989 [29255] main/106/console/unix/:/var/ I> started

2017-04-04 15:54:04.989 [29255] main C> entering the event loop

2017-04-04 15:54:47.147 [29255] main/107/console/unix/: I> Hello for the manual readers

When logging to a file, the system administrator must ensure logs are rotated timely and do not take up
all the available disk space. With tarantoolctl, log rotation is pre-configured to use logrotate program,
which you must have installed.

File /etc/logrotate.d/tarantool is part of the standard Tarantool distribution, and you can modify it to
change the default behavior. This is what this file is usually like:

/var/log/tarantool/*.log {
daily
size 512k
missingok
rotate 10
compress
delaycompress
create 0640 tarantool adm
postrotate

/usr/bin/tarantoolctl logrotate ~basename ${1%%.*}"

endscript

If you use a different log rotation program, you can invoke tarantoolctl logrotate command to request
instances to reopen their log files after they were moved by the program of your choice.

ITpumeuanme: Tarantool can write its logs to a log file, syslog or a program specified in the configuration
file (see log parameter).

By default, logs are written to a file as defined in tarantoolctl defaults. tarantoolctl automatically
detects if an instance is using syslog or an external program for logging, and does not override the log
destination in this case. In such configurations, log rotation is usually handled by the external program used
for logging. So, tarantoolctl logrotate command works only if logging-into-file is enabled in the instance
file.

5.5.4 Security

Tarantool allows for two types of connections:

e With console.listen() function from console module, you can set up a port which can be used to open
an administrative console to the server. This is for administrators to connect to a running instance and
make requests. tarantoolctl invokes console.listen() to create a control socket for each started
instance.

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 65




Tarantool, Beinyck 1.7.5

o With boz.cfg{listen=. .. } parameter from box module, you can set up a binary port for connections
which read and write to the database or invoke stored procedures.

When you connect to an admin console:
e The client-server protocol is plain text.
e No password is necessary.
e The user is automatically ,,admin®.
e Each command is fed directly to the built-in Lua interpreter.

Therefore you must set up ports for the admin console very cautiously. If it is a TCP port, it should only
be opened for a specific IP. Ideally, it should not be a TCP port at all, it should be a Unix domain socket,
so that access to the server machine is required. Thus a typical port setup for admin console is:

console.listen('/var/lib/tarantool/socket_name.sock')

a tunmasbtit URI njisa coenuueHusi OyIeT TaKuM:

’/var/1ib/tarantool/socket_name.sock

if the listener has the privilege to write on /var/lib/tarantool and the connector has the privilege to
read on /var/lib/tarantool. Alternatively, to connect to an admin console of an instance started with
tarantoolctl, use tarantoolctl enter.

To find out whether a TCP port is a port for admin console, use telnet. For example:

$ telnet 0 3303

Trying 0.0.0.0...

Connected to 0.

Escape character is '~]'.
Tarantool 1.7.3 (Lua console)
type 'help' for interactive help

In this example, the response does not include the word «binary» and does include the words «Lua consoles.
Therefore it is clear that this is a successful connection to a port for admin console, and you can now enter
admin requests on this terminal.

When you connect to a binary port:
e The client-server protocol is binary.
e The user is automatically ,,guest®.
e To change the user, it’s necessary to authenticate.

For ease of use, tarantoolctl connect command automatically detects the type of connection during
handshake and uses EVAL binary protocol command when it’s necessary to execute Lua commands over a
binary connection. To execute EVAL, the authenticated user must have global «<EXECUTE» privilege.

Therefore, when ssh access to the machine is not available, creating a Tarantool user with global
«EXECUTES> privilege and non-empty password can be used to provide a system administrator remote
access to an instance.

5.5.5 lpocmoTp cocTosiHUA cepBepa

Using Tarantool as a client

Tarantool enters the interactive mode if:

66 FnaBa 5. Pykosopgcrso nosnb3osarens



Tarantool, Beinyck 1.7.5

e you start Tarantool without an instance file, or
e the instance file contains console.start().

Tarantool displays a prompt (e.g. «tarantool>») and you can enter requests. When used this way, Tarantool
can be a client for a remote server. See basic examples in Getting started.

The interactive mode is used by tarantoolctl to implement «enters and «connects> commands.

Executing code on an instance

You can attach to an instance’s admin console and execute some Lua code using tarantoolctl:

$ # for local instances:

$ tarantoolctl enter my_app

/bin/tarantoolctl: Found my_app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my_app.control
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> 1 + 1

-2
unix/:/var/run/tarantool/my_app.control>

$ # for local and Temote instances:
$ tarantoolctl connect username:password@127.0.0.1:3306

You can also use tarantoolctl to execute Lua code on an instance without attaching to its admin console.
For example:

# exzecuting commands directly from the command line
$ <command> | tarantoolctl eval my_app

<ol

$ # - OR -

# executing commands from a script file

$ tarantoolctl eval my_app script.lua

< o>

Ilpumeuanme: Alternatively, you can use the console module or the net.box module from a Tarantool
server. Also, you can write your client programs with any of the connectors. However, most of the examples
in this manual illustrate usage with either tarantoolctl connect or using the Tarantool server as a client.

Health checks

To check the instance status, say:

$ tarantoolctl status my_app

my_app is running (pid: /var/run/tarantool/my_app.pid)

$ # - OR -

$ systemctl status tarantool@my_app

tarantool@my_app.service - Tarantool Database Server

Loaded: loaded (/etc/systemd/system/tarantool@.service; disabled; vendor preset: disabled)
Active: active (running)

Docs: man:tarantool(1)

(continues on next page)

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 67




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

Process: 5346 ExecStart=/usr/bin/tarantoolctl start %I (code=exited, status=0/SUCCESS)
Main PID: 5350 (tarantool)

Tasks: 11 (limit: 512)

CGroup: /system.slice/system-tarantool.slice/tarantool@my_app.service

+ 5350 tarantool my_app.lua <running>

To check the boot log, on systems with systemd, say:

$ journalctl -u tarantool@my_app -n 5

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:17:47 MSK. --

Jan 21 21:17:47 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:17:47 localhost.localdomain systemd[1]: Starting Tarantool Database Server...

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Found my_app.luag,
—in /etc/tarantool/instances.available

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Starting instance.

Jan 21 21:17:47 localhost.localdomain systemd[1]: Started Tarantool Database Server

For more details, use the reports provided by functions in the following submodules:
e boz.cfg submodule (check and specify all configuration parameters for the Tarantool server)

e boz.slab submodule (monitor the total use and fragmentation of memory allocated for storing data in
Tarantool)

e boz.info submodule (introspect Tarantool server variables, primarily those related to replication)
e box.stat submodule (introspect Tarantool request and network statistics)

You can also try tarantool/prometheus, a Lua module that makes it easy to collect metrics (e.g. memory
usage or number of requests) from Tarantool applications and databases and expose them via the Prometheus
protocol.

Example

A very popular administrator request is boz.slab.info(), which displays detailed memory usage statistics for
a Tarantool instance.

tarantool> box.slab.info()

- items_size: 228128
items_used_ratio: 1.8%
quota_size: 1073741824
quota_used_ratio: 0.8Y%
arena_used_ratio: 43.2J
items_used: 4208
quota_used: 8388608
arena_size: 2325176
arena_used: 1003632

Profiling performance issues

Tarantool can at times work slower than usual. There can be multiple reasons, such as disk issues, CPU-
intensive Lua scripts or misconfiguration. Tarantool’s log may lack details in such cases, so the only indications
that something goes wrong are log entries like this: W> too long DELETE: 8.546 sec. Here are tools and
techniques that can help you collect Tarantool’s performance profile, which is helpful in troubleshooting
slowdowns.

68 FnaBa 5. Pykosopgcrso nosnb3osarens



https://github.com/tarantool/prometheus

Tarantool, Beinyck 1.7.5

IIpumeuanue: Most of these tools — except fiber.info() — are intended for generic GNU/Linux
distributions, but not FreeBSD or Mac OS.

fiber.info()

The simplest profiling method is to take advantage of Tarantool’s built-in functionality. fiber.info() returns
information about all running fibers with their corresponding C stack traces. You can use this data to see
how many fibers are running and which C functions are executed more often than others.

First, enter your instance’s interactive administrator console:

’$ tarantoolctl enter NAME

Once there, load the fiber module:

’tarantool> fiber = require('fiber')

After that you can get the required information with fiber.info().

At this point, you console output should look something like this:

tarantool> fiber = require('fiber')

tarantool> fiber.info()
- 360:
csw: 2098165
backtrace:
- '"#0 0x4d1b77 in wal_write(journal*, journal_entry*)+487'
- '#1 0x4bbf68 in txn_commit (txn*)+152'
- '#2 0x4bdbd8 in process_rw(request*, space*, tuplex*)+136'
- '#3 0x4bed48 in box_process1+104'
- '#4 0x4d72f8 in lbox_replace+120'
- '#5 0x50£317 in 1j_BC_FUNCC+52'
fid: 360
memory :
total: 61744
used: 480
name: main
129:
csw: 113
backtrace: []
fid: 129
memory:
total: 57648
used: 0
name: 'console/unix/:'

We highly recommend to assign meaningful names to fibers you create so that you can find them in the
fiber.info() list. In the example below, we create a fiber named myworker:

tarantool> fiber = require('fiber')

(continues on next page)

5.5. AgMuHuCTpupoBaHue cepBepHOii YacTu 69



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> f = fiber.create(function() while true do fiber.sleep(0.5) end end)

tarantool> f:name('myworker') <!-- assigning the name to a fiber

tarantool> fiber.info()
- 102:
csw: 14
backtrace:
- '#0 0xb50lala in fiber_yield_timeout+90'
- '#1 0x4f2008 in lbox_fiber_sleep+72'
- '#2 0xb5112a7 in 1j_BC_FUNCC+52'
fid: 102
memory :
total: 57656
used: 0
name: myworker <!-- newly created background fiber
101:
csw: 284
backtrace: []
fid: 101
memory :
total: 57656
used: 0
name: interactive

You can kill any fiber with fiber.kill(fid):

tarantool> fiber.kill(102)

tarantool> fiber.info()
- 101:
csw: 324
backtrace: []
fid: 101
memory :
total: 57656
used: 0O
name: interactive

If you want to dynamically obtain information with fiber.info (), the shell script below may come in handy.
It connects to a Tarantool instance specified by NAME every 0.5 seconds, grabs the fiber.info() output and
writes it to the fiber-info.txt file:

$ rm -f fiber.info.txt
$ watch -n 0.5 "echo 'require(\"fiber\").info()' | tarantoolctl enter NAME | tee -a fiber-info.txt"

If you can’t understand which fiber causes performance issues, collect the metrics of the fiber.info()
output for 10-15 seconds using the script above and contact the Tarantool team at support@tarantool.org.

70 FnaBsa 5. PykoBopgctso nosib3oBatens



mailto:support@tarantool.org

Tarantool, Beinyck 1.7.5

Poor man’s profilers

pstack <pid>

To use this tool, first install it with a package manager that comes with your Linux distribution. This
command prints an execution stack trace of a running process specified by the PID. You might want to run
this command several times in a row to pinpoint the bottleneck that causes the slowdown.

Once installed, say:

$ pstack $(pidof tarantool INSTANCENAME.lua)

Next, say:

$ echo $(pidof tarantool INSTANCENAME.lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME. lua file.

You should get similar output:

Thread 19 (Thread 0x7£09d1bff700 (LWP 24173)):

#0 0z00007f0a1a5423f2 in ?? () from /1ib64/libgomp.so.1

#1 0200007f0a1a53fdc0 in ?? () from /lib64/libgomp.so.1

#2 0x00007f0aladbadc5 in start_thread () from /1ib64/libpthread.so.0

#3 0x00007f0ala050ced in clone () from /1ib64/libc.so.6

Thread 18 (Thread 0x7£09d13fe700 (LWP 24174)):

#0 0z00007f0a1a5423f2 in ?? () from /1ib64/libgomp.so.1

#1 0x00007f0alab3fdcO in 2?2 () from /1ib64/libgomp.so.1

#2 0z00007f0aladbadcs in start_thread () from /1ib64/libpthread.so.0

#3 0x00007f0a1a050ced in clone () from /1tb64/libc.so.6

< 02

Thread 2 (Thread 0x7f09c8bfe700 (LWP 24191)):

#0 0x00007f0alad5e6d5 in pthread_cond_wait@OGLIBC_2.3.2 () from /1tb64/libpthread.so.0
#1 0z000000000045d901 in wal_writer_pop (wal_writer*) ()

#2 0z000000000045db01 in wal_writer_f(__va_list_tag*) ()

#3 0x0000000000429abc in fiber_czz_invoke(int (*)(__va_list_tag*)
#4 0z00000000004b52a0 in fiber_loop ()

#5 0z00000000006099¢cf in coro_init ()

Thread 1 (Thread 0x7f0alc47£d80 (LWP 24172)):

#0 0200007f0a1a0512¢3 in epoll_wait () from /1ib64/libc.so.6
#1 0z00000000006051c8 in epoll_poll ()

#2 0x0000000000607533 in ev_run ()

#3 0z0000000000428e13 in main ()

va_list_tag*) ()

P —

gdb -ex «bt» -p <pid>

As with pstack, the GNU debugger (also known as gdb) needs to be installed before you can start using it.
Your Linux package manager can help you with that.

Once the debugger is installed, say:

$ gdb -ex "set pagination 0" -ex "thread apply all bt" --batch -p $(pidof tarantool INSTANCENAME.
—1lua)

Next, say:

$ echo $(pidof tarantool INSTANCENAME.lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME. lua file.

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 71




Tarantool, Beinyck 1.7.5

After using the debugger, your console output should look like this:

[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1ib/x86_64-linux-gnu/libthread_db.so.1".

[cuT]

Thread 1 (Thread 0x7£72289ba940 (LWP 20535)):

#0 _int_malloc (av=av@entry=0x7f7226e0eb20 <main_arena>, bytes=bytes@entry=504) at malloc.c:3697
#1 0z00007f7226acf2la in __libc_calloc (n=<optimized out>, elem_size=<optimized out>) at malloc.
—c:3234

#2 0x00000000004631f8 in vy_merge_iterator_reserve (capacity=3, i1tr=0x7f72264af9%0) at /usr/src/
—tarantool/src/box/vinyl.c: 7629

#3 vy_merge_iterator_add (itr=itrQ@entry=0z7f72264af9%e0, ts_mutable=is_mutable@entry=true, belong_
—range=belong_range@entry=false) at /usr/src/tarantool/src/boz/vinyl.c:7660

#4 0z00000000004703df in vy_read_iterator_add_mem (itr=0x7f72264af990) at /usr/src/tarantool/src/
—boz/vinyl.c:8387

#5 vy_read_iterator_use_range (i1tr=0x7f72264af990) at /usr/src/tarantool/src/box/vinyl.c:8453

#6 0z000000000047657d in vy_read_iterator_start (itr=<optimized out>) at /usr/src/tarantool/src/
—boz/vinyl.c:8501

#7 0x00000000004766b5 in vy_read_iterator_newt (itr=itr@entry=0z7f72264af990,,
—result=result@entry=0z7f72264afad8) at /usr/src/tarantool/src/boz/vinyl.c:8592

#8 0x000000000047689d in vy_indez_get (tz=tz@entry=0z7f7226/68158, indez=index@entry=0z2563860,
—key=<optimized out>, part_count=<optimized out>, result=result@entry=0x7f72264afad8) at /usr/src/
—tarantool/src/box/vinyl.c:5705

#9 0x0000000000477601 in vy_replace_impl (request=<optimized out>, request=<optimized out>,,
—stmt=0z7f72265a7150, space=0x2567eal, tz=0z7f7226468158) at /usr/src/tarantool/src/boz/vinyl.
—c:5920

#10 vy_replace (tz=0z7f7226468158, stmt=stmt@entry=0z7f72265a7150, space=0x2567eal, request=
—<optimized out>) at /usr/src/tarantool/src/boz/vinyl.c:6608

#11 0x0000000000461509 in VinylSpace::ewecuteReplace (this=<optimized out>, tzn=<optimized out>,
—space=<optimized out>, request=<optimized out>) at /usr/src/tarantool/src/boz/vinyl_space.cc:108
#12 0200000000004bd723 in process_rw (request=request@entry=0z7f72265a70f8,,
—space=space@entry=0c2567ea0, result=result@entry=0z7f72264afbc8) at /usr/src/tarantool/src/boz/
—boz.cc:182

#13 0200000000004bed48 in box_processl (request=0z7f72265470f8,,
—result=result@entry=0z7f72264afbc8) at /usr/src/tarantool/src/boz/box.cc:700

#14 0z00000000004bf389 in boz_replace (space_id=space_id@entry=513, tuple=<optimized out>, tuple_
—end=<optimized out>, result=result@entry=0x7f72264afbc8) at /usr/src/tarantool/src/box/box.cc:754
#15 0x00000000004d72f8 in lboz_replace (L=0x413c5780) at /usr/src/tarantool/src/boz/lua/indexc.c:72
#16 0z000000000050f317 in 1j_BC_FUNCC ()

#17 0£00000000004d37c7 in execute_lua_call (L=02413c¢5780) at fusr/src/tarantool/src/boz/lua/call.
—c:282

#18 0z000000000050f317 in 1j_BC_FUNCC ()

#19 0z0000000000529¢7b in lua_cpcall ()

#20 0x00000000004f6aa3 in luaT_cpcall (L=L@entry=0z413c5780, func=func@entry=0z4d36d0 <ewecute_lua_
—call>, ud=ud@entry=0x7f72264afde0) at /usr/src/tarantool/src/lua/utils.c:962

#21 0z00000000004d3fe7 in boz_process_lua (handler=0r4d36d0 <ezecute_lua_call>,
—out=out@entry=0z7f7213020600, request=request@entry=0z413c5780) at /usr/src/tarantool/src/boz/
—lua/call.c:382

#22 boz_lua_call (request=request@entry=0z7f72130401d8, out=out@entry=0x7f7213020600) at /usr/src/
—tarantool/src/box/lua/call.c:405

#23 0z00000000004c0f27 in boz_process_call (request=request@entry=0x7f72130401d8,,
—out=out@entry=0z7f7213020600) at /usr/src/tarantool/src/boz/box.cc:107

#24 0z000000000041326c in tx_process_misc (m=0x7f7213040170) at fusr/src/tarantool/src/boz/iproto.
—cc:942

#25 0x0000000000504554 in cmsg_deliver (msg=0x7f7213040170) at /usr/src/tarantool/src/cbus.c:302
#26 0x0000000000504c2e in fiber_pool_f (ap=<error reading variable: value has been optimized out>),

‘—)(llt aST/7STT t(ll, (l/ﬂrtUUZ oTT fl;bCI_PUUZ- L-U4 (COIltiIllleS on l’leXt page)

72 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

#27 0x000000000041122c in fiber_czz_invoke (fiber_func, typedef __wa_list_tag __va_list_tag *) (f=
—<optimized out>, ap=<optimized out>) at /usr/src/tarantool/src/fiber.h:645

#28 0x00000000005011a0 in fiber_loop (data=<optimized out>) at /usr/src/tarantool/src/fiber.c:641
#29 0x0000000000688fbf in coro_init () at /usr/src/tarantool/third_party/coro/coro.c:110

Run the debugger in a loop a few times to collect enough samples for making conclusions about why Tarantool
demonstrates suboptimal performance. Use the following script:

$ rm -f stack-trace.txt
$ watch -n 0.5 "gdb -ex 'set pagination 0' -ex 'thread apply all bt' --batch -p $(pidof tarantooly
< INSTANCENAME.lua) | tee -a stack-trace.txt"

Structurally and functionally, this script is very similar to the one used with fiber.info() above.

If you have any difficulties troubleshooting, let the script run for 10-15 seconds and then send the resulting
stack-trace.txt file to the Tarantool team at support@tarantool.org.

Ilpenynpexaenme: Use the poor man’s profilers with caution: each time they attach to a running
process, this stops the process execution for about a second, which may leave a serious footprint in
high-load services.

gperftools

To use the CPU profiler from the Google Performance Tools suite with Tarantool, first take care of the
prerequisites:

e For Debian/Ubuntu, run:

’$ apt-get install libgoogle-perftools4

e For RHEL/CentOS/Fedora, run:

’$ yum install gperftools-libs

Once you do this, install Lua bindings:

’$ tarantoolctl rocks install gperftools

Now you’re ready to go. Enter your instance’s interactive administrator console:

’$ tarantoolctl enter NAME

To start profiling, say:

tarantool> cpuprof = require('gperftools.cpu')
tarantool> cpuprof.start('/home/<username>/tarantool-on-production.prof')

It takes at least a couple of minutes for the profiler to gather performance metrics. After that, save the
results to disk (you can do that as many times as you need):

tarantool> cpuprof.flush()

To stop profiling, say:

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 73


mailto:support@tarantool.org

Tarantool, Beinyck 1.7.5

’tarantool> cpuprof.stop()

You can now analyze the output with the pprof utility that comes with the gperftools package:

’$ pprof --text /usr/bin/tarantool /home/<username>/tarantool-on-production.prof

IIpumeuanue: On Debian/Ubuntu, the pprof utility is called google-pprof.

Your output should look similar to this:

Total: 598 samples
83 13.9% 13.9% 83 13.9% epoll_wait
54 9.0% 22.9% 102 17.1%
vy_mem_tree_insert.constprop.35
32 5.4 28.3% 34 5.7} __write_nocancel
28 4.7} 32.9% 42 7.0% vy_mem_iterator_start_from
26 4.3} 37.3% 26 4.3}, _I0_str_seekoff
21 3.5% 40.8% 21 3.5% tuple_compare_field
19 3.2% 44.0% 19 3.2
: :TupleCompareWithKey: : compare
19 3.2% 47.2% 38 6.4}, tuple_compare_slowpath
12 2.0% 49.2% 23 3.8% __libc_calloc
9 1.5% 50.7% 9 1.5}
: :TupleCompare: : compare@42efcO
9 1.5% 52.2% 9 1.5} vy_cache_on_write
.5% 53.7% 57 9.5% vy_merge_iterator_next_key
.3% 55.0% 8 1.3} __nss_passwd_lookup
.0% 56.0% 25 4.2% gc_onestep
.0% 57.0% 6 1.0% 1j_tab_next
.8% 57.9% 5 0.8% 1lj_alloc_malloc
.8% 58.7% 131 21.9), vy_prepare

g o1 o O 0 O
O O KB K =

perf

This tool for performance monitoring and analysis is installed separately via your package manager. Try
running the perf command in the terminal and follow the prompts to install the necessary package(s).

Ilpumeuanue: By default, some perf commands are restricted to root, so, to be on the safe side, either
run all commands as root or prepend them with sudo.

To start gathering performance statistics, say:

$ perf record -g -p $(pidof tarantool INSTANCENAME.lua)

This command saves the gathered data to a file named perf.data inside the current working directory. To
stop this process (usually, after 10-15 seconds), press ctrl+C. In your console, you'll see:

~“C[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.225 MB perf.data (1573 samples) ]

Now run the following command:

74 FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

$ perf report -n -g --stdio | tee perf-report.txt

It formats the statistical data in the perf.data file into a performance report and writes it to the
perf-report.txt file.

The resulting output should look similar to this:

# Samples: 14K of event 'cycles'

# Event count (approz.): 9927346847

#

# Children Self Samples Command Shared Object Symbol

35.50% 0.55% 79 tarantool tarantool [.] lj_gc_step
I
--34.95%--1j_gc_step
I
| --29.26%--gc_onestep
[
| --13.85%--gc_sweep
[
| [--5.59%--1j_alloc_free
1
| [--1.33%--1j_tab_free
[ 11
| | --1.01%--1j_alloc_free
[
| --1.17%--1j_cdata_free
I
|--5.41)--gc_finalize
[
| 1--1.06%--1j_obj_equal
[
| --0.95%--1j_tab_set
I
| --4.97%--rehashtab
1
| --3.65%--1j_tab_resize
I
[--0.74%--1j_tab_set
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
1
1
| | --0.72%--1j_tab_newkey
1
| [--0.91%--propagatemark
[

| --0.67%--1j_cdata_free

I

--5.43),--propagatemark

|
--0.73%--gc_mark

Unlike the poor man’s profilers, gperftools and perf have low overhead (almost negligible as compared
with pstack and gdb): they don’t result in long delays when attaching to a process and therefore can be
used without serious consequences.

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 75




Tarantool, Beinyck 1.7.5

5.5.6 KoHTposb 3a poHOBbIMYM NporpaMmmamMmu
Server signals

Tarantool processes these signals during the event loop in the transaction processor thread:

Signal Effect

SIGHUP May cause log file rotation. See the ezample in reference on Tarantool
logging parameters.

SIGUSR1 May cause a database checkpoint. See boz.snapshot.

SIGTERM May cause graceful shutdown (information will be saved first).

SIGINT (also known as keyboard | May cause graceful shutdown.

interrupt)

SIGKILL Causes an immediate shutdown.

Other signals will result in behavior defined by the operating system. Signals other than SIGKILL may be
ignored, especially if Tarantool is executing a long-running procedure which prevents return to the event
loop in the transaction processor thread.

Automatic instance restart

On systemd-enabled platforms, systemd automatically restarts all Tarantool instances in case of failure. To
demonstrate it, let’s try to destroy an instance:

$ systemctl status tarantool@my_appl|grep PID

Main PID: 5885 (tarantool)

$ tarantoolctl enter my_app

/bin/tarantoolctl: Found my_app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my_app.control

/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> os.exit(-1)

/bin/tarantoolctl: unix/:/var/run/tarantool/my_app.control: Remote host closed connection

Now let’s make sure that systemd has restarted the instance:

$ systemctl status tarantool@my_appl|grep PID
Main PID: 5914 (tarantool)

Finally, let’s check the boot logs:

$ journalctl -u tarantool@my_app -n 8

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:09:45 MSK. --

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Unit entered failed,
—state.

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Failed with result
—'exit-code'.

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Service hold-off time
—over, scheduling restart.

Jan 21 21:09:45 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:09:45 localhost.localdomain systemd[1]: Starting Tarantool Database Server...

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Found my_app.lua;
—in /etc/tarantool/instances.available

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Starting instance.
e e

Jan 21 21:09:45 localhost.localdomain systemd[1]: Started Tarantool Database Server.

76 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

Core dumps
Tarantool makes a core dump if it receives any of the following signals: SIGSEGV, SIGFPE, SIGABRT or
SIGQUIT. This is automatic if Tarantool crashes.

On systemd-enabled platforms, coredumpctl automatically saves core dumps and stack traces in case of a
crash. Here is a general <how to» for how to enable core dumps on a Unix system:

1. Ensure session limits are configured to enable core dumps, i.e. say ulimit -c unlimited. Check «man
5 core» for other reasons why a core dump may not be produced.

2. Set a directory for writing core dumps to, and make sure that the directory is writable. On Linux, the
directory path is set in a kernel parameter configurable via /proc/sys/kernel/core_pattern.

3. Make sure that core dumps include stack trace information. If you use a binary Tarantool distribution,
this is automatic. If you build Tarantool from source, you will not get detailed information if you pass
-DCMAKE_BUILD_TYPE=Release to CMake

To simulate a crash, you can execute an illegal command against a Tarantool instance:

$ # !!! please never do this on a production system !!!

$ tarantoolctl enter my_app

unix/:/var/run/tarantool/my_app.control> require('ffi').cast('char *', 0)[0] = 48
/bin/tarantoolctl: unix/:/var/run/tarantool/my_app.control: Remote host closed connection

Alternatively, if you know the process ID of the instance (here we refer to it as $PID), you can abort a
Tarantool instance by running gdb debugger:

’$ gdb -batch -ex '"generate-core-file" -p $PID

or manually sending a SIGABRT signal:

’$ kill -SIGABRT $PID

IIpumeuanue: To find out the process id of the instance ($PID), you can:
e look it up in the instance’s boz.info.pid,
e find it with ps -A | grep tarantool, or

e say systemctl status tarantool@my_app|grep PID.

On a systemd-enabled system, to see the latest crashes of the Tarantool daemon, say:

$ coredumpctl list /usr/bin/tarantool

MTIME PID UID GID SIG PRESENT EXE

Sat 2016-01-23 15:21:24 MSK 20681 1000 1000 6 /usr/bin/tarantool
Sat 2016-01-23 15:51:56 MSK 21035 995 992 6  /usr/bin/tarantool

To save a core dump into a file, say:

$ coredumpctl -o filename.core info <pid>

Stack traces

Since Tarantool stores tuples in memory, core files may be large. For investigation, you normally don’t need
the whole file, but only a «stack trace» or «backtraces.

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 77



Tarantool, Beinyck 1.7.5

To save a stack trace into a file, say:

$ gdb -se "tarantool" -ex "bt full" -ex "thread apply all bt" --batch -c core> /tmp/tarantool_
—trace.txt

where:
e «tarantool» is the path to the Tarantool executable,
e «core» is the path to the core file, and

e «/tmp/tarantool trace.txts is a sample path to a file for saving the stack trace.

ITpumeuanme: Occasionally, you may find that the trace file contains output without debug symbols —
the lines will contain ”??” instead of names. If this happens, check the instructions on these Tarantool wiki
pages: How to debug core dump of stripped tarantool and How to debug core from different OS.

To see the stack trace and other useful information in console, say:

$ coredumpctl info 21035

PID: 21035 (tarantool)
UID: 995 (tarantool)
GID: 992 (tarantool)
Signal: 6 (ABRT)
Timestamp: Sat 2016-01-23 15:51:42 MSK (4h 36min ago)
Command Line: tarantool my_app.lua <running>
Executable: /usr/bin/tarantool
Control Group: /system.slice/system-tarantool.slice/tarantool@my_app.service
Unit: tarantool@my_app.service
Slice: system-tarantool.slice
Boot ID: 7c686e2efddc4e3eab9122757e3067e2
Machine ID: a4a878729c654c7093dc6693f6a8ebee
Hostname: localhost.localdomain
Message: Process 21035 (tarantool) of user 995 dumped core.

Stack trace of thread 21035:
#0 0z00007f84993aa618 raise (libc.so.6)
#1  0z00007f84993ac21a abort (libc.so.6)
#2 0x000056040a9e9233 _ZL12sig_fatal_cbi (tarantool)
#3 0z00007f849a211220 __restore_rt (libpthread.so.0)
#4 0x0000560d0aaabd9d lj_cconv_ct_ct (tarantool)
#5 0z0000560d0a0a687f lj_cconv_ct_tv (tarantool)
#6 0z0000560d0aaabe33 lj_cf_ffi_meta___newindex (tarantool)
#7 0x0000560d0aaae2f7 1j_BC_FUNCC (tarantool)
#8 0z0000560d0aa9aabd lua_pcall (tarantool)
#9 020000560d0aa71400 lboz_call (tarantool)
#10 0x0000560d0aa6ce36 lua_fiber_run_f (tarantool)
#11 020000560d0a9e8d0c _ZL16fiber_czz_invokePFiP13__va_list_tagESO_ (tarantool)
#12 020000560d0aa76255 fiber_loop (tarantool)
#13 0x0000560d0ab38ed1 coro_init (tarantool)

Debugger

To start gdb debugger on the core dump, say:

78

FnaBsa 5. PykoBopgctso nosib3oBatens



https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-from-different-OS

Tarantool, Beinyck 1.7.5

’$ coredumpctl gdb <pid> ‘

It is highly recommended to install tarantool-debuginfo package to improve gdb experience, for example:

’$ dnf debuginfo-install tarantool ‘

gdb also provides information about the debuginfo packages you need to install:

$ # gdb -p <pid>

Missing separate debuginfos, use: dnf debuginfo-install
glibc-2.22.90-26.fc24.x86_64 krb5-1libs-1.14-12.fc24.x86_64
libgcc-5.3.1-3.fc24.x86_64 libgomp-5.3.1-3.fc24.x86_64
libselinux-2.4-6.fc24.x86_64 libstdc++-5.3.1-3.fc24.x86_64
libyaml-0.1.6-7.£c23.x86_64 ncurses-1libs-6.0-1.20150810.fc24.x86_64
openssl-libs-1.0.2e-3.fc24.x86_64

Symbolic names are present in stack traces even if you don’t have tarantool-debuginfo package installed.

5.5.7 Disaster recovery
The minimal fault-tolerant Tarantool configuration would be a replication cluster that includes a master and
a replica, or two masters.

The basic recommendation is to configure all Tarantool instances in a cluster to create snapshot files at a
regular basis.

Here follow action plans for typical crash scenarios.

Master-replica

Configuration: One master and one replica.
Problem: The master has crashed.
Your actions:

1. Ensure the master is stopped for good. For example, log in to the master machine and use systemctl
stop tarantool@<instance_name>.

2. Switch the replica to master mode by setting boz.cfg.read_ only parameter to false and let the load be
handled by the replica (effective master).

3. Set up a replacement for the crashed master on a spare host, with replication parameter set to replica
(effective master), so it begins to catch up with the new master’s state. The new instance should have
bozx.cfg.read_ only parameter set to true.

You lose the few transactions in the master write ahead log file, which it may have not transferred to the
replica before crash. If you were able to salvage the master .xlog file, you may be able to recover these. In
order to do it:

1. Find out the position of the crashed master, as reflected on the new master.

a. Find out instance UUID from the crashed master zlog:

$ head -5 *.xlog | grep Instance
Instance: ed607cad-8b6d-48d8-balb-dae371b79155

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 79



Tarantool, Beinyck 1.7.5

b. On the new master, use the UUID to find the position:

tarantool>box.info.vclock[box.space._cluster.index.uuid:select{'ed607cad-8b6d-48d8-balb-
—dae371b79155'}[1] [1]]

- 23425

< 00>

2. Play the records from the crashed .xlog to the new master, starting from the new master position:

a. Issue this request locally at the new master’s machine to find out instance ID of the new master:

tarantool> box.space._cluster:select{}

- - [1, '88580b5c-4474-43ab-bd2b-2409a9af80d2"']

b. Play the records to the new master:

$ tarantoolctl <new_master_uri> <xlog_file> play --from-lsn 23425 --replica 1

Master-master

Configuration: Two masters.
Problem: Master#1 has crashed.
Your actions:
1. Let the load be handled by master#2 (effective master) alone.

2. Follow the same steps as in the master-replica recovery scenario to create a new master and salvage lost
data.

Data loss

Configuration: Master-master or master-replica.

Problem: Data was deleted at one master and this data loss was propagated to the other node (master or
replica).

The following steps are applicable only to data in memtx storage engine. Your actions:

1. Put all nodes in read-only mode and disable checkpointing with box.backup.start (). Disabling the
checkpointing is necessary to prevent automatic garbage collection of older checkpoints.

2. Get the latest valid .snap file and use tarantoolctl cat command to calculate at which Isn the data
loss occurred.

3. Start a new instance (instance#1) and use tarantoolctl play command to play to it the contents of
.snap/ .xlog files up to the calculated lsn.

4. Bootstrap a new replica from the recovered master (instance#1).

5.5.8 Pe3epBHOe konupoBaHue

Tarantool storage architecture is append-only: files are only appended to, and are never overwritten. Old
files are removed by garbage collection after a checkpoint. You can configure the amount of past checkpoints

80 FnaBa 5. Pykosopgcrso nosnb3osarens



Tarantool, Beinyck 1.7.5

preserved by garbage collection by configuring Tarantool’s checkpoint daemon. Backups can be taken at any
time, with minimal overhead on database performance.

Hot backup (memtx)

This is a special case when there are only in-memory tables.

The last snapshot file is a backup of the entire database; and the WAL files that are made after the last
snapshot are incremental backups. Therefore taking a backup is a matter of copying the snapshot and WAL
files.

1. Use tar to make a (possibly compressed) copy of the latest .snap and .xlog files on the memtz_dir
and wal_ dir directories.

2. If there is a security policy, encrypt the .tar file.
3. Copy the .tar file to a safe place.

Later, restoring the database is a matter of taking the .tar file and putting its contents back in the memtx _dir
and wal _dir directories.

Hot backup (vinyl/memtx)

Vinyl stores its files in winyl_dir, and creates a folder for each database space. Dump and compaction
processes are append-only and create new files. Old files are garbage collected after each checkpoint.

To take a mixed backup:

1. Issue box.backup.start() on the administrative console. This will suspend garbage collection till the
next box.backup.stop() and will return a list of files to backup.

2. Copy the files from the list to a safe location. This will include memtx snapshot files, vinyl run and
index files, at a state consistent with the last checkpoint.

3. Resume garbage collection with box.backup.stop().

Continuous remote backup (memtx)

The replication feature is useful for backup as well as for load balancing.

Therefore taking a backup is a matter of ensuring that any given replica is up to date, and doing a cold
backup on it. Since all the other replicas continue to operate, this is not a cold backup from the end user’s
point, of view. This could be done on a regular basis, with a cron job or with a Tarantool fiber.

Continuous backup (memtx)

The logged changes done since the last cold backup must be secured, while the system is running.

For this purpose, you need a file copy utility that will do the copying remotely and continuously, copying
only the parts of a write ahead log file that are changing. One such utility is rsync.

Bobl MoxkeTe B34Th W OOBIUHYIO YTUINTY (/1 KOmupoBaHus (HaiijioB IETUKOM), HO TOTJA BaM IIPUIETCS
coznaBarh daiiib-cauMku 1 WAL-daiibl Ha Kask10e U3MEeHeHre, 9TO0bI HyKHO ObLJI0 KOMUPOBATH TOJIBKO
HOBBIE (DAMIIBI.

5.5. AgMuHnCTpUpoOBaHve cepBepHOI YacTu 81


https://en.wikipedia.org/wiki/Rsync

Tarantool, Beinyck 1.7.5

5.5.9 Upgrades

Upgrading a Tarantool database

If you created a database with an older Tarantool version and have now installed a newer version, make
the request box.schema.upgrade(). This updates Tarantool system spaces to match the currently installed
version of Tarantool.

For example, here is what happens when you run box.schema.upgrade() with a database created with
Tarantool version 1.6.4 to version 1.7.2 (only a small part of the output is shown):

tarantool> box.schema.upgrade ()

alter index primary on _space set options to {"unique":true}, parts to [[0,"unsigned"]]
alter space _schema set options to {}

create view _vindex...

grant read access to 'public' role for _vindex view

set schema version to 1.7.0

Upgrading a Tarantool instance

Tarantool is backward compatible between two adjacent versions. For example, you should have no or little
trouble when upgrading from Tarantool 1.6 to 1.7, or from Tarantool 1.7 to 1.8. Meanwhile Tarantool 1.8
may have incompatible changes when migrating from Tarantool 1.6. to 1.8 directly.

How to upgrade from Tarantool 1.6 to 1.7

This procedure is for upgrading a standalone Tarantool instance in production from 1.6.x to 1.7.x. Notice
that this will always imply a downtime. To upgrade without downtime, you need several Tarantool
servers running in a replication cluster (see below).

Tarantool 1.7 has an incompatible .snap and .zlog file format: 1.6 files are supported during upgrade, but
you won’t be able to return to 1.6 after running under 1.7 for a while. It also renames a few configuration
parameters, but old parameters are supported. The full list of breaking changes is available in release notes
for Tarantool 1.7.

1. Check with application developers whether application files need to be updated due to incompatible
changes (see 1.7 release notes). If yes, back up the old application files.

2. Stop the Tarantool server.

3. Make a copy of all data (see an appropriate hot backup procedure in Backups) and the package from
which the current (old) version was installed (for rollback purposes).

4. Update the Tarantool server. See installation instructions at Tarantool download page.

5. Update the Tarantool database. Put the request box.schema.upgrade() inside a box.once() function
in your Tarantool initialization file. On startup, this will create new system spaces, update data type
names (e.g. num -> unsigned, str -> string) and options in Tarantool system spaces.

6. Update application files, if needed.

7. Launch the updated Tarantool server using tarantoolctl or systemctl.

82 FnaBsa 5. PykoBopgctso nosib3oBatens



https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
http://tarantool.org/download.html

Tarantool, Beinyck 1.7.5

Upgrading Tarantool in a replication cluster

Tarantool 1.7 can work as a replica for Tarantool 1.6 and vice versa. Replicas perform capability negotiation
on handshake, and new 1.7 replication features are not used with 1.6 replicas. This allows upgrading clustered
configurations.

This procedure allows for a rolling upgrade without downtime and works for any cluster configuration:
master-master or master-replica.

1. Upgrade Tarantool at all replicas (or at any master in a master-master cluster). See details in Upgrading
a Tarantool instance.

2. Verify installation on the replicas:

a. Start Tarantool.

b. Attach to the master and start working as before.

The master runs the old Tarantool version, which is always compatible with the next major version.

3. Upgrade the master. The procedure is similar to upgrading a replica.
4. Verify master installation:

a. Start Tarantool with replica configuration to catch up.

b. Switch to master mode.

5. Upgrade the database on any master node in the cluster. Make the request box.schema.upgrade().
This updates Tarantool system spaces to match the currently installed version of Tarantool. Changes
are propagated to other nodes via the regular replication mechanism.

5.5.10 Notes for operating systems

Mac OS

On Mac OS, you can administer Tarantool instances only with tarantoolctl. No native system tools are
supported.

FreeBSD

To make tarantoolctl work along with init.d utilities on FreeBSD, use paths other than those suggested
in Instance configuration. Instead of /usr/share/tarantool/ directory, use /usr/local/etc/tarantool/
and create the following subdirectories:

e default for tarantoolctl defaults (see example below),
e instances.available for all available instance files, and
e instances.enabled for instance files to be auto-started by sysvinit.

Here is an example of tarantoolctl defaults on FreeBSD:

default_cfg = {

pid_file = "/var/run/tarantool", -- /war/run/tarantool/${INSTANCE}.pid
wal_dir = "/var/db/tarantool", -- /war/db/tarantool/${INSTANCE}/
snap_dir = "/var/db/tarantool", -- Swar/db/tarantool/${INSTANCE}
vinyl_dir = "/var/db/tarantool", -- /war/db/tarantool/${INSTANCE}

logger = "/var/log/tarantool", -- /war/log/tarantool/${INSTANCE}.log
username = "tarantool",

(continues on next page)

5.5. AgMuHuCTpupoBaHue cepBepHOii YacTu 83




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

}

-- instances.avatlable - all available instances

-- instances.enabled - instances to autostart by sysvinit
instance_dir = "/usr/local/etc/tarantool/instances.available"

5.5.11 Bug reports

If you found a bug in Tarantool, you're doing us a favor by taking the time to tell us about it.

Please create an issue at Tarantool repository at GitHub. We encourage you to include the following
information:

e Steps needed to reproduce the bug, and an explanation why this differs from the expected behavior
according to our manual. Please provide specific unique information. For example, instead of «I can’t
get certain information», say «box.space.x:delete() didn’t report what was deleted».

e Your operating system name and version, the Tarantool name and version, and any unusual details
about your machine and its configuration.

o Related files like a stack trace or a Tarantool log file.
If this is a feature request or if it affects a special category of users, be sure to mention that.

Usually within one or two workdays a Tarantool team member will write an acknowledgment, or some
questions, or suggestions for a workaround.

5.6 Pennunkauyunsa

Replication allows multiple Tarantool instances to work on copies of the same databases. The databases are
kept in sync because each instance can communicate its changes to all the other instances.

This chapter includes the following sections:

5.6.1 ApxuTekTypa mMexaHu3Ma penjukauuu

Replication mechanism

A pack of instances which operate on copies of the same databases make up a replica set. Each instance in
a replica set has a role, master or replica.

A replica gets all updates from the master by continuously fetching and applying its write ahead log (WAL).
Each record in the WAL represents a single Tarantool data-change request such as INSERT, UPDATE
or DELETE, and is assigned a monotonically growing log sequence number (LSN). In essence, Tarantool
replication is row-based: each data-change request is fully deterministic and operates on a single tuple.
However, unlike a classical row-based log, which contains entire copies of the changed rows, Tarantool’s
WAL contains copies of the requests. For example, for UPDATE requests, Tarantool only stores the primary
key of the row and the update operations, to save space.

Invocations of stored programs are not written to the WAL. Instead, records of the actual data-change
requests, performed by the Lua code, are written to the WAL. This ensures that possible non-
determinism of Lua does not cause replication to go out of sync.

84 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

Data definition operations on temporary spaces, such as creating/dropping, adding indexes, truncating,
etc., are written to the WAL, since information about temporary spaces is stored in non-temporary system
spaces, such as boz.space. _space. Data change operations on temporary spaces are not written to the WAL
and are not replicated.

To create a valid initial state, to which WAL changes can be applied, every instance of a replica set requires
a start set of checkpoint files, such as .snap files for memtx and .run files for vinyl. A replica joining an
existing replica set, chooses an existing master and automatically downloads the initial state from it. This
is called an initial join.

When an entire replica set is bootstrapped for the first time, there is no master which could provide the
initial checkpoint. In such case, replicas connect to each other, elect a master, which then creates the starting
set of checkpoint files, and distributes it across all other replicas. This is called an automatic bootstrap
of a replica set.

When a replica contacts a master (there can be many masters) for the first time, it becomes part of a replica
set. On subsequent occasions, it should always contact a master in the same replica set. Once connected to
the master, the replica requests all changes that happened after the latest local LSN (there can be many
LSNs — each master has its own LSN).

Each replica set is identified by a globally unique identifier, called replica set UUID. The identifier is
created by the master which creates the very first checkpoint, and is part of the checkpoint file. It is stored
in system space box.space. schema. For example:

tarantool> box.space._schema:select{‘cluster'}

- - ['cluster', '6308acb9-9788-42fa-8101-2e0cb9d3c9al']

Additionally, each instance in a replica set is assigned its own UUID, when it joins the replica set. It is called
an instance UUID and is a globally unique identifier. This UUID is used to ensure that instances do not
join a different replica set, e.g. because of a configuration error. A unique instance identifier is also necessary
to apply rows originating from different masters only once, that is, implement multi-master replication. This
is why each row in the write ahead log, in addition to its log sequence number, stores the instance identifier
of the instance on which it was created. But using UUID as such an identifier would take too much space in
the write ahead log, thus a shorter integer number is assigned to the instance when it joins a replica set. This
number is then used to refer to the instance in the write ahead log. It is called instance id. All identifiers
are stored in system space boz.space. cluster. For example:

tarantool> box.space._cluster:select{}

- - [1, '88580bb5c-4474-43ab-bd2b-2409a9af80d2']

Here the instance ID is 1 (unique within the replica set), and the instance UUID is
88580b5c-4474-43ab-bd2b-2409a9af80d2 (globally unique).

Using shorter numeric identifiers is also handy to track the state of the entire replica set. For example,
boz.info.vclock describes the state of replication in regard to each connected peer.

box.info.vclock

- {1: 827, 2: 534}

Here vclock contains log sequence numbers (827 and 584) for instances with short identifiers 1 and 2.

5.6. Pennunkauuns 85




Tarantool, Beinyck 1.7.5

Replication setup

To enable replication, you need to specify two parameters in a box.cfg{} request:
e replication parameter which defines the replication source(s), and
e read_ only parameter which is true for a replica and false for a master.

Both these parameters are «dynamics. This allows a replica to become a master and vice versa on the fly
with the help of a box.cfg{} request.

Further we’re giving a detailed example of bootstrapping a replica set.
Replication roles: master and replica

Replication role (master or replica) is set in read_ only configuration parameter. The recommended role for
all-but-one instances in a replica set is «read-only» (replica).

In a master-replica configuration, every change that happens on the master will be visible on the replicas,

but not vice versa.
( master #1 replica #1

A simple two-instance replica set with the master on one machine and the replica on a different machine
provides two benefits:

e failover, because if the master goes down then the replica can take over, and
¢ load balancing, because clients can connect to either the master or the replica for read requests.

In a master-master configuration (also called «multi-master»), every change that happens on either
instance will be visible on the other one.

( master #1

master #2

master #3

The failover benefit in this case is still present, and the load-balancing benefit is enhanced, because
any instance can handle both read and write requests. Meanwhile, for multi-master configurations, it is
necessary to understand the replication guarantees provided by the asynchronous protocol that Tarantool
implements.

Tarantool multi-master replication guarantees that each change on each master is propagated to all instances
and is applied only once. Changes from the same instance are applied in the same order as on the originating

86 FnaBa 5. Pykosopgcrso nosnb3osarens



Tarantool, Beinyck 1.7.5

instance. Changes from different instances, however, can mix and apply in a different order on different
instances. This may lead to replication going out of sync in certain cases.

For example, assuming the database is only appended to (i.e. it contains only insertions), it is safe to set each
instance to a master. If there are also deletions, but it is not mission critical that deletion happens in the
same order on all replicas (e.g. the DELETE is used to prune expired data), a master-master configuration
is also safe.

UPDATE operations, however, can easily go out of sync. For example, assignment and increment are not
commutative, and may yield different results if applied in different order on different instances.

More generally, it is only safe to use Tarantool master-master replication if all database changes are
commutative: the end result does not depend on the order in which the changes are applied. You can
start learning more about conflict-free replicated data types here.

Replication topologies: cascade, ring and full mesh

Replication topology is set in replication configuration parameter. The recommended topology is a full
mesh, because it makes potential failover easy.

Some database products offer cascading replication topologies: creating a replica on a replica. Tarantool
does not recommend such setup.

The problem with a cascading replica set is that some instances have no connection to other instances and
may not receive changes from them. One essential change that must be propagated across all instances in
a replica set is an entry in box.space._cluster system space with replica set UUID. Without knowing
a replica set UUID, a master refuses to accept connections from such instances when replication topology
changes. Here is how this can happen:

5.6. Pennunkauuns 87


https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

Tarantool, Beinyck 1.7.5

instance #1
instance #2
instance #3

instance #1
instance #2
instance #3

instance #1
instance #2
DC #1

We have a chain of three instances. Instance #1 contains entries for instances #1 and #2 in its _cluster
space. Instances #2 and #3 contain entries for instances #1, #2 and #3 in their _cluster spaces.

, instance #1 instance #1
:R;gngg :; instance #2 instance #2
instance #3 instance #3

DC#

DC #2
o o
o — =

Now instance #2 is faulty. Instance #3 tries connecting to instance #1 as its new master, but the master
refuses the connection since it has no entry for instance #3.

Ring replication topology is, however, supported:

DC #1 DC #2

—r

So, if you need a cascading topology, you may first create a ring to ensure all instances know each other’s
UUID, and then disconnect the chain in the place you desire.

A stock recommendation for a master-master replication topology, however, is a full mesh:

88

FnaBsa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

master #2

master #3

You then can decide where to locate instances of the mesh — within the same data center, or spread across
a few data centers. Tarantool will automatically ensure that each row is applied only once on each instance.
To remove a degraded instance from a mesh, simply change replication configuration parameter.

This ensures full cluster availability in case of a local failure, e.g. one of the instances failing in one of the
data centers, as well as in case of an entire data center failure.

The maximal number of replicas in a mesh is 32.

5.6.2 Bootstrapping a replica set

Master-replica bootstrap

Let’s first bootstrap a simple master-replica set containing two instances, each located on its own machine.
For easier administration, we make the instance files almost identical.

( master #1 replica #1

Here is an example of the master’s instance file:

-- instance file for the master

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master URI

'replicator:password@192.168.0.102:3301'}, -- replica URI

read_only = false

}

box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication') -- grant replication role

box.schema.space.create('"test")

box.space.test:create_index("primary")

print('box.once executed on master')
end)

where:

e listen parameter from box.cfg{} defines a URI (port 3301 in our example), on which the master can
accept connections from replicas.

e replication parameter defines the URIs at which all instances in the replica set can accept connections.
It includes the replica’s URI as well, although the replica is not a replication source right now.

5.6. Pennunkauuns 89




Tarantool, Beinyck 1.7.5

Ilpumeuanme: For security reasons, we recommend to prevent unauthorized replication sources by
associating a password with every user that has a replication role. That way, the URI for replication
parameter must have the long form username:password@host:port.

e read_ only parameter enables data-change operations on the instance and makes this Tarantool instance
act as a master, not as a replica. That’s the only parameter in our instance files that will differ.

e box.once() function contains database initialization logic that should be executed only once during the
replica set lifetime.

In this example, we create a space with a primary index, and a user for replication purposes. We also say
print('box.once executed on master') to see later in console whether box.once() is executed.

ITpumeuanme: Replication requires privileges. We can grant privileges for accessing spaces directly to the
user who will start the instance. However, it is more usual to grant privileges for accessing spaces to a role,
and then grant the role to the user who will start the replica.

Here we use Tarantool’s predefined role named «replication» which by default grants «reads privileges for
all database objects («universe»), and we can further set up privileges for this role as required.

In the replica’s instance file, we only set read-only parameter to «trues, and say print ('box.once executed
on replica') to make sure that box.once() is not executed more than once. Otherwise the replica’s instance
file is fully identical to the master’s instance file.

-- instance file for the replica

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master URI

'replicator:password@192.168.0.102:3301'}, -- replica URI

read_only = true

}

box.once("schema'", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant ('replicator', 'replication') -- grant replication role

box.schema.space.create('"test")

box.space.test:create_index ("primary")

print ('box.once executed on replica')
end)

Ilpnmeuanume: The replica does not inherit the master’s configuration parameters, such as those making
the checkpoint daemon run on the master. To get the same behavior, please set the relevant parameters
explicitly so that they are the same on both master and replica.

Now we can launch the two instances. The master. ..

$ # launching the master

$ tarantool master.lua

2017-06-14 14:12:03.847 [18933] main/101/master.lua C> version 1.7.4-52-g980d430092

2017-06-14 14:12:03.848 [18933] main/101/master.lua C> log level 5

2017-06-14 14:12:03.849 [18933] main/101/master.lua I> mapping 268435456 bytes for tuple arena...

2017-06-14 14:12:03.859 [18933] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. I> can't connect to master

2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. coio.cc:105 !> SystemErrory,

—conmect, called on fd t4, aka 192.168.0. 1027567367 Commection refused (continues on next page)

90 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 14:12:03.861 [18933] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4
—at 192.168.0.101:3301

2017-06-14 14:12:19.878 [18933] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4,
—at 192.168.0.102:3301

2017-06-14 14:12:19.879 [18933] main/101/master.lua I> initializing an empty data directory
2017-06-14 14:12:19.908 [18933] snapshot/101/main I> saving snapshot ~/var/lib/tarantool/master/
—00000000000000000000. snap. inprogress'

2017-06-14 14:12:19.914 [18933] snapshot/101/main I> done

2017-06-14 14:12:19.914 [18933] main/101/master.lua I> vinyl checkpoint done

2017-06-14 14:12:19.917 [18933] main/101/master.lua I> ready to accept requests

2017-06-14 14:12:19.918 [18933] main/105/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:12:19.918 [18933] main/105/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING:,
—Instance bootstrap hasn't finished yet

box.once executed on master

2017-06-14 14:12:19.920 [18933] main C> entering the event loop

... (yep, box.once() got executed on the master) — and the replica:

$ # launching the replica

$ tarantool replica.lua

2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> log level 5

2017-06-14 14:12:19.487 [18934] main/101/replica.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:12:19.494 [18934] iproto/101/main I> binary: bound to [::]1:3311

2017-06-14 14:12:19.495 [18934] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4
—at 192.168.0.101:3301

2017-06-14 14:12:19.495 [18934] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4,
—at 192.168.0.102:3302

2017-06-14 14:12:19.496 [18934] main/104/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:12:19.496 [18934] main/104/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING:,
—Instance bootstrap hasn't finished yet

In both logs, there are messages saying that the replica got bootstrapped from the master:

$ # bootstrapping the replica (from the master's log)

< 0>

2017-06-14 14:12:20.503 [18933] main/106/main I> initial data sent.

2017-06-14 14:12:20.505 [18933] relay/[::ffff:192.168.0.101]:/101/main I> recover from ~/var/lib/
—tarantool/master/00000000000000000000.x1og"

2017-06-14 14:12:20.505 [18933] main/106/main I> final data sent.

2017-06-14 14:12:20.522 [18933] relay/[::ffff:192.168.0.101]:/101/main I> recover from ~/Users/e.
—»shebunyaeva/work/tarantool-test-repl/master_dir/00000000000000000000.x1log"

2017-06-14 14:12:20.922 [18933] main/105/applier/replicator@192.168.0. I> authenticated

$ # bootstrapping the replica (from the replica's log)

<.o002

2017-06-14 14:12:20.498 [18934] main/104/applier/replicator@192.168.0. I> authenticated
2017-06-14 14:12:20.498 [18934] main/101/replica.lua I> bootstrapping replica from 192.168.0.
—101:3301

2017-06-14 14:12:20.512 [18934] main/104/applier/replicator@192.168.0. I> initial data received
2017-06-14 14:12:20.512 [18934] main/104/applier/replicator@192.168.0. I> final data received
2017-06-14 14:12:20.517 [18934] snapshot/101/main I> saving snapshot ~/var/lib/tarantool/replica/
—00000000000000000005. snap. inprogress'

2017-06-14 14:12:20.518 [18934] snapshot/101/main I> done

2017-06-14 14:12:20.519 [18934] main/101/replica.lua I> vinyl checkpoint done

(continues on next page)

5.6. Pennunkauuns 91




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

2017-06-14 14:12:20.520 [18934] main/101/replica.lua I> ready to accept requests

2017-06-14 14:12:20.520 [18934] main/101/replica.lua I> set 'read_only' configuration option toy
—true

2017-06-14 14:12:20.520 [18934] main C> entering the event loop

Notice that box.once() was executed only at the master, although we added box.once() to both instance
files.

We could as well launch the replica first:

$ # launching the replica

$ tarantool replica.lua

2017-06-14 14:35:36.763 [18952] main/101/replica.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:35:36.765 [18952] main/101/replica.lua C> log level 5

2017-06-14 14:35:36.765 [18952] main/101/replica.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:35:36.772 [18952] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. I> can't connect to master
2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. coio.cc:105 !> SystemErrory,
—connect, called on fd 13, aka 192.168.0.101:56820: Connection refused

2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 14:35:36.772 [18952] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4,
—at 192.168.0.102:3301

. and the master later:

$ # launching the master

$ tarantool master.lua

2017-06-14 14:35:43.701 [18953] main/101/master.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:35:43.702 [18953] main/101/master.lua C> log level 5

2017-06-14 14:35:43.702 [18953] main/101/master.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:35:43.709 [18953] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 14:35:43.709 [18953] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4
—at 192.168.0.102:3301

2017-06-14 14:35:43.709 [18953] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4,
—at 192.168.0.101:3301

2017-06-14 14:35:43.709 [18953] main/101/master.lua I> initializing an empty data directory
2017-06-14 14:35:43.721 [18953] snapshot/101/main I> saving snapshot ~/var/lib/tarantool/master/
—00000000000000000000. snap. inprogress'

2017-06-14 14:35:43.722 [18953] snapshot/101/main I> done

2017-06-14 14:35:43.723 [18953] main/101/master.lua I> vinyl checkpoint done

2017-06-14 14:35:43.723 [18953] main/101/master.lua I> ready to accept requests

2017-06-14 14:35:43.724 [18953] main/105/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:35:43.724 [18953] main/105/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING:,
—Instance bootstrap hasn't finished yet

box.once executed on master

2017-06-14 14:35:43.726 [18953] main C> entering the event loop

2017-06-14 14:35:43.779 [18953] main/103/main I> initial data sent.

2017-06-14 14:35:43.780 [18953] relay/[::ffff:192.168.0.101]:/101/main I> recover from ~/var/lib/
—tarantool/master/00000000000000000000.x1og"

2017-06-14 14:35:43.780 [18953] main/103/main I> final data sent.

2017-06-14 14:35:43.796 [18953] relay/[::ffff:192.168.0.102]:/101/main I> recover from ~/var/lib/
—tarantool/master/00000000000000000000.x1og"

2017-06-14 14:35:44.726 [18953] main/105/applier/replicator@192.168.0. I> authenticated

In this case, the replica would wait for the master to become available, so the launch order doesn’t matter.
Our box.once () logic would also be executed only once, at the master.

92 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

$ # the replica has eventually connected to the master

$ # and got bootstrapped (from the replica’s log)

2017-06-14 14:35:43.777 [18952] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4,
—at 192.168.0.101:3301

2017-06-14 14:35:43.777 [18952] main/104/applier/replicator@192.168.0. I> authenticated
2017-06-14 14:35:43.777 [18952] main/101/replica.lua I> bootstrapping replica from 192.168.0.
—199:3310

2017-06-14 14:35:43.788 [18952] main/104/applier/replicator@192.168.0. I> initial data received
2017-06-14 14:35:43.789 [18952] main/104/applier/replicator@192.168.0. I> final data received
2017-06-14 14:35:43.793 [18952] snapshot/101/main I> saving snapshot ~/var/lib/tarantool/replica/
—00000000000000000005. snap. inprogress'

2017-06-14 14:35:43.793 [18952] snapshot/101/main I> done

2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> vinyl checkpoint done

2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> ready to accept requests

2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> set 'read_only' configuration option toy
—true

2017-06-14 14:35:43.795 [18952] main C> entering the event loop

Controlled failover

To perform a controlled failover, that is, swap the roles of the master and replica, all we need to do is to
set read_only=true at the master, and read_only=false at the replica. The order of actions is important
here. If a system is running in production, we don’t want concurrent writes happen both at the replica and
the master. Nor do we want the new replica to accept any writes until it has finished fetching all replication
data from the old master. To compare replica and master state, we can use boz.info.signature.

1. Set read_only=true at the master.

# at the master
tarantool> box.cfg{read_only=true}

2. Record the master’s current position with box.info.signature, containing the sum of all LSNs in the
master’s vector clock.

# at the master
tarantool> box.info.signature

3. Wait until the replica’s signature is the same as the master’s.

# at the replica
tarantool> box.info.signature

4. Set read_only=false at the replica to enable write operations.

# at the replica
tarantool> box.cfg{read_only=false}

These 4 steps ensure that the replica doesn’t accept new writes until it’s done fetching writes from the
master.

Master-master bootstrap

Now let’s bootstrap a two-instance master-master set. For easier administration, we make master#1 and
master# 2 instance files fully identical.

5.6. Pennunkauuns 93



Tarantool, Beinyck 1.7.5

<=

We re-use the master’s instance file from the master-replica ezample above.

-- instance file for any of the two masters

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- masterl URI

'replicator:password@192.168.0.102:3301'}, -- master2 URI

read_only = false

}

box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication') -- grant replication role

box.schema.space.create("test")

box.space.test:create_index("primary")

print ('box.once executed on master #1')
end)

In replication parameter, we define the URIs of both masters in the replica set and say print('box.once
executed on master #1') to see when and where the box.once () logic is executed.

Now we can launch the two masters. Again, the launch order doesn’t matter. The box.once() logic will also
be executed only once, at the master which is elected as the replica set leader at bootstrap.

$ # launching master #1

$ tarantool masterl.lua

2017-06-14 15:39:03.062 [47021] main/101/masterl.lua C> version 1.7.4-52-g980d30092

2017-06-14 15:39:03.062 [47021] main/101/masterl.lua C> log level 5

2017-06-14 15:39:03.063 [47021] main/101/masterl.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 15:39:03.065 [47021] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 I> can't connect to master
2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 coio.cc:107 !>
—SystemError connect, called on fd 14, aka 192.168.0.102:57110: Connection refused

2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 I> will retry every 1,
—second

2017-06-14 15:39:03.065 [47021] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4,
—at 192.168.0.101:3301

2017-06-14 15:39:08.070 [47021] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4y,
—at 192.168.0.102:3301

2017-06-14 15:39:08.071 [47021] main/105/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 15:39:08.071 [47021] main/101/masterl.lua I> bootstrapping replica from 192.168.0.
—102:3301

2017-06-14 15:39:08.073 [47021] main/105/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 15:39:08.074 [47021] main/105/applier/replicator@192.168.0.10 I> final data received
2017-06-14 15:39:08.074 [47021] snapshot/101/main I> saving snapshot ~/Users/e.shebunyaeva/work/
—tarantool-test-repl/masterl_dir/00000000000000000008.snap.inprogress'’

2017-06-14 15:39:08.074 [47021] snapshot/101/main I> done

2017-06-14 15:39:08.076 [47021] main/101/masterl.lua I> vinyl checkpoint done

2017-06-14 15:39:08.076 [47021] main/101/masterl.lua I> ready to accept requests

box.once executed on master #1

2017-06-14 15:39:08.077 [47021] main C> entering the event loop

94 FnaBsa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

$ # launching master #2

$ tarantool master2.lua

2017-06-14 15:39:07.452 [47022] main/101/master2.lua C> version 1.7.4-52-g980d430092

2017-06-14 15:39:07.453 [47022] main/101/master2.lua C> log level 5

2017-06-14 15:39:07.453 [47022] main/101/master2.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 15:39:07.455 [47022] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 15:39:07.455 [47022] main/104/applier/replicator@192.168.0.19 I> remote master is 1.7.4,
—at 192.168.0.101:3301

2017-06-14 15:39:07.455 [47022] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4,
—at 192.168.0.102:3301

2017-06-14 15:39:07.455 [47022] main/101/master2.lua I> initializing an empty data directory
2017-06-14 15:39:07.457 [47022] snapshot/101/main I> saving snapshot ~/Users/e.shebunyaeva/work/
—tarantool-test-repl/master2_dir/00000000000000000000. snap.inprogress'

2017-06-14 15:39:07.457 [47022] snapshot/101/main I> done

2017-06-14 15:39:07.458 [47022] main/101/master2.lua I> vinyl checkpoint done

2017-06-14 15:39:07.459 [47022] main/101/master2.lua I> ready to accept requests

2017-06-14 15:39:07.460 [47022] main C> entering the event loop

2017-06-14 15:39:08.072 [47022] main/103/main I> initial data sent.

2017-06-14 15:39:08.073 [47022] relay/[::ffff:192.168.0.102]:/101/main I> recover from " /Users/e.
—»shebunyaeva/work/tarantool-test-repl/master2_dir/00000000000000000000.x1og"

2017-06-14 15:39:08.073 [47022] main/103/main I> final data sent.

2017-06-14 15:39:08.077 [47022] relay/[::ff£ff:192.168.0.102]:/101/main I> recover from " /Users/e.
—»shebunyaeva/work/tarantool-test-repl/master2_dir/00000000000000000000.x1og"

2017-06-14 15:39:08.461 [47022] main/104/applier/replicator@192.168.0.10 I> authenticated

5.6.3 Adding instances

Adding a replica

<=

replica #2

To add a second replica instance to the master-replica set from our bootstrapping example, we need an
analog of the instance file that we created for the first replica in that set:

-- instance file for replica #2

box.cfg{
listen = 3301,
replication = ('replicator:password@192.168.0.101:3301', -- master URI
'replicator:password@192.168.0.102:3301', -- replica #1 URI
'replicator:password@192.168.0.103:3301'), -- replica #2 URI
read_only = true
}
box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant ('replicator', 'replication’) -- grant replication role

(continues on next page)

5.6. Pennunkauuns 95




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

box.schema.space.create("test")

box.space.test:create_index ("primary")

print ('box.once executed on replica #2')
end)

Here we add replica #2 URI to replication parameter, so now it contains three URISs.

After we launch the new replica instance, it gets connected to the master instance and retrieves the master’s
write ahead log and snapshot files:

$ # launching replica #2

$ tarantool replica2.lua

2017-06-14 14:54:33.927 [46945] main/101/replica2.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:54:33.927 [46945] main/101/replica2.lua C> log level b5

2017-06-14 14:54:33.928 [46945] main/101/replica2.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:54:33.930 [46945] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4,
—at 192.168.0.101:3301

2017-06-14 14:54:33.930 [46945] main/104/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 14:54:33.930 [46945] main/101/replica2.lua I> bootstrapping replica from 192.168.0.
—101:3301

2017-06-14 14:54:33.933 [46945] main/104/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 14:54:33.933 [46945] main/104/applier/replicator©192.168.0.10 I> final data received
2017-06-14 14:54:33.934 [46945] snapshot/101/main I> saving snapshot ~/var/lib/tarantool/replica2/
—00000000000000000010. snap. inprogress'

2017-06-14 14:54:33.934 [46945] snapshot/101/main I> done

2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> vinyl checkpoint done

2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> ready to accept requests

2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> set 'read_only' configuration option toy
—true

2017-06-14 14:54:33.936 [46945] main C> entering the event loop

Since we’re adding a read-only instance, there is no need to dynamically update replication parameter on
the other running instances. This update would be required if we added a master instance.

However, we recommend to specify replica #3 URI in all instance files of the replica set. This will keep
all the files consistent with each other and with the current replication topology, and so will help to avoid
configuration errors in case of further reconfigurations and replica set restart.

Adding a master

{ master #1

master #3

To add a third master instance to the master-master set from our bootstrapping example, we need an
analog of the instance files that we created to bootstrap the other master instances in that set:

96 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

-- instance file for master #3

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master#l URI
'replicator:password@192.168.0.102:3301', -- master#2 URI
'replicator:password@192.168.0.103:3301'}, -- master#3 URI
read_only = true, -- temporarily read-only
}
box.once("schema'", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant ('replicator', 'replication’) -- grant "replication" role

box.schema.space.create("test")
box.space.test:create_index ("primary")
end)

Here we make the following changes:
e Add master#3 URI to replication parameter.

e Temporarily specify read_ only=true to disable data-change operations on the instance. After launch,
master #3 will act as a replica until it retrieves all data from the other masters in the replica set.

After we launch the third master instance, it gets connected to the other master instances and retrieves their
write ahead logs and snapshot files:

$ # launching master #3

$ tarantool master3.lua

2017-06-14 17:10:00.556 [47121] main/101/master3.lua C> version 1.7.4-52-g980d430092

2017-06-14 17:10:00.557 [47121] main/101/master3.lua C> log level 5

2017-06-14 17:10:00.557 [47121] main/101/master3.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 17:10:00.559 [47121] iproto/101/main I> binary: bound to [::]1:3301

2017-06-14 17:10:00.559 [47121] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4y,
—at 192.168.0.101:3301

2017-06-14 17:10:00.559 [47121] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4y,
—at 192.168.0.102:3301

2017-06-14 17:10:00.559 [47121] main/106/applier/replicator@192.168.0.10 I> remote master is 1.7.4
—at 192.168.0.103:3301

2017-06-14 17:10:00.559 [47121] main/105/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 17:10:00.559 [47121] main/101/master3.lua I> bootstrapping replica from 192.168.0.
—102:3301

2017-06-14 17:10:00.562 [47121] main/105/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 17:10:00.562 [47121] main/105/applier/replicator@192.168.0.10 I> final data received
2017-06-14 17:10:00.562 [47121] snapshot/101/main I> saving snapshot °/Users/e.shebunyaeva/work/
—tarantool-test-repl/master3_dir/00000000000000000009. snap.inprogress'

2017-06-14 17:10:00.562 [47121] snapshot/101/main I> done

2017-06-14 17:10:00.564 [47121] main/101/master3.lua I> vinyl checkpoint done

2017-06-14 17:10:00.564 [47121] main/101/master3.lua I> ready to accept requests

2017-06-14 17:10:00.565 [47121] main/101/master3.lua I> set 'read_only' configuration option toy
—true

2017-06-14 17:10:00.565 [47121] main C> entering the event loop

2017-06-14 17:10:00.565 [47121] main/104/applier/replicator@192.168.0.10 I> authenticated

Next, we add master#3 URI to replication parameter on the existing two masters. Replication-related
parameters are dynamic, so we only need to make a box.cfg{} request on each of the running instances:

# adding master #3 URI to replication sources
tarantool> box.cfg{replication =
> {'replicator:password@192.168.0.101:3301",

(continues on next page)

5.6. Pennunkauuns 97




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> 'replicator:password@192.168.0.102:3301",
> 'replicator:password@192.168.0.103:3301'}}

When master #3 catches up with the other masters state, we can disable read-only mode for this instance:

# making master #3 a real master
tarantool> box.cfg{read_only=false}

We also recommend to specify master #3 URI in all instance files in order to keep all the files consistent
with each other and with the current replication topology.

5.6.4 Removing instances

To politely remove an instance from a replica set, follow these steps:

1. On the instance, run box.cfg{} with a blank replication source:

tarantool> box.cfg{replication='"}

The other instances in the replica set will carry on. If later the removed instance rejoins, it will receive
all the updates that the other instances made while it was away.

2. If the instance is decommissioned forever, delete the instance’s record from the following locations:

a. replication parameter at all running instances in the replica set:

tarantool> box.cfg{replication=...}

b. box.space. cluster on any master instance in the replica set. For example, a record with instance
id = 3:

tarantool> box.space._cluster:select{}

- - [1, '913f99c8-aee3-47f2-b414-53ed0ec5bf27']
- [2, 'eaclaee7-cfeb-46cc-8503-3f8ebdc7dele']
- [3, '97f2d65f-2e03-4dc8-8df3-2469bd9ceble ']

tarantool> box.space._cluster:delete(3)

- [3, '97f2d65f-2e03-4dc8-8df3-2469bd9ceble']

5.6.5 Monitoring a replica set

To learn what instances belong in the replica set, and obtain statistics for all these instances, use box.info.
replication request:

98 FnaBa 5. Pykosopgcrso nosnb3osarens



Tarantool, Beinyck 1.7.5

box.info.replication
replication:
1:
id: 1
uuid: b8a7db60-745f-41b3-bf68-5fcce7ale019
lsn: 88

id: 2
uuid: cd3c7da2-a638-4c5d-aeb63-e7767c3a6896
1sn: 31
upstream:
status: follow
idle: 43.187747001648
lag: O
downstream:
vclock: {1: 31}
3:
id: 3
uuid: e38ef895-5804-43b9-81ac-9f2cd872b9c4
lsn: 54
upstream:
status: follow
idle: 43.187621831894
lag: 2
downstream:
vclock: {1: 54}

This report is for a master-master replica set of three instances, each having its own instance id, UUID and

log sequence number.
( master #1

master #2

master #3

The request was issued at master #1, and the reply includes statistics for the other two masters, given in
regard to master #1.

The primary indicators of replication health are idle and lag parameters (see reference on
boz.info.replication for details).

5.6.6 BoccTtaHosneHune nocne cbos

«Degraded state» is a situation when the master becomes unavailable — due to hardware or network failure,
or due to a programming bug.

5.6. Pennunkauuns 99



Tarantool, Beinyck 1.7.5

replica #1

In a master-replica set, if a master disappears, error messages appear on the replicas stating that the

connection is lost:

$ # messages from a replica's log

2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. I> can't read row
2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. coio.cc:349 !> SystemError
unexpected EOF when reading from socket, called on fd 17, aka 192.168.0.101:57815,

peer of 192.168.0.101:3301: Broken pipe

2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]:/101/main I> the replica has closed,,

—its socket, exiting

2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]:/101/main C> exiting the relay loop

. and the master’s status is reported as «disconnecteds:

# report from replica #1
tarantool> box.info.replication
- 1:
id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
1lsn: 542
upstream:
status: disconnected
idle: 182.36929893494
message: connect, called on fd 13, aka 192.168.0.101:58244
lag: 0.00026607513427734

id: 2
uuid: fb252ac7-5c34-4459-84d0-54d248b8c87e
lsn: O

id: 3
uuid: £d7681d8-255f-4237-b8bb-c4£fb9d99024d
1sn: 0O
downstream:
vclock: {1: 542}

# report from replica #2
box.info.replication

- 1:
id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
1lsn: 542

(continues on next page)

100 FnaBa 5. Pykosopgcrso nosnb3osarens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

upstream:
status: disconnected
idle: 186.76988101006
message: connect, called on fd 13, aka 192.168.0.101:58253
lag: 0.00027203559875488

id: 2
uuid: fb252ac7-5c34-4459-84d0-54d248b8c87e
1sn: 0O
upstream:
status: follow
idle: 186.76960110664
lag: 0.00020599365234375

id: 3
uuid: £d7681d8-255f-4237-b8bb-c4fb9d99024d
lsn: O

To declare that one of the replicas must now take over as a new master:
1. Make sure that the old master is gone for good:
e change network routing rules to avoid any more packets being delivered to the master, or
e shut down the master instance, if you have access to the machine, or
e power off the container or the machine.

2. Say box.cfg{read_only=false, listen=URI} on the replica, and box.cfg{replication=URI} on
the other replicas in the set.

ITpumeuanme: If there are updates on the old master that were not propagated before the old master
went down, re-apply them manually to the new master using tarantoolctl cat and tarantoolctl play
commands.

There is no automatic way for a replica to detect that the master is gone forever, since sources of failure and
replication environments vary significantly. So the detection of degraded state requires an external observer.

5.6.7 Reseeding a replica

If any of a replica’s .xlog/.snap/.run files are corrupted or deleted, you can «re-seed» the replica:

1. Stop the replica and destroy all local database files (the ones with extensions
.xlog/.snap/.run/.inprogress).

2. Delete the replica’s record from the following locations:
a. replication parameter at all running instances in the replica set.
b. box.space._cluster on the master instance.
See section Removing instances for details.

3. Restart the replica with the same instance file to contact the master again. The replica will then catch
up with the master by retrieving all the master’s tuples.

5.6. Pennunkauuns 101




Tarantool, Beinyck 1.7.5

ITpumeuanme: Remember that this procedure works only if the master’s WAL files are present.

5.6.8 lNpepoTBpaweHue aydonupyrowmnxca aemncreui
Tarantool guarantees that every update is applied only once at every replica. However, due to asynchronous

nature of the replication, the order of updates is not guaranteed. Further we analyse this problem in more
details, provide examples of replication going out of sync, and suggest solutions.

Replication stops

In a replica set of two masters, suppose master #1 tries to do something that master #2 has already done.
For example, try to simultaneously insert a tuple with the same unique key:

tarantool> box.space.tester:insert{l, 'data'}

This would cause an error saying Duplicate key exists in unique index 'primary' in space
'tester' and the replication would be stopped.

$ # error messages from master #1

2017-06-26 21:17:03.233 [30444] main/104/applier/rep_user@100.96.166.1 I> can't read row
2017-06-26 21:17:03.233 [30444] main/104/applier/rep_user@100.96.166.1 memtx_hash.cc:226 E> ER_
—TUPLE_FOUND:

Duplicate key exists in unique index 'primary' in space 'tester'

2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178]/101/main I> the replica has closed,,
—its socket, exiting

2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178]1/101/main C> exiting the relay loop

$ # error messages from master #2

2017-06-26 21:17:03.233 [30445] main/104/applier/rep_user@100.96.166.1 I> can't read row
2017-06-26 21:17:03.233 [30445] main/104/applier/rep_user@100.96.166.1 memtx_hash.cc:226 E> ER_
—TUPLE_FQOUND:

Duplicate key exists in unique index 'primary' in space 'tester'

2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178]/101/main I> the replica has closed,,
—its socket, exiting

2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178]1/101/main C> exiting the relay loop

If we check replication statuses with box.info, we’ll see that replication at master #1 is stopped (1.
upstream.status = stopped). Additionally, no data is replicated from that master (section 1.downstream
is missing in the report), because the downstream has encountered the same error:

# replication statuses (report from master #3)
tarantool> box.info
- version: 1.7.4-52-g980d30092

id: 3

ro: false

vclock: {1: 9, 2: 1000000, 3: 3}

uptime: 557
Isn: 3
vinyl: []
cluster:
uuid: 34d13bla-£851-45bb-8£57-57489d3b3c8b
pid: 30445

(continues on next page)

102 FnaBa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

status: running
signature: 1000012
replication:

1:

id: 1
uuid: 7ab6dee7-dc0f-4477-af2b-0e63452573cf
Isn: 9
upstream:
status: stopped
idle: 445.8626639843
message: Duplicate key exists in unique index 'primary' in space 'tester
lag: 0.00050592422485352

id: 2
uuid: 9afbe2d9-db84-4d05-9a7b-e0cbbf861e28
1sn: 1000000
upstream:
status: follow
idle: 201.99915885925
lag: 0.0015020370483398
downstream:
vclock: {1: 8, 2: 1000000, 3: 3}

id: 3
uuid: e826a667-eed7-48d5-a290-64299b159571
lsn: 3

uuid: e826a667-eed7-48d5-a290-64299b159571

When replication is later manually resumed:

# resuming stopped replication (at all masters)
tarantool> original_value = box.cfg.replication
tarantool> box.cfg{replication={}}

tarantool> box.cfg{replication=original_value}

... the faulty row in the write ahead log files is skipped.

Replication runs out of sync

In a master-master cluster of two instances, suppose we make the following operation:

tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})

When we get this operation applied on both instances in the replica set:

-- at

master #1

tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})

-- at

master #2

tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})

. we can have the following results, depending on the order of execution:

e cach master’s row contains the uuid from master #1,

e cach master’s row contains the uuid from master #2,

5.6. Pennunkauuns

103




Tarantool, Beinyck 1.7.5

e master #1 has the uuid of master #2, and vice versa.

Commutative changes

The cases described in previous paragraphs represent examples of non-commutative operations, i.e.
operations, which result depends on the execution order. On the contrary, for commutative operations,
the execution order doesn’t matter.

Consider for example the following command:

tarantool> box.space.tester:upsert{{1, 0}, {{'+', 2, 1)}

This operation is commutative: we get the same result no matter in which order the update is applied on
the other masters.

5.7 KoHHekTOpbI

B »roit rirase onucanbt API 11 pa3iudHbIX S36IKOB TPOrPAMMHUPOBAHMS.

5.7.1 lNpotokon

Tarantool’s binary protocol was designed with a focus on asynchronous I/O and easy integration with proxies.
Each client request starts with a variable-length binary header, containing request id, request type, instance
id, log sequence number, and so on.

Tax2ke B 3aro/I0BKe 00s13aTE/IbHO YKA3bIBAETCS JIMHA, 3AMPOCa, 9TO obsierdaer o6paboTky manabix. OTBET HA
3alIpOC IIOCBLIAETCA II0 Me€pe€ I'OTOBHOCTH. B 3aroJIOBKe€ OTBETa yKa3bIBa€TCA TOT 2Ke I/I,D;eHTI/I(l)I/IKaTOp H THII
3aIpOCa, 9TO ¥ B M3HaYaJIbHOM 3ampoce. [1o uaenrudukaropy MOXKHO JIEFKO COOTHECTH 3allPOC C OTBETOM,
JlaykKe eCJIM OTBET OBLJI TIOMYYeH He B TOPSIKE OTCHIIKH 3aITPOCOB.

Braasarncs B TonkocTu peanm3saruu Tarantool-mpoTokosa Hy»KHO TOIHKO TPpH pa3paboTKe HOBOTO KOHHEKTOPA,
ans Tarantool’a — cM. noamnoe onucanue buraprozo npomoxoaa 6 Tarantool’e B Buae annorupoBanHbix BNF-
nuarpamm (Backus-Naur Form). B ocrasnbHbIX ciydasix JOCTaTOYHO B34Th y2Ke CYIIECTBYIONIMN KOHHEKTOD
JITsl Hy?KHOT'O BaM $I3bIKa [IPOIrPAMMUPOBaHusA. Takue KOHHEKTOPBI MO3BOJISAIOT JIEPKO XPAHUTH CTPYKTYPbI
JIAHHBIX U3 PA3HBIX A3BIKOB B (popmare Tarantool’a.

5.7.2 lMpumep nakera gaHHbIX

The Tarantool API exists so that a client program can send a request packet to a server instance, and receive
a response. Here is an example of a what the client would send for box.space[513] :insert{'A', 'BB'}.
The BNF description of the components is on the page about Tarantool’s binary protocol.

KomnoHeHT Baiit #0 | bant #1 | baiit #2 | baiit #3
KOJI, 1JIsI BCTaBKH 02

OCTaTOK 3aroJioBKa ... e .

qucso u3 2 uudp: ID npocrpancrsa cd 02 01

KO/I, )1 KOpTeXKa 21

qucso u3 1 uudpel: KonmmdecTsBo moseir = 2 | 92

crpoka u3 1 cumBosta: mose[1] al 41

CTPOKA U3 2 CUMBOJIOB: 110J1€[2] a2 42 42

104 FnaBa 5. PykoBopgctso nosib3oBatens



Tarantool, Beinyck 1.7.5

Now, you could send that packet to the Tarantool instance, and interpret the response (the page about
Tarantool’s binary protocol has a description of the packet format for responses as well as requests). But
it would be easier, and less error-prone, if you could invoke a routine that formats the packet according
to typed parameters. Something like response = tarantool_routine("insert", 513, "A", "B");. And
that is why APIs exist for drivers for Perl, Python, PHP, and so on.

5.7.3 Hactpoiika okpy>eHusi gast npumepos paboTbl C KOHHEKTOpaMu

This chapter has examples that show how to connect to a Tarantool instance via the Perl, PHP, Python,
node.js, and C connectors. The examples contain hard code that will work if and only if the following
conditions are met:

e the Tarantool instance (tarantool) is running on localhost (127.0.0.1) and is listening on port 3301
(box.cfg.listen = '3301'),

e space examples has id = 999 (box.space.examples.id = 999) and has a primary-key index for a
numeric field (box.space[999] .index[0] .parts[1].type = "unsigned"),

® J1JIsI TIOJIH30BATEJIS ,,guest’ HACTPOEHbI IPUBUIIETUN HA YTEHUE W 3AIUCD.

It is easy to meet all the conditions by starting the instance and executing this script:

box.cfg{listen=3301}

box.schema.space.create('examples',{id=999})
box.space.examples:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
box.schema.user.grant('guest', 'read,write', 'space', 'examples')
box.schema.user.grant('guest', 'read', 'space','_space')

5.7.4 Java

Cwum. http://github.com/tarantool/tarantool-java/.

5.7.5 Go

CwMm. https://github.com/mialinx/go-tarantool.

5.7.6 R

CuM. https://github.com/thekvs/tarantoolr.

5.7.7 Erlang

See Erlang tarantool driver.

5.7.8 Perl
The most commonly used Perl driver is tarantool-perl. It is not supplied as part of the Tarantool repository;
it must be installed separately. The most common way to install it is by cloning from GitHub.

To avoid minor warnings that may appear the first time tarantool-perl is installed, start with installing
some other modules that tarantool-perl uses, with CPAN, the Comprehensive Perl Archive Network:

5.7. KonHekTOpbI 105



http://github.com/tarantool/tarantool-java/
https://github.com/mialinx/go-tarantool
https://github.com/thekvs/tarantoolr
https://github.com/stofel/taran
https://github.com/tarantool/tarantool-perl
https://en.wikipedia.org/wiki/Cpan

Tarantool, Beinyck 1.7.5

$ sudo cpan install AnyEvent
$ sudo cpan install Devel::GlobalDestruction

Then, to install tarantool-perl itself, say:

git clone https://github.com/tarantool/tarantool-perl.git tarantool-perl
cd tarantool-perl

git submodule init

git submodule update --recursive

perl Makefile.PL

make

sudo make install

6 hH hH 6O L PO B

Here is a complete Perl program that inserts [99999, 'BB'] into space[999] via the Perl API. Before trying
to run, check that the server instance is listening at localhost:3301 and that the space examples exists,
as described earlier. To run, paste the code into a file named example.pl and say perl example.pl. The
program will connect using an application-specific definition of the space. The program will open a socket
connection with the Tarantool instance at localhost:3301, then send an space object:INSERT request,
then — if all is well — end without displaying any messages. If Tarantool is not running on localhost with
listen port = 3301, the program will print “Connection refused”.

#!/usr/bin/perl

use DR::Tarantool ':constant', 'tarantool';
use DR::Tarantool ':all';

use DR::Tarantool::MsgPack::SyncClient;

my $tnt = DR::Tarantool::MsgPack::SyncClient->connect(

host => '127.0.0.1"', # look for tarantool on localhost
port => 3301, # on port 3301
user => 'guest', # username. for 'guest' we do not also say

— 'password=>..."'

spaces => {
999 => { # definition of space[999] ...
space[999] name = 'exzamples'
space[999] field type is 'STR' if undefined
definition of space[999].fields ...
space[999].field[1] name='fieldl',type='NUM'
definition of space[999] indezes ...

name => 'examples',
default_type => 'STR',
fields => [ {
name => 'fieldl', type => 'NUM' } ],
indexes => {
0 =>{
name => 'primary', fields => [ 'fieldl' 1 } } } } );

®H OB R R W

$tnt->insert ('examples' => [ 99999, 'BB' ]);

The example program uses field type names ,STR* and ,NUM* instead of ,string“ and ,unsigned”, due to a
temporary Perl limitation.

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see the tarantool-perl repository.

5.7.9 PHP

The most commonly used PHP driver is tarantool-php. It is not supplied as part of the Tarantool repository;
it must be installed separately, for example with git. See installation instructions. in the driver’s README
file.

106 FnaBa 5. Pykosopgcrso nosnb3osarens



https://github.com/tarantool/tarantool-perl
https://github.com/tarantool/tarantool-php
https://github.com/tarantool/tarantool-php/blob/master/#installing-and-building

Tarantool, Beinyck 1.7.5

Here is a complete PHP program that inserts [99999, 'BB'] into a space named examples via the PHP
API. Before trying to run, check that the server instance is listening at Llocalhost:3301 and that the space
examples exists, as described earlier. To run, paste the code into a file named example.php and say php
-d extension="/tarantool-php/modules/tarantool.so example.php. The program will open a socket
connection with the Tarantool instance at localhost:3301, then send an INSERT request, then — if all is
well — print «Insert succeededs. If the tuple already exists, the program will print “Duplicate key exists in

unique index ,primary“ in space ,examples®’.

<?php
$tarantool = new Tarantool('localhost', 3301);

try {
$tarantool->insert ('examples', array(99999, 'BB'));
echo "Insert succeeded\n";

} catch (Exception $e) {
echo "Exception: ", $e->getMessage(), "\n";

}

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see tarantool/tarantool-php project at GitHub.

Besides, you can use an alternative PHP driver from another GitHub project: it includes a client (see
tarantool-php/client) and a mapper for that client (see tarantool-php/mapper).

5.7.10 Python

Jastee npuBouTCA NpUMEp IMOJHOLEHHON IIporpaMMbl HA s3bike Python, koropas ocyimiecrsiser BCTaBKYy
koprexa [99999, 'Value', 'Value'] B mpoCTpaHCTBO examples C MOMOIIBIO BHICOKOYPOBHEBOrO Tarantool
API nya a3bika Python.

#!/usr/bin/python
from tarantool import Connection

¢ = Connection("127.0.0.1", 3301)
result = c.insert("examples", (99999, 'Value', 'Value'))
print result

To prepare, paste the code into a file named example.py and install the tarantool-python connector
with either pip install tarantool>0.4 to install in /usr (requires root privilege) or pip install
tarantool>0.4 --user to install in ~ i.e. user’s default directory. Before trying to run, check that the
server instance is listening at localhost:3301 and that the space examples exists, as described earlier.
To run the program, say python example.py. The program will connect to the Tarantool server, will send
the INSERT request, and will not throw any exception if all went well. If the tuple already exists, the
program will throw tarantool.error.DatabaseError: (3, "Duplicate key exists in unique index
'primary' in space 'examples'").

The example program only shows one request and does not show all that’s necessary for good practice.
For that, please see tarantool-python project at GitHub. For an example of using Python API with queue
managers for Tarantool, see queue-python project at GitHub.

5.7.11 Node.js

The most commonly used node.js driver is the Node Tarantool driver. It is not supplied as part of the
Tarantool repository; it must be installed separately. The most common way to install it is with npm. For
example, on Ubuntu, the installation could look like this after npm has been installed:

5.7. KoHHekTOpBDI 107



https://github.com/tarantool/tarantool-php
https://github.com/tarantool-php/client
https://github.com/tarantool-php/mapper
http://github.com/tarantool/tarantool-python
https://github.com/tarantool/queue
https://github.com/tarantool/queue
https://github.com/tarantool/queue-python
https://github.com/KlonD90/node-tarantool-driver
https://www.sitepoint.com/beginners-guide-node-package-manager/

Tarantool, Beinyck 1.7.5

npm install tarantool-driver --global

Here is a complete node.js program that inserts [99999, 'BB'] into space[999] via the node.js API. Before
trying to run, check that the server instance is listening at localhost:3301 and that the space examples
exists, as described earlier. To run, paste the code into a file named example.rs and say node example.rs.
The program will connect using an application-specific definition of the space. The program will open a
socket connection with the Tarantool instance at localhost:3301, then send an INSERT request, then — if
all is well — end after saying «Insert succeededs. If Tarantool is not running on localhost with listen port
= 3301, the program will print “Connect failed”. If user ,,guest” user does not have authorization to connect,
the program will print «Auth failed». If the insert request fails for any reason, for example because the tuple
already exists, the program will print «Insert failed».

var TarantoolConnection = require('tarantool-driver');
var conn = new TarantoolConnection({port: 3301});
var insertTuple = [99999, "BB"];
conn. connect () .then(function() {
conn.auth("guest", "").then(function() {
conn.insert (999, insertTuple).then(function() {
console.log("Insert succeeded");
process.exit(0);
}, function(e) { console.log("Insert failed"); process.exit(1); });
}, function(e) { console.log("Auth failed"); process.exit(1); 1});
}, function(e) { console.log("Connect failed"); process.exit(1); });

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see The node.js driver repository.

5.7.12 C#

The most commonly used C# driver is progaudi.tarantool, previously named tarantool-csharp. It is not
supplied as part of the Tarantool repository; it must be installed separately. The makers recommend cross-
platform installation using Nuget.

To be consistent with the other instructions in this chapter, here is a way to install the driver directly on
Ubuntu 16.04.

1. Install .net core from Microsoft. Follow .net core installation instructions.

IIpumeuanue:
e Mono will not work, nor will .Net from xbuild. Only .net core supported on Linux and Mac.

e Read the Microsoft End User License Agreement first, because it is not an ordinary open-source
agreement and there will be a message during installation saying «This software may collect information
about you and your use of the software, and send that to Microsoft.» Still you can set environment
variables to opt out from telemetry.

2. Create a new console project.

$ cd ”

$ mkdir progaudi.tarantool.test
$ cd progaudi.tarantool.test

$ dotnet new console

3. Add progaudi.tarantool reference.

108 FnaBa 5. Pykosopgcrso nosnb3osarens


https://github.com/KlonD90/node-tarantool-driver
https://github.com/progaudi/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.microsoft.com/net/core#ubuntu
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior

Tarantool, Beinyck 1.7.5

$ dotnet add package progaudi.tarantool

4. Change code in Program.cs.

$ cat <<EOT > Program.cs

using System;

using System.Threading.Tasks;
using ProGaudi.Tarantool.Client;

public class HelloWorld
{
static public void Main ()
{
Test () .GetAwaiter() .GetResult();
}
static async Task Test()
{
var box = await Box.Connect("127.0.0.1:3301");
var schema = box.GetSchemal() ;
var space = await schema.GetSpace("examples");
await space.Insert((99999, "BB"));
}
}
EQT

5. Build and run your application.

Before trying to run, check that the server is listening at localhost:3301 and that the space examples
exists, as described earlier.

$ dotnet restore
$ dotnet run

The program will:
e connect using an application-specific definition of the space,
e open a socket connection with the Tarantool server at localhost:3501,
e send an INSERT request, and — if all is well — end without saying anything.

If Tarantool is not running on localhost with listen port = 3301, or if user ,guest® does not have
authorization to connect, or if the INSERT request fails for any reason, the program will print an error
message, among other things (stacktrace, etc).

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see the progaudi.tarantool driver repository.

5.7.13 C

B srom pasnesie mampl aBa npuMmepa UCHoJIb30BaHua BbICOKOypoBHeBOro API nna Tarantool’a u asbika C.
1 pat pat Yy pit

Mpumep 1

Jlanee npuBOIUTCS TPUMED TOTHOIEHHON MporpaMMbl Ha s3bike C, KOTOpas OCYIIECTBISET BCTABKY KOPTEXKA
[99999, 'B'] B mpocTpancTBO examples ¢ moMoIbio BbicokoypoBraeBoro Tarantool API nns a3bika C.

5.7. KonHekTOpbI 109


https://github.com/progaudi/progaudi.tarantool

Tarantool, Beinyck 1.7.5

#include <stdio.h>
#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt_met.h>

#include <tarantool/tnt_opt.h>

void main() {

struct tnt_stream *tnt = tnt_net (NULL); /% Cm. nume = HACTPOHKA */
tnt_set (tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) { /% CMm. nuwe = COEJUHEHUE */
printf ("Connection refused\n'");
exit(-1);
}
struct tnt_stream *tuple = tnt_object(NULL); /* Cm. nume = COBJAHHE 3AIIPOCA */
tnt_object_format (tuple, "[%d/s]", 99999, "B");
tnt_insert(tnt, 999, tuple); /% Cm. nume = OTIIPABKA BAIIPOCA */

tnt_flush(tnt);
struct tnt_reply reply; tnt_reply_init(&reply); /* Cm. nuxe
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {
printf("Insert failed %lu.\n", reply.code);

IIOJIYYEHHE OTBETA */

}

tnt_close(tnt); /* Cm. nume = BABEPUHEHUE */
tnt_stream_free(tuple);

tnt_stream_free(tnt);

CxonupyiiTe NCXOAHBIN KO/ TPOTpaMMbI B (Daii ¢ nvernem example. ¢ M yCTAHOBUTE KOHHEKTOD tarantool-c.
Bor onun u3 cnocobos ycranoBku tarantool-c (mox Ubuntu):

git clone git://github.com/tarantool/tarantool-c.git ~/tarantool-c
cd "/tarantool-c

git submodule init

git submodule update

cmake .

make

make install

B P P P P H P

Yrobbl CKOMTIUJINPOBATH U CJIMHKOBATH TECTOBYIO NIPOTrpaMMYy, BBIIOJHUTE CJICAYIOIYI0 KOMaHIY:

$ # unozda smo HeobzToduMO:
$ export LD_LIBRARY_PATH=/usr/local/lib
$ gcc -o example example.c -ltarantool

Before trying to run, check that a server instance is listening at localhost:3301 and that the space examples
exists, as described earlier. To run the program, say ./example. The program will connect to the Tarantool
instance, and will send the request. If Tarantool is not running on localhost with listen address = 3301, the
program will print “Connection refused”. If the insert fails, the program will print «Insert failed> and an
error number (see all error codes in the source file /src/box/errcode.h).

Jamnee ciaeayioT MpUMeYaHUs, HA KOTOPHIE MBI CCHIIAJNCH B KOMMEHTAPUIX K MCXOJHOMY KOy TECTOBOI
TPOTPAMMBI.

HACTPOWMKA: Hacrpoiika HAYMHAETCS ¢ CO3J@HUS OTOKA (tnt_stream).

struct tnt_stream *tnt = tnt_net(NULL);
tnt_set (tnt, TNT_OPT_URI, "localhost:3301");

110 FnaBa 5. PykoBopgctso nosib3oBatens



https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Beinyck 1.7.5

In this program, the stream will be named tnt. Before connecting on the tnt stream, some options may have
to be set. The most important option is TNT OPT _URI. In this program, the URI is localhost:3301,
since that is where the Tarantool instance is supposed to be listening.

Onucanue GyHKIMNT:

struct tnt_stream *tnt_net(struct tnt_stream *s)
int tnt_set(struct tnt_stream *s, int option, wvariant option-value)

CONNECT: Now that the stream named tnt exists and is associated with a URI, this example program
can connect to a server instance.

if (tnt_connect(tnt) < 0)
{ printf("Connection refused\n"); exit(-1); }

Onucanue pyHKImU:
int tnt_connect(struct tnt_stream *s)

The connection might fail for a variety of reasons, such as: the server is not running, or the URI contains an
invalid password. If the connection fails, the return value will be -1.

CO3JAHUE 3AIIPOCA: B GompinaCcTBE 3a1IpOCOB TpebyeTcs IepeaaBaTh CTPYKTYPUPOBAHHDBIE JTAH-
HbIE, HATPUMED COJIEPIKUMOE KOPTEXKA.

struct tnt_stream *tuple = tnt_object(NULL);
tnt_object_format (tuple, "[/d/s]", 99999, "B");

In this program, the request will be an INSERT, and the tuple contents will be an integer and a string.
This is a simple serial set of values, that is, there are no sub-structures or arrays. Therefore it is easy in this
case to format what will be passed using the same sort of arguments that one would use with a C printf ()
function: %d for the integer, %s for the string, then the integer value, then a pointer to the string value.

Omnucanune dysKImN:
ssize_t tnt_object_format(struct tnt_stream *s, const char *fmt, ...)

OTIIPABKA 3AIIPOCA: OripaBka 3a1pocoB Ha U3MEHEHUE JTAHHBIX B 0a3€ JIe1aeTCs AaHAJIOTUIHO TOMY,
Kak 39To zesaercd B Tarantool-Ombamoreke box.

tnt_insert (tnt, 999, tuple);
tnt_flush(tnt);

B mammoit mporpamme mul geaaem INSERT-3ampoc. B aTom 3ampoce MbI iepeiaeM moTOK tnt, KOTOPbIi paHee
HCIIOJIH30BAJIN JIJIsi YCTAHOBKY COEIMHEHWsI, ¥ TIOTOK tuple, KOTOPBIN TaK»Ke paHee HACTPOWJIHM C IOMOIIBIO
dbysakuun tnt_object_format ().

Omnucanne dyHKIMN:

ssize_t tnt_insert(struct tnt_stream *s, uint32_t space, struct tnt_stream *tuple)
ssize_t tnt_replace(struct tnt_stream *s, uint32_t space, struct tnt_stream *tuple)
ssize_t tnt_select(struct tnt_stream *s, uint32_t space, uint32_t index,

uint32_t limit, uint32_t offset, uint8_t iterator,

struct tnt_stream *key)
ssize_t tnt_update(struct tnt_stream *s, uint32_t space, uint32_t index,

struct tnt_stream *key, struct tnt_stream *ops)

IIOJIVUHEHUWUE OTBETA: Ha 601bIIHHCTBO 3aIIPOCOB KJIHEHT MOTYy9IaeT OTBET, KOTOPBIA COAEPIKUT WH-
dopMarImio 0 ToM, ObLI JIN JAHHBIN 3aPOC YCIEITHO BBITIOIHEH, 8 TAK3Ke COMEPKUT HADOP KOPTEKE.

5.7. KoHHekTOpBDI 111



http://tarantool.github.io/tarantool-c/msgpackobject.html#c.tnt_object_format

Tarantool, Beinyck 1.7.5

struct tnt_reply reply; tnt_reply_init(&reply);
tnt->read_reply(tnt, &reply);
if (reply.code != 0)

{ printf("Insert failed %lu.\n", reply.code); }

JlanHnast mporpamMma IpOBepsieT, ObLI JIX 3aIPOC BBIMOIHEH YCIEITHO, HO HUKAK HE WHTEPIPETUPYET OCTAB-
IIYIOCH 9aCTh OTBETA.

Onucanue GyHKIMNT:

struct tnt_reply *tnt_reply_init(struct tnt_reply *r)
tnt->read_reply(struct tnt_stream *s, struct tnt_reply *r)
void tnt_reply_free(struct tnt_reply *r)

3ABEPIITEHMUE: Ilo okoHYaHUN CECCHH HaM HY?KHO 3aKPbITh COEIMHEHNE, CO3JAHHOE C TIOMOIIBIO (DyHK-
muu tnt_connect (), U yIaJIuTh OOBEKTHI, CO3IaHHbIE HA JTAIE HACTPOUKH.

tnt_close(tnt);
tnt_stream_free(tuple);
tnt_stream_free(tnt);

Onucanue GyHKIMNT:

void tnt_close(struct tnt_stream *s)
void tnt_stream_free(struct tnt_stream *s)

Mpumep 2

Jlanee MPUBOAUTCS €Ie OJUH TPUMED MOJHOIEHHOU mporpaMMbl Ha s3bike C, KOTOpas OCYIIECTBISET BbI-
6opky mo mHAeKC-Kaody [99999] m3 mpocrpancrBa examples ¢ mOMOMNIbIO BbICOKOypoBHEBOro Tarantool
APT pist sizpika C. [ljist BBIBOJA PE3ysIbTATOB B 3TOH HPOrpaMMe UCHOIL3YIoTCd DyHKIMU 13 Oubinoreku
MsgPuck. 9T dyHKINN HYKHBI JJId TeKOINPOBAHUS MACCHBOB 3HadeHuilt B popmare MessagePack.

#include <stdio.h>

#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt_net.h>
#anclude <tarantool/tnt_opt.h>

#define MP_SOURCE 1
#include <msgpuck.h>

void main() {
struct tnt_stream *tnt = tnt_net (NULL);
tnt_set (tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) {
printf ("Connection refused\n");
exit(1);
}
struct tnt_stream *tuple = tnt_object(NULL);
tnt_object_format (tuple, "[/dl", 99999); /* kopmex tuple = kaws das noucka */
tnt_select(tnt, 999, 0, (2°32) - 1, 0, 0, tuple);
tnt_flush(tnt);
struct tnt_reply reply; tnt_reply_init (&reply);
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {
printf("Select failed.\n");

(continues on next page)

112 FnaBa 5. PykoBopgctso nosib3oBatens



http://tarantool.github.io/tarantool-c/connection.html#c.tnt_connect
http://rtsisyk.github.io/msgpuck/
https://en.wikipedia.org/wiki/MessagePack

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

exit(1);
}
char field_type;
field_type = mp_typeof (¥reply.data);
if (field_type != MP_ARRAY) {
printf("no tuple array\n");
exit(1);
}
long unsigned int row_count;
uint32_t tuple_count = mp_decode_array(&reply.data);
printf ("tuple count=ju\n", tuple_count);
unsigned int i, j;
for (i = 0; i < tuple_count; ++i) {
field_type = mp_typeof (¥reply.data);
if (field_type !'= MP_ARRAY) {
printf('"no field array\n");
exit(1);
}
uint32_t field_count = mp_decode_array(&reply.data);
printf(" field count=ju\n", field_count);
for (j = 0; j < field_count; ++j) {
field_type = mp_typeof (¥reply.data);
if (field_type == MP_UINT) {
uint64_t num_value = mp_decode_uint (&reply.data);
printf (" value=Ylu.\n", num_value);
} else if (field_type == MP_STR) {
const char #*str_value;
uint32_t str_value_length;
str_value = mp_decode_str(&reply.data, &str_value_length);

printf (" value=Y.*s.\n", str_value_length, str_value);
} else {

printf ("wrong field type\n");

exit(1);

}

tnt_close(tnt);
tnt_stream_free(tuple);
tnt_stream_free(tnt);

AnasornyHO MEpBOMY TIPUMEpY, COXPAHUTE MCXOIHBIN KOI TPOrpaMMbI B (aiijie ¢ nMenem example?.c.

Yrobbl CKOMTIUJINPOBATH U CJIMHKOBATH TECTOBYIO NIPOTrpaMMYy, BBIINOJHUTE CJICAYIOIYIO KOMaHIY:

$ gcc -o example2 example2.c -ltarantool

g 3amycka mporpaMMbl BBIMTOJHUTE KOMAHIY ./example?2.

B sTux aByx mporpamMmax Mbl MPUBEIU MPUMED HUCIOJIB30BAHUS JIUIIL IBYX 3ampocoB. [l MOJTHONEHHON
paborsl ¢ Tarantool’om ¢ momorrpio C API, noxkasyiicra, obparurech K JOKYMEHTAIUME U3 [1DOCKTa tarantool-¢
na GitHub.

5.7. KoHHekTOpBDI 113



http://github.com/tarantool/tarantool-c
http://github.com/tarantool/tarantool-c

Tarantool, Beinyck 1.7.5

5.7.14 VHTepnpertauunsi BO3BPALLAEMbIX 3HA4YeHUN’

IIpu pabdore c m066mm Tarantool-konHeKTOPOM (DYHKIMH, BhI3BAHHBIE ¢ TOMOIIBI0 Tarantool’a, Bo3BpaiamoT
snadenus B ¢popmare MsgPack. Eciu dyuknus 6outa BeizBana depe3 API konnekTopa, To dhopmMar Bo3Bpa-
HIAEeMbIX 3HAYEHUH OyIeT CIIeAYIOUMM: CKAJIAPHbIE 3HAYeHUs BO3BPAIIAIOTCH B BUJIE KOPTEXKeii (cHauaia uaer
uneatudukarop tTumna u3 gopmara MsgPack, a 3arem uzer 3nadenue); Bce mpoune (He CKANAPHBIE) 3HAYE-
HUs BO3BPAINAIOTCS B BUJE IPYII KOopTexkeil (cnagasa umer uaeatudukarop Maccusa B popmare MsgPack,
a 3areM UAyT CKaJspHble 3Hadenus). Ho eciau dyHkiusa Oblia BbI3BaHA B paMKax OMHAPHOIO MPOTOKOJIA (C
HOMOIIBI0 KOMaHIbl eval), a He depe3 API konnekropa, T0 n10106HbIX u3MeHeHui dhopmaTa BO3BPALIAEMbIX
3HAYEHUI HE MPOUCXOIUT.

In the following example, a Lua function will be created. Since it will be accessed externally by a ,,guest” user,
a grant of an execute privilege will be necessary. The function returns an empty array, a scalar string, two
booleans, and a short integer. The values are the ones described in the table Common Types and MsgPack
Encodings.

tarantool> box.cfg{listen=3301}
2016-03-03 18:45:52.802 [27381] main/101/interactive I> ready to accept requests

tarantool> function f() return {},'a',false,true,127; end

tarantool> box.schema.func.create('f')

tarantool> box.schema.user.grant('guest','execute','function','f")

Hanee uner npumep nporpammbl Ha C, w3 KOTOpbIil MbI Bbi3biBaeM 3ty Lua-dynkiuio. XoTs B nmpumepe
ucnoab3oBad Kox Ha C, pesyibrar O6y/eT OJIMHAKOBBIM, Ha KAKOM Obl s3bIKe HU ObLIa HAIMCAHA BbI3bIBAEMAsT
nporpamma;: Perl, PHP, Python, Go win Java.

#include <stdio.h>

#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt_net.h>
#include <tarantool/tnt_opt.h>
void main() {

struct tnt_stream *tnt = tnt_net (NULL); /* SETUP */
tnt_set(tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) { /* CONNECT */
printf ("Connection refused\n");
exit(-1);
}
struct tnt_stream *arg; arg = tnt_object (NULL); /* MAKE REQUEST */

tnt_object_add_array(arg, 0);
struct tnt_request *reql = tnt_request_call(NULL); /# CALL function f() */
tnt_request_set_funcz(reql, "f");
uint64_t syncl = tnt_request_compile(tnt, reql);
tnt_flush(tnt) ; /* SEND REQUEST */
struct tnt_reply reply; tnt_reply_init(&reply); /* GET REPLY */
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {

printf("Call failed %lu.\n", reply.code);

exit(-1);

(continues on next page)

114 FnaBa 5. PykoBopgctso nosib3oBatens




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

}
const unsigned char *p= (unsigned char*)reply.data; /* PRINT REPLY #*/
while (p < (unsigned char *) reply.data_end)
{
printf("%x ", *p);
++p;
}
printf ("\n");
tnt_close(tnt); /* TEARDOWN */
tnt_stream_free(arg) ;
tnt_stream_free(tnt);

Ilo 3aBepinernu nmporpaMMa BBIBEJAET HA IKPAH CJIEAYIONINE 3HAYCHUS:

dd 0 0 0 590 91 al 61 91 c2 91 c3 91 7f

Ilepsoie nsars Gaittr — dd 0 0 0 5 — 310 pparment gauubix B hopmare MsgPack, oznagaromniuit «32-6uTHbIit
3aroJIOBOK MaccuBa, o 3HadenueM 5» (cMm. cuenmduxanuio na dopmar MsgPack). Ocranbhbie 3HaueHUs
onucanbl B Tabmuie Cmandapmuvie munv. 6 MsgPack-xoduposxke.

5.8 Bonpocbl n otBeTbl

Q Why Tarantool?

A Tarantool is the latest generation of a family of in-memory data servers developed for
web applications. It is the result of practical experience and trials within Mail.Ru since
development began in 2008.

Q Why Lua?

A Lua is a lightweight, fast, extensible multi-paradigm language. Lua also happens to be very
easy to embed. Lua coroutines relate very closely to Tarantool fibers, and Lua architecture
works well with Tarantool internals. Lua acts well as a stored program language for
Tarantool, although connecting with other languages is also easy.

Q What’s the key advantage of Tarantool?
A

Tarantool provides a rich database feature set (HASH, TREE, RTREE, BITSET indexes,
secondary indexes, composite indexes, transactions, triggers, asynchronous replication) in a
flexible environment of a Lua interpreter.

These two properties make it possible to be a fast, atomic and reliable in-memory data
server which handles non-trivial application-specific logic. The advantage over traditional
SQL servers is in performance: low-overhead, lock-free architecture means Tarantool can
serve an order of magnitude more requests per second, on comparable hardware. The
advantage over NoSQL alternatives is in flexibility: Lua allows flexible processing of data
stored in a compact, denormalized format.

Q What are your development plans?

A We continuously improve server performance. On the feature front, automatic sharding and
synchronous replication, and a subset of SQL are the major goals for 2016-2018. We have
an open roadmap to which we encourage anyone to add feature requests.

Q Who is developing Tarantool?

5.8. Bonpocbi n otBerbl 115



http://github.com/msgpack/msgpack/blob/master/spec.md

Tarantool, Beinyck 1.7.5

A There is an engineering team employed by Mail.Ru — check out our commit logs on
github.com /tarantool. The development is fully open. Most of the connectors* authors, and
the maintainers for different distributions, come from the wider community.

Q How serious is Mail.Ru about Tarantool?

A Tarantool is an open source project, distributed under a BSD license, so it does not depend
on any one sponsor. However, it is an integral part of the Mail.Ru backbone, so it gets a lot
of support from Mail.Ru.

Q Are there problems associated with being an in-memory server?

A The principal storage engine is designed for RAM plus persistent storage. It is immune to data
loss because there is a write-ahead log. Its memory-allocation and compression techniques
ensure there is no waste. And if Tarantool runs out of memory, then it will stop accepting
updates until more memory is available, but will continue to handle read and delete requests
without difficulty. However, for databases which are much larger than the available RAM
space, Tarantool has a second storage engine which is only limited by the available disk
space.

116 FnaBa 5. PykoBopgctso nosib3oBatens


http://github.com/tarantool/

rnABA O

CnpaBo4HUKM

6.1 Built-in modules reference

This reference covers Tarantool’s built-in Lua modules.

ITpumeuanne: Some functions in these modules are analogs to functions from standard Lua libraries. For
better results, we recommend using functions from Tarantool’s built-in modules.

6.1.1 Mopaynb box
As well as executing Lua chunks or defining their own functions, you can exploit Tarantool’s storage
functionality with the box module and its submodules.

The contents of the box module can be inspected at runtime with box, with no arguments. The box module
contains:

Submodule box.cfg

The box.cfg submodule is for administrators to specify all the server configuration parameters (see
«Configuration reference» for a complete description of all configuration parameters). Use box.cfg without
braces to get read-only access to those parameters.

Example:

tarantool> box.cfg

- checkpoint_count: 2
too_long_threshold: 0.5
slab_alloc_factor: 1.1
memtx_max_tuple_size: 1048576

(continues on next page)

117



http://www.lua.org/manual/

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

background: false

<...

BnoxeHHbiii moayns box.index

The box.index submodule provides read-only access for index definitions and index keys. Indexes are
contained in box.space. space-name . index array within each space object. They provide an API for ordered
iteration over tuples. This API is a direct binding to corresponding methods of index objects of type box.
index in the storage engine.

object index_object

index_object.unique

True if the index is unique, false if the index is not unique.

Rtype boolean

index_object.type

Index type, ,,TREE“ or ,HASH*“ or ,BITSET* or ,RTREE".

index_object.parts

An array describing index key fields.
Rtype table

Example:

tarantool> box.space.tester.index.primary

- unique: true

parts:

- type: unsigned
fieldno: 1

id: 0

space_id: 513
name: primary
type: TREE

index_object:pairs( [key [, iterator-type ] ])

Search for a tuple or a set of tuples via the given index, and allow iterating over one tuple at a
time.

The key parameter specifies what must match within the index. The ¢terator parameter specifies
the rule for matching and ordering. Different index types support different iterators. For example,
a TREE index maintains a strict order of keys and can return all tuples in ascending or descending
order, starting from the specified key. Other index types, however, do not support ordering.

To understand consistency of tuples returned by an iterator, it’s essential to know the principles
of the Tarantool transaction processing subsystem. An iterator in Tarantool does not own a
consistent read view. Instead, each procedure is granted exclusive access to all tuples and spaces
until there is a «context switch»: which may happen due to the implicit yield rules, or by an
explicit call to fiber.yield. When the execution flow returns to the yielded procedure, the data set
could have changed significantly. Iteration, resumed after a yield point, does not preserve the read

118

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

view, but continues with the new content of the database. The tutorial Indexed pattern search

shows one
ITapa
[ ]

way that iterators and yields can be used together.
MeTPbI

index_object (index_object) — an object reference.

key (scalar/table) — value to be matched against the index key, which may be

multi-part

iterator — as defined in tables below. The default iterator type is ,EQ‘

Return iterator which can be used in a for/end loop or with totable()

Possible errors: No such space; wrong type; Selected iteration type is not supported for the
index type; or key is not supported for the iteration type.

Complexity factors: Index size, Index type; Number of tuples accessed.

A search-key-value can be a number (for example 1234), a string (for example 'abcd'), or a table
of numbers and strings (for example {1234, 'abcd'}). Each part of a key will be compared to

each part of an index key.

Iterator types for TREE indexes

Type Argumeibtsscription

box.index.E(¥earch| The comparison operator is ,—=" (equal to). If an index key is equal to a
or ,EQ value | search value, it matches. Tuples are returned in ascending order by index

key. This is the default.

box.index.REsg@arch) Matching is the same as for box.index.EQ. Tuples are returned in
or ,REQ“ | value | descending order by index key.

box.index.GBearch| The comparison operator is ,,>*“ (greater than). If an index key is greater
or ,GT“ value | than a search value, it matches. Tuples are returned in ascending order by

index key.

box.index.GEearch| The comparison operator is ,,>=" (greater than or equal to). If an index

or ,GE value | key is greater than or equal to a search value, it matches. Tuples are
returned in ascending order by index key.

box.index.Aldearch| Same as box.index.GE.

or ,ALL* | value

box.index.I/Tsearch| The comparison operator is ,,<“ (less than). If an index key is less than a

or ,,LT value | search value, it matches. Tuples are returned in descending order by index
key.

box.index.IEsearch| The comparison operator is ,,<=" (less than or equal to). If an index key

or ,,LE“ value | is less than or equal to a search value, it matches. Tuples are returned in

descending order by index key.

Informally, we can state that searches with TREE indexes are generally what users will find is
intuitive, provided that there are no nils and no missing parts. Formally, the logic is as follows. A
search key has zero or more parts, for example {}, {1,2,3},{1,nil,3}. An index key has one or more
parts, for example {1}, {1,2,3},{1,2,3}. A search key may contain nil (but not msgpack.NULL,
which is the wrong type). An index key may not contain nil or msgpack.NULL, although a later
version of Tarantool will have different rules — the behavior of searches with nil is subject to
change. Possible iterators are LT, LE, EQ, REQ, GE, GT. A search key is said to «match» an
index key if the following statements, which are pseudocode for the comparison operation, return

TRUE.

6.1. Built-in modules reference

119


https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Beinyck 1.7.5

If (number-of-search-key-parts > number-of-index-key-parts) return ERROR
If (number-of-search-key-parts == 0) return TRUE
for (i = 1; ; ++1i)
{
if (i > number-of-search-key-parts) OR (search-key-part[il is nil)
{
if (iterator is LT or GT) return FALSE
return TRUE
}
if (type of search-key-part[i] is not compatible with type of index-key-part[i])
{
return ERROR

}

if (search-key-part[i] == index-key-part[i])

{
if (iterator is LT or GT) return FALSE
continue

}

if (search-key-part[i] > index-key-part[i])

{
if (iterator is EQ or REQ or LE or LT) return FALSE
return TRUE

}

if (search-key-part[i] < index-key-part[i])

{
if (iterator is EQ or REQ or GE or GT) return FALSE
return TRUE

}

}

Iterator types for HASH indexes

Type| ArgumBrescription
box.indemd [All index keys match. Tuples are returned in ascending order by hash of index
key, which will appear to be random.

box.indesrEli he comparison operator is ,,==" (equal to). If an index key is equal to a search
or valu¢ value, it matches. The number of returned tuples will be 0 or 1. This is the default.
77EQ“

box.indesr@iThe comparison operator is ,>“ (greater than). If a hash of an index key is greater
or valug than a hash of a search value, it matches. Tuples are returned in ascending order
SGT by hash of index key, which will appear to be random. Provided that the space is

not being updated, one can retrieve all the tuples in a space, N tuples at a time,
by using {iterator="“GT*, limit=N} in each search, and using the last returned

value from the previous result as the start search value for the next search.

Iterator types for BITSET indexes

120

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

Type ArgumenBescription

box.index.ALL none | All index keys match. Tuples are returned in their order within
or , ALL the space.

box.index.EQ or | bitset | If an index key is equal to a bitset value, it matches. Tuples are
HEQ value | returned in their order within the space. This is the default.

box.index.BITS AMHits&ETIf all of the bits which are 1 in the bitset value are 1 in the index
value | key, it matches. Tuples are returned in their order within the space.
box.index.BITS AN¥se$HTIf any of the bits which are 1 in the bitset value are 1 in the index
value | key, it matches. Tuples are returned in their order within the space.
box.index.BITS AIHits®Q'IIf SIE'®f the bits which are 1 in the bitset value are 0 in the index
value | key, it matches. Tuples are returned in their order within the space.

Iterator types for RTREE indexes

Type ArgumBregription

box.index.Al#one| All keys match. Tuples are returned in their order within the space.
or ,ALL¥
box.index.HQeardhIf all points of the rectangle-or-box defined by the search value are the
or ,EQ valu¢g same as the rectangle-or-box defined by the index key, it matches. Tuples
are returned in their order within the space. «Rectangle-or-box» means
«rectangle-or-box as explained in section about RTREFE». This is the

default.
box.index.GTseardhIf all points of the rectangle-or-box defined by the search value are within
or ,GT“ valug the rectangle-or-box defined by the index key, it matches. Tuples are

returned in their order within the space.

box.index.GEseardhIf all points of the rectangle-or-box defined by the search value are within,
or ,GE* valug or at the side of, the rectangle-or-box defined by the index key, it matches.
Tuples are returned in their order within the space.

box.index.[jTseardhIf all points of the rectangle-or-box defined by the index key are within the
or ,,LT* valug rectangle-or-box defined by the search key, it matches. Tuples are returned
in their order within the space.

box.index.[[EseardhIf all points of the rectangle-or-box defined by the index key are within, or
or ,,LE valug at the side of, the rectangle-or-box defined by the search key, it matches.
Tuples are returned in their order within the space.
box.index.QVEERHANP Some points of the rectangle-or-box defined by the search value are
or valugswithin the rectangle-or-box defined by the index key, it matches. Tuples
JLOVERLARS“ are returned in their order within the space.

box.index. NEH&HBI Bome points of the rectangle-or-box defined by the defined by the key are
or value within, or at the side of, defined by the index key, it matches. Tuples are
,2NEIGHBOR* returned in order: nearest neighbor first.

First Example of index pairs():

Default ,,TREE* Index and pairs() function:

tarantool> s = box.schema.space.create('spacel7')

tarantool> s:create_index('primary', {
> parts = {1, 'string', 2, 'string'}
> 1

(continues on next page)

6.1. Built-in modules reference 121



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> s:insert{'C', 'C'}
_ [ICY’ 'C']
tarantool> s:insert{'B', 'A'}
_ [va’ 'A']
tarantool> s:insert{'C', '!'}
- e, 1]
tarantool> s:insert{'A', 'C'}
_ [IAY’ 'C']

tarantool> function example()
> for _, tuple in

> s.index.primary:pairs(nil, {

> iterator = box.index.ALL}) do
> print (tuple)

> end

> end

tarantool> example()

[ra', 'c']
['B', 'A']
[rer, ']
(e, 'c'l

tarantool> s:drop()

Second Example of index pairs():

This Lua code finds all the tuples whose primary key values begin with ,XY*“. The assumptions
include that there is a one-part primary-key TREE index on the first field, which must be a string.
The iterator loop ensures that the search will return tuples where the first value is greater than
or equal to ,XY*“ The conditional statement within the loop ensures that the looping will stop
when the first two letters are not , XY

for _, tuple in

box.space.t.index.primary:pairs("XY",{iterator = "GE"}) do
if (string.sub(tuple[1], 1, 2) = "XY") then break end
print (tuple)

end

Third Example of index pairs():

This Lua code finds all the tuples whose primary key values are greater than or equal to 1000,
and less than or equal to 1999 (this type of request is sometimes called a «range search» or a
«between search»). The assumptions include that there is a one-part primary-key TREE index
on the first field, which must be a number. The iterator loop ensures that the search will return
tuples where the first value is greater than or equal to 1000. The conditional statement within

122

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

the loop ensures that the looping will stop when the first value is greater than 1999.

for _, tuple in

box.space.t2.index.primary:pairs (1000,{iterator = "GE"}) do
if (tuple[1] > 1999) then break end
print (tuple)

end

index_object:select (search-key, options)
This is an alternative to boz.space. . . select() which goes via a particular index and can make use of
additional parameters that specify the iterator type, and the limit (that is, the maximum number
of tuples to return) and the offset (that is, which tuple to start with in the list).

ITapameTrpbi
e index_object (index_object) — an object reference.
e key (scalar/table) — values to be matched against the index key
e options (table/nil) — none, any or all of next parameters
e options.iterator — type of iterator
e options.limit (number) — maximum number of tuples
e options.offset (number) — start tuple number
Return the tuple or tuples that match the field values.
Rtype array of tuples

Example:

-- Create a space named tester.
tarantool> sp = box.schema.space.create('tester')
-- Create a unique index 'primary'
-- which won't be needed for this example.
tarantool> sp:create_index('primary', {parts = {1, 'unsigned' }})
-- Create a non-unique index 'secondary'
-- with an index on the second field.
tarantool> sp:create_index('secondary', {

>  type = 'tree',

> unique = false,

> parts = {2, 'string'}

> 1
-- Insert three tuples, values in field[2]
-- equal to 'X', 'Y', and 'Z'.
tarantool> sp:insert{l, 'X', 'Row with field[2]=X'}
tarantool> sp:insert{2, 'Y', 'Row with field[2]=Y'}
tarantool> sp:insert{3, 'Z', 'Row with field[2]=Z'}
-- Select all tuples where the secondary index
-- keys are greater than 'X'.~
tarantool> sp.index.secondary:select({'X'}, {

> iterator = 'GT',
> limit = 1000
>3

The result will be a table of tuple and will look like this:

- - [2, 'Y', 'Row with field[2]=Y']

(continues on next page)

6.1. Built-in modules reference 123



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- [3, 'Z', 'Row with field[2]=Z']

IIpumeuanue: index.indez-name is optional. If it is omitted, then the assumed index is the
first (primary-key) index. Therefore, for the example above, box.space.tester:select ({1},

{iterator = 'GT'}) would have returned the same two rows, via the ,primary* index.
Ilpumeuanue: iterator = iterator-type is optional. If it is omitted, then iterator = 'EQ'
is assumed.

IIpumeuanume: field-value [, field-value ...] is optional. If it is omitted, then every

key in the index is considered to be a match, regardless of iterator type. Therefore, for the
example above, box.space.tester:select{} will select every tuple in the tester space via the
first (primary-key) index.

ITpumeuanmne: box.space. space-name .index. indez-name :select(...)[1]". can be
replaced by box.space. space-name .index. indez-name :get (...). That is, get can be used as
a convenient shorthand to get the first tuple in the tuple set that would be returned by select.
However, if there is more than one tuple in the tuple set, then get returns an error.

Example with BITSET index:

The following script shows creation and search with a BITSET index. Notice: BITSET cannot
be unique, so first a primary-key index is created. Notice: bit values are entered as hexadecimal
literals for easier reading.

tarantool> s = box.schema.space.create('space_with_bitset')
tarantool> s:create_index('primary_index', {

> parts = {1, 'string'},

>  unique = true,

> type = 'TREE'

> 1
tarantool> s:create_index('bitset_index', {

> parts = {2, 'unsigned'},

> unique = false,

>  type = 'BITSET'

> 1
tarantool> s:insert{'Tuple with bit value = 01', 0x01}
tarantool> s:insert{'Tuple with bit value = 10', 0x02}
tarantool> s:insert{'Tuple with bit value = 11', 0x03}
tarantool> s.index.bitset_index:select (0x02, {

> iterator = box.index.EQ

> 1

- - ['Tuple with bit value = 10', 2]

tarantool> s.index.bitset_index:select (0x02, {
> iterator = box.index.BITS_ANY_SET

(continues on next page)

124 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

>3

- - ['Tuple with bit value 10", 2]
- ['Tuple with bit value = 11', 3]

1l

tarantool> s.index.bitset_index:select (0x02, {
> iterator = box.index.BITS_ALL_SET
> 1
- - ['Tuple with bit value = 10', 2]
- ['Tuple with bit value = 11', 3]

tarantool> s.index.bitset_index:select (0x02, {
> iterator = box.index.BITS_ALL_NOT_SET
> 1)

- - ['Tuple with bit value = 01', 1]

index_object:get (key)
Search for a tuple via the given index, as described earlier.

ITapameTrpbi
e index_object (indexz_object) — an object reference.
¢ key (scalar/table) — values to be matched against the index key
Return the tuple whose index-key fields are equal to the passed key values.
Rtype tuple
Possible errors: No such index; wrong type; more than one tuple matches.
Complexity factors: Index size, Index type. See also space_ object:get().

Example:

tarantool> box.space.tester.index.primary:get(2)

- [2, "Music']

index_object:min( [key ])
Find the minimum value in the specified index.

ITapameTpsbI
e index_object (indez_object) — an object reference.
e key (scalar/table) — values to be matched against the index key

Return the tuple for the first key in the index. If optional key-value is supplied, returns
the first key which is greater than or equal to key-value.

Rtype tuple
Possible errors: index is not of type ,,TREE".
Complexity factors: Index size, Index type.

Example:

Built-in modules reference 125



Tarantool, Beinyck 1.7.5

tarantool> box.space.tester.index.primary:min()

- ['Alpha!', 55, 'This is the first tuple!']

index_object :max( [key ])
Find the maximum value in the specified index.

ITapameTpsI
e index_object (indez_object) — an object reference.
e key (scalar/table) — values to be matched against the index key

Return the tuple for the last key in the index. If optional key-value is supplied, returns
the last key which is less than or equal to key-value.

Rtype tuple
Possible errors: index is not of type ,,TREE".
Complexity factors: Index size, Index type.

Example:

tarantool> box.space.tester.index.primary:max()

- ['Gamma!', 55, 'This is the third tuple!']

index_object:random(seed)
Find a random value in the specified index. This method is useful when it’s important to get
insight into data distribution in an index without having to iterate over the entire data set.

ITapameTpsbI
e index_object (indez_object) — an object reference.
e seed (number) — an arbitrary non-negative integer
Return the tuple for the random key in the index.
Rtype tuple

Complexity factors: Index size, Index type.

IIpumeuyanue:

Note re storage engine:
vinyl does not support random().

Example:

tarantool> box.space.tester.index.secondary:random(1)

- ['Beta!', 66, 'This is the second tuple!']

index_object:count ([key] [, iterator ] )
Iterate over an index, counting the number of tuples which match the key-value.

ITapamerpbi

126 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e index_object (indez_object) — an object reference.
e key (scalar/table) — values to be matched against the index key
e iterator — comparison method

Return the number of matching index keys.

Rtype number

Example:

tarantool> box.space.tester.index.primary:count(999)

-0

tarantool> box.space.tester.index.primary:count('Alpha!', { iterator = 'LE' })

-1

index_object:update (key, {{operator, field no, value}, ...})
Update a tuple.

Same as box.space. . . update(), but key is searched in this index instead of primary key. This index
ought to be unique.

ITapameTpsI
e index_object (indez_object) — an object reference.
e key (scalar/table) — values to be matched against the index key
e operator (string) — operation type represented in string

e field_no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

e value (lua_value) — what value will be applied
Return the updated tuple.
Rtype tuple

index_object:delete(key)
Delete a tuple identified by a key.

Same as boz.space. . . delete(), but key is searched in this index instead of in the primary-key index.
This index ought to be unique.

ITapameTrpbi

e index_object (indez_object) — an object reference.

e key (scalar/table) — values to be matched against the index key
Return the deleted tuple.

Rtype tuple

IIpumeuanue:

Note re storage engine:
vinyl will return nil, rather than the deleted tuple.

6.1.

Built-in modules reference 127



Tarantool, Beinyck 1.7.5

index_object:alter ({options})
Alter an index.

ITapameTpsI

e index_object (indez_object) — an object reference.

e options (table) — options list, same as the options list for create_index
Return nil

Possible errors: Index does not exist, or the first index cannot be changed to {unique = false},
or the alter function is only applicable for the memtx storage engine.

IIpumeuanue:

Note re storage engine:
vinyl does not support alter().

Example:

tarantool> box.space.spacebb.index.primary:alter({type = 'HASH'})

index_object:drop()
Drop an index. Dropping a primary-key index has a side effect: all tuples are deleted.

ITapameTrpbi
e index_object (indez_object) — an object reference.
Return nil.

Possible errors: Index does not exist, or a primary-key index cannot be dropped while a
secondary-key index exists.

Example:

tarantool> box.space.spacebb.index.primary:drop ()

index_object :rename (indez-name)
Rename an index.

ITapameTpsbI
e index_object (indez_object) — an object reference.
e index-name (string) — new name for index
Return nil
Possible errors: index object does not exist.

Example:

tarantool> box.space.spacebb.index.primary:rename('secondary')

128 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

Complexity factors: Index size, Index type, Number of tuples accessed.

index_object:bsize()
Return the total number of bytes taken by the index.

ITapameTpsI
e index_object (indez_object) — an object reference.
Return number of bytes

Rtype number

Example showing use of the box functions

This example will work with the sandbox configuration described in the preface. That is, there is a space
named tester with a numeric primary key. The example function will:

e select a tuple whose key value is 1000;
e return an error if the tuple already exists and already has 3 fields;
e Insert or replace the tuple with:

— field[1] = 1000

— field[2] = a uuid

— field[3] = number of seconds since 1970-01-01;

Get field[3] from what was replaced,;

Format the value from field[3] as yyyy-mm-dd hh:mm:ss.ffff;

Return the formatted value.

The function uses Tarantool box functions boz.space. .. select, box.space. . . replace, fiber.time, uuid.str. The
function uses Lua functions os.date() and string.sub().

function example()

local a, b, c, table_of_selected_tuples, d
local replaced_tuple, time_field
local formatted_time_field
local fiber = require('fiber')
table_of_selected_tuples = box.space.tester:select{1000}
if table_of_selected_tuples "= nil then

if table_of_selected_tuples[1] "= nil then

if #table_of_selected_tuples[1] == 3 then
box.error({code=1, reason='This tuple already has 3 fields'})
end

end
end
replaced_tuple = box.space.tester:replace

{1000, require('uuid').str(), tostring(fiber.time())}
time_field = tonumber(replaced_tuple[3])
formatted_time_field = os.date("),Y-Ym-%d %H:%M:%S", time_field)
c = time_field ¥ 1
d = string.sub(c, 3, 6)
formatted_time_field = formatted_time_field .. '.' .. d
return formatted_time_field

end

6.1. Built-in modules reference 129



http://www.lua.org/pil/22.1.html
http://www.lua.org/pil/20.html

Tarantool, Beinyck 1.7.5

... And here is what happens when one invokes the function:

tarantool> box.space.tester:delete(1000)

- [1000, '264ee2da03634f24972be76c43808254', '1391037015.6809']

tarantool> example(1000)

- 2014-01-29 16:11:51.1582

tarantool> example(1000)

- error: 'This tuple already has 3 fields'

Example showing a user-defined iterator

Here is an example that shows how to build one’s own iterator. The paged_iter function is an «iterator
function», which will only be understood by programmers who have read the Lua manual section Iterators
and Closures. It does paginated retrievals, that is, it returns 10 tuples at a time from a table named «t»,
whose primary key was defined with create_index('primary',{parts={1,'string'}}).

function paged_iter(search_key, tuples_per_page)
local iterator_string = "GE"
return function ()
local page = box.space.t.index[0]:select (search_key,
{iterator = iterator_string, limit=tuples_per_pagel})

if #page == O then return nil end
search_key = pagel[#pagel [1]
iterator_string = "GT"
return page
end

end

Programmers who use paged_iter do not need to know why it works, they only need to know that, if they
call it within a loop, they will get 10 tuples at a time until there are no more tuples. In this example the
tuples are merely printed, a page at a time. But it should be simple to change the functionality, for example
by yielding after each retrieval, or by breaking when the tuples fail to match some additional criteria.

for page in paged_iter("X", 10) do

print ("New Page. Number Of Tuples = " .. #page)
for i = 1, #page, 1 do
print (page[i])
end
end

Submodule box.index with index type = RTREE for spatial searches

The bozx.index submodule may be used for spatial searches if the index type is RTREE. There are operations
for searching rectangles (geometric objects with 4 corners and 4 sides) and bozes (geometric objects with
more than 4 corners and more than 4 sides, sometimes called hyperrectangles). This manual uses the term
rectangle-or-boz for the whole class of objects that includes both rectangles and boxes. Only rectangles will
be illustrated.

130 Fnasa 6. Cnpasou4Huku



https://www.lua.org/pil/7.1.html
https://www.lua.org/pil/7.1.html

Tarantool, Beinyck 1.7.5

Rectangles are described according to their X-axis (horizontal axis) and Y-axis (vertical axis) coordinates
in a grid of arbitrary size. Here is a picture of four rectangles on a grid with 11 horizontal points and 11
vertical points:

X AXIS
i 2 3 4 5 6 7 8 9 10 11
1
2 oo + <-Rectangle#l
Y AXIS 3 | [
4 He-eeee- #
5 e + <-Rectangle#2
6 I I
7 | Hemt / <-Rectangle#3
8 [ I
9 | o+t /
10 Ao #
11 # <-Rectangle#4

The rectangles are defined according to this scheme: {X-axis coordinate of top left, Y-axis coordinate
of top left, X-axis coordinate of bottom right, Y-axis coordinate of bottom right} — or more succinctly:
{x1,y1,x2,y2}. So in the picture ... Rectangle#1 starts at position 1 on the X axis and position 2 on
the Y axis, and ends at position 3 on the X axis and position 4 on the Y axis, so its coordinates are
{1,2,3,4}. Rectangle#2’s coordinates are {3,5,9,10}. Rectangle#3’s coordinates are {4,7,5,9}. And finally
Rectangle#4’s coordinates are {10,11,10,11}. Rectangle#4 is actually a «point» since it has zero width and
zero height, so it could have been described with only two digits: {10,11}.

Some relationships between the rectangles are: «Rectangle#1’s nearest neighbor is Rectangle#2», and
«Rectangle#3 is entirely inside Rectangle#2».

Now let us create a space and add an RTREE index.

tarantool> s = box.schema.space.create('rectangles')
tarantool> i = s:create_index('primary', {

>  type = 'HASH',

> parts = {1, 'unsigned'}

> 1
tarantool> r = s:create_index('rtree', {

> type = 'RTREE',

> unique = false,

> parts = {2, 'ARRAY'}

> 1

Field#1 doesn’t matter, we just make it because we need a primary-key index. (RTREE indexes cannot be
unique and therefore cannot be primary-key indexes.) The second field must be an «array», which means its
values must represent {x,y} points or {x1,y1,x2,y2} rectangles. Now let us populate the table by inserting
two tuples, containing the coordinates of Rectangle#2 and Rectangle#4.

tarantool> s:insert{l, {3, 5, 9, 10}}
tarantool> s:insert{2, {10, 11}}

And now, following the description of RTREFE iterator types, we can search the rectangles with these requests:

tarantool> r:select ({10, 11, 10, 11}, {iterator = 'EQ'})

- - [2, [10, 1111

tarantool> r:select({4, 7, 5, 9}, {iterator = 'GT'})

(continues on next page)

6.1. Built-in modules reference 131




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- - [1, I3, 5, 9, 10]]

tarantool> r:select({1, 2, 3, 4}, {iterator = 'NEIGHBOR'})

- - [1, [3, 5, 9, 10]1]
- [2, [10, 1111

Request#1 returns 1 tuple because the point {10,11} is the same as the rectangle {10,11,10,11}
(«Rectangle#4» in the picture). Request#2 returns 1 tuple because the rectangle {4,7,5,9}, which was
«Rectangle#3» in the picture, is entirely within{3,5,9,10} which was Rectangle#2. Request#3 returns 2
tuples, because the NEIGHBOR iterator always returns all tuples, and the first returned tuple will be
{3,5,9,10} («Rectangle#2» in the picture) because it is the closest neighbor of {1,2,3,4} («Rectangle#1» in
the picture).

Now let us create a space and index for cuboids, which are rectangle-or-boxes that have 6 corners and 6
sides.

tarantool> s = box.schema.space.create('R')
s:create_index('primary', {parts = {1, 'unsigned'}})
tarantool> r = s:create_index('S', {
> type = 'RIREE',

unique = false,

dimension = 3,

parts = {2, 'ARRAY'}
b

tarantool> i

>
>
>
>

The additional option here is dimension=3. The default dimension is 2, which is why it didn’t need to be
specified for the examples of rectangle. The maximum dimension is 20. Now for insertions and selections
there will usually be 6 coordinates. For example:

tarantool> s:insert{1, {0, 3, 0, 3, 0, 3}}
tarantool> r:select({1, 2, 1, 2, 1, 2}, {iterator = box.index.GT})

Now let us create a space and index for Manhattan-style spatial objects, which are rectangle-or-boxes that
have a different way to calculate neighbors.

tarantool> s = box.schema.space.create('R")
tarantool> i = s:create_index('primary', {parts = {1, 'unsigned'l}})
tarantool> r = s:create_index('S', {

>  type = 'RTREE',

> unique = false,

> distance = 'manhattan',
> parts = {2, 'ARRAY'}

> 1

The additional option here is distance='manhattan'. The default distance calculator is ,euclid“, which is
the straightforward as-the-crow-flies method. The optional distance calculator is ,manhattan®, which can be
a more appropriate method if one is following the lines of a grid rather than traveling in a straight line.

tarantool> s:insert{1, {0, 3, 0, 3}}
tarantool> r:select ({1, 2, 1, 2}, {iterator = box.index.NEIGHBOR})

More examples of spatial searching are online in the file R tree index quick start and usage.

132 Fnasa 6. Cnpasou4Huku



https://github.com/tarantool/tarantool/wiki/R-tree-index-quick-start-and-usage

Tarantool, Beinyck 1.7.5

Submodule box.info

The box.info submodule provides access to information about server instance variables.

version is the Tarantool version. This value is also shown by tarantool —version.

id corresponds to replication.id (see below).

ro is true if the instance is in «read-only» mode (same as read_ only in box.cfg{}).
vclock corresponds to replication.downstream.vclock (see below).

uptime is the number of seconds since the instance started. This value can also be retrieved with
tarantool. uptime().

Isn corresponds to replication.lsn (see below).
vinyl returns runtime statistics for vinyl storage engine.

cluster.uuid is the UUID of the replica set. Every instance in a replica set will have the same cluster.
uuid value. This value is also stored in box.space. schema system space.

pid is the process ID. This value is also shown by tarantool module and by the Linux command ps
-A.

status corresponds to replication.upstream.status (see below).

signature is the sum of all 1sn values from the vector clocks (velock) of all instances in the replica
set.

uuid corresponds to replication.uuid (see below).

replication part contains statistics for all instances in the replica set in regard to the current instance (see
an example in the section «Monitoring a replica set»):

replication.id is a short numeric identifier of the instance within the replica set.

replication.uuid is a globally unique identifier of the instance. This value is also stored in
boz.space. _cluster system space.

replication.lsn is the log sequence number (LSN) for the latest entry in the instance’s write ahead log
(WAL).

replication.upstream contains statistics for the replication data uploaded by the instance.
replication.upstream.status is the replication status of the instance.
— auth means that the instance is getting authenticated to connect to a replication source.

— connecting means that the instance is trying to connect to the replications source(s) listed in its
replication parameter.

— disconnected means that the instance is not connected to the replica set (due to network
problems, not replication errors).

— follow means that the instance’s role is «replica» (read-only) and replication is in progress.
— running means the instance’s role is «master» (non read-only) and replication is in progress.
— stopped means that replication was stopped due to a replication error (e.g. duplicate key).

replication.upstream.idle is the time (in seconds) since the instance received the last event from a
master.

replication.upstream.lag is the time difference between the local time at the instance, recorded when
the event was received, and the local time at another master recorded when the event was written to
the write ahead log on that master.

6.1.

Built-in modules reference 133



Tarantool, Beinyck 1.7.5

Since lag calculation uses operating system clock from two different machines, don’t be surprised if
it’s negative: a time drift may lead to the remote master clock being consistently behind the local

instance’s clock.

For multi-master configurations, this is the maximal lag.

e replication.downstream contains statistics for the replication data requested and downloaded from

the instance.

e replication.downstream.vclock is the instance’s vector clock, which contains a pair ,,id, Isn*.

box.info()
Since box.info contents are dynamic, it’s not possible to iterate over keys with the Lua pairs()
function. For this purpose, box.info () builds and returns a Lua table with all keys and values provided

in the submodule.
Return keys and values in the submodule.
Rtype table

Example:

tarantool> box.info
- version: 1.7.4-52-g980d30092
id: 1
ro: false
vclock: {1: 8}
uptime: 7280
1sn: 8
vinyl: []
cluster:
uuid: £7c0c1c6-£9d8-4df7-82ff-d4bd00610ab6c
pid: 16162
status: running
signature: 8
replication:
1:
id: 1
uuid: 1899631e-6369-40a1-81c9-7d170e909276
lsn: 8

id: 2
uuid: bd949e5d-7£f£9-413e-b4£f2-c9b0149fddab
1sn: O
upstream:
status: follow
idle: 7256.7571430206
lag: O
downstream:
vclock: {1: 8}

id: 3
uuid: cbcb61d5-fad48-460d-abd7-3£f13709d07a7
1sn: 0O
upstream:
status: follow
idle: 7255.7510120869
lag: O
downstream:

(continues on next page)

134

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

vclock: {1: 8}
uuid: 1899631e-6369-40a1-81c9-7d170e909276

®yukuna box.once

box.once (key, functz’on[, ])
Execute a function, provided it has not been executed before. A passed value is checked to see whether
the function has already been executed. If it has been executed before, nothing happens. If it has not
been executed before, the function is invoked.

See an example of using box.once() while bootstrapping a replica set.

If an error occurs inside box.once() when initializing a database, you can re-execute the failed box.
once () block without stopping the database. The solution is to delete the once object from the system
space _schema. Say box.space._schema:select{}, find your once object there and delete it. For
example, re-executing a block with key='hello" :

tarantool> box.space._schema:select{}

- - ['cluster', 'b4e15788-d962-4442-892e-d6c1dd5d13f2"']
- ['max_id', 512]
- ['oncebye']
- ['oncehello']
- ['version', 1, 7, 2]

tarantool> box.space._schema:delete ('oncehello')

- ['oncehello']

tarantool> box.once('hello', function() end)

ITapameTrpsbl
e key (string) — a value that will be checked
e function (function) — a function

e ... —arguments that must be passed to function

BnoxeHHbiii mopgynb box.schema

The box.schema submodule has data-definition functions for spaces, users, roles, and function tuples.

box.schema.space.create(space-name [, {options} ] )
Create a space.

ITapameTrpsbl

e space-name (string) — name of space, which should not be a number and should
not contain special characters

6.1. Built-in modules reference 135



Tarantool, Beinyck 1.7.5

e options (table) — see «Options for box.schema.space.create» chart, below
Return space object
Rtype userdata

Options for box.schema.space.create

Name | Effect Type| Default
temporpspace contents are temporary: changes are not stored in the write-ahead | bool¢afalse
log and there is no replication. Note re storage engine: vinyl does not
support temporary spaces.

id unique identifier: users can refer to spaces with the id instead of the name | numbdast
space’s
id, +1
field coired count of fields: for example if field count=5, it is illegal to insert a | numbe@i.e. not
tuple with fewer than or more than 5 fields fixed

if not | exisase space only if a space with the same name does not exist already, | bool¢afalse
otherwise do nothing but do not cause an error

engine | ,memtx"“ or ,vinyl“ string ,,memtx"
user name of the user who is considered to be the space’s owner for | string current
authorization purposes user’s
name

format | field names and types: For an illustration with the format option, see the | tabld (blank)
boz.space. _space example.

There are three syntax variations for object references targeting space objects, for example box.
schema. space.drop(space-id) will drop a space. However, the common approach is to use functions
attached to the space objects, for example space object:drop().

Example

tarantool> s = box.schema.space.create('space55')

tarantool> s = box.schema.space.create('space55', {
> id = 555,
>  temporary = false

>}

- error: Space 'spacebb' already exists

tarantool> s = box.schema.space.create('spacebb', {
> if_not_exists = true

>}

After a space is created, usually the next step is to create an index for it, and then it is available for
insert, select, and all the other box.space functions.

box.schema.user.create(user-name [, {options} ])
Create a user. For explanation of how Tarantool maintains user data, see section Users and reference
on _ user space.

The possible options are:

136 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e if _not_exists = true|false (default = false) - boolean; true means there should be no error
if the user already exists,

e password (default = ;) - string; the password = password specification is good because in a URI
(Uniform Resource Identifier) it is usually illegal to include a user-name without a password.

ITpumeuanme: The maximum number of users is 32.

ITapameTrpsl

e user-name (string) — name of user, which should not be a number and should not
contain special characters

e options (table) — if _not_exists, password

Return nil

IIpumepsi:

box.schema.user.create('Lena')
box.schema.user.create('Lena', {password = 'X'})
box.schema.user.create('Lena', {if_not_exists = false})

box.schema.user.drop (user-name [, {options} ] )

Drop a user. For explanation of how Tarantool maintains user data, see section Users and reference on
__user space.

ITapameTrpsbl
e user-name (string) — the name of the user

e options (table) — if_exists = true|false (default = false) - boolean; true
means there should be no error if the user does not exist.

IIpumepsi:

box.schema.user.drop('Lena')
box.schema.user.drop('Lena',{if _exists=false})

box.schema.user.exists (user-name)
Return true if a user exists; return false if a user does not exist. For explanation of how Tarantool
maintains user data, see section Users and reference on _ user space.

ITapameTrpsbl
e user-name (string) — the name of the user
Rtype bool

Example:

box.schema.user.exists('Lena')

box.schema.user.grant (user-name, priveleges, object-type, object—name[, {options}])
box.schema.user.grant (user-name, priveleges, ’universe’[, nil, {options}])

box.schema.user.grant (user-name, role-name[, nil, nil, {options}])
Grant privileges to a user or to another role.

ITapameTrpsbl

6.1. Built-in modules reference 137




Tarantool, Beinyck 1.7.5

box.
box.

¢ user-name (string) — the name of the user
e priveleges (string) —,read” or ,write“ or ,execute” or a combination,
e object-type (string) — ,space’ or  function®.
e object-name (string) — name of object to grant permissions to
e role-name (string) — name of role to grant to user.
e options (table) — grantor, if_not_exists
If 'function','object-name' is specified, then a _func tuple with that object-name must exist.

Variation: instead of object-type, object-name say ,universe“ which means ,all object-types and
all objects®. In this case, object name is omitted.

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).
The possible options are:
e grantor = grantor _mame_or_id — string or number, for custom grantor,

e if not_exists = true|false (default = false) - boolean; true means there should be no error
if the user already has the privilege.

Example:

box.schema.user.grant('Lena', 'read', 'space', 'tester')
box.schema.user.grant('Lena', 'execute', 'function', 'f')
box.schema.user.grant('Lena', 'read,write', 'universe')
box.schema.user.grant('Lena’', 'Accountant')

box.schema.user.grant('Lena', 'read,write,execute', 'universe')
box.schema.user.grant('X', 'read', 'universe', nil, {if_not_exists=true}))
schema.user.revoke (user-name, privilege, object-type, object-name)

schema.user.revoke (user-name, privilege, ’role’, role-name)
Revoke privileges from a user or from another role.

ITapameTrpsbr
e user-name (string) — the name of the user
e privilege (string) — ,read or ,write“ or ,execute or a combination
e object-type (string) — ,space’ or ,function*
e object-name (string) — the name of a function or space

The user must exist, and the object must exist, but it is not an error if the user does not have the
privilege.

Variation: instead of object-type, object-name say ,universe“ which means ,all object-types and
all objects".

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).

Example:

box.schema.user.revoke('Lena', 'read', 'space', 'tester')
box.schema.user.revoke('Lena', 'execute', 'function', 'f')
box.schema.user.revoke('Lena', 'read,write', 'universe')
box.schema.user.revoke('Lena', 'Accountant')

138

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

box.schema.user.password (password)
Return a hash of a user’s password. For explanation of how Tarantool maintains passwords, see section
Passwords and reference on _ user space.

IIpumeuanme:

e If a non-,,guest’ user has no password, it’s impossible to connect to Tarantool using this user.
The user is regarded as “internal” only, not usable from a remote connection. Such users can
be useful if they have defined some procedures with the SETUID option, on which privileges are
granted to externally-connectable users. This way, external users cannot create/drop objects, they
can only invoke procedures.

e For the ,guest” user, it’s impossible to set a password: that would be misleading, since ,guest®
is the default user on a newly-established connection over a binary port, and Tarantool does not
require a password to establish a binary connection. It is, however, possible to change the current
user to ‘guest’ by providing the AUTH packet with no password at all or an empty password.
This feature is useful for connection pools, which want to reuse a connection for a different user
without re-establishing it.

ITapameTrpsl
e password (string) — password to be hashed

Rtype string

Example:

box.schema.user.password ('JIEHA")

box.schema.user.passwd( [user—name ], password)
Associate a password with the user who is currently logged in, or with the user specified by user-name.
The user must exist and must not be ,,guest.

Users who wish to change their own passwords should use box.schema.user.passwd(password)
syntax.

Administrators who wish to change passwords of other users should use box.schema.user.
passwd(user-name, password) syntax.

ITapameTrpsI
e user-name (string) — user-name
e password (string) — password

Example:

box.schema.user.passwd('JIEHA")
box.schema.user.passwd('Lena', 'JIEHA')

box.schema.user.info( [user—name ] )
Return a description of a user’s privileges. For explanation of how Tarantool maintains user data, see
section Users and reference on _ user space.

ITapameTpsl

e user-name (string) — the name of the user. This is optional; if it is not supplied,
then the information will be for the user who is currently logged in.

Example:

6.1. Built-in modules reference 139



Tarantool, Beinyck 1.7.5

box.schema.user.info()
box.schema.user.info('Lena')

box.schema.role.create (role-name[, {options} ])
Create a role. For explanation of how Tarantool maintains role data, see section Roles.

ITapameTrpsbr

e role-name (string) — name of role, which should not be a number and should not
contain special characters

e options (table) — if_not_exists = true|false (default = false) - boolean;
true means there should be no error if the role already exists

Return nil

Example:

box.schema.role.create('Accountant')
box.schema.role.create('Accountant', {if_not_exists = false})

box.schema.role.drop (role-name [, {options} ])
Drop a role. For explanation of how Tarantool maintains role data, see section Roles.

ITapameTrpsbl
e role-name (string) — the name of the role

e options (table) — if_exists = true|false (default = false) - boolean; true
means there should be no error if the role does not exist.

Example:

box.schema.role.drop('Accountant')

box.schema.role.exists (role-name)
Return true if a role exists; return false if a role does not exist.

ITapameTpsl
e role-name (string) — the name of the role
Rtype bool

Example:

box.schema.role.exists('Accountant')

box.schema.role.grant (user-name, privilege, object-type, object-name[, option])
box.schema.role.grant (user-name, privilege, ’universe’[, nil, option])

box.schema.role.grant (role-name, role—name[, nil, nil, option])
Grant privileges to a role.

ITapameTrpsl
e user-name (string) — the name of the role

e privilege (string) — ,read* or ,write“ or ,execute or a combination

object-type (string) — ,space’ or ,function*

object-name (string) — the name of a function or space

140 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e option (table)— if _not_exists = true|false (default = false) - boolean; true

means there should be no error if the role already has the privilege

The role must exist, and the object must exist.

Variation: instead of object-type, object-name say ,universe“ which means ,all object-types and

all objects®.

Variation: instead of privilege, object-type, object-name say role-name — to grant a role to a

role.

Example:

box.schema.role.grant ('Accountant', 'read', 'space', 'tester')
box.schema.role.grant ('Accountant', 'execute', 'function', 'f')
box.schema.role.grant ('Accountant', 'read,write', 'universe')
box.schema.role.grant ('public', 'Accountant')
box.schema.role.grant('rolel', 'role2', nil, nil, {if_not_exists=falsel})

box.

box.

box.

schema.role.revoke (user-name, privilege, object-type, object-name)
Revoke privileges from a role.

ITapameTpsI
e user-name (string) — the name of the role
e privilege (string) — ,read or ,write” or ,execute or a combination
e object-type (string) — ,space’ or function*

e object-name (string) — the name of a function or space

The role must exist, and the object must exist, but it is not an error if the role does not have the

privilege.

Variation: instead of object-type, object-name say ,universe* which means ,all object-types and

all objects®.

Variation: instead of privilege, object-type, object-name say role-name.

Example:

box.schema.role.revoke('Accountant', 'read', 'space', 'tester')
box.schema.role.revoke('Accountant', 'execute', 'function', 'f')
box.schema.role.revoke('Accountant', 'read,write', 'universe')

box.schema.role.revoke('public', 'Accountant')

schema.role.info( [role—name ])
Return a description of a role’s privileges.

ITapameTrpsl
e role-name (string) — the name of the role.

Example:

box.schema.role.info('Accountant')

schema. func.create (func-name [, {options} ] )

Create a function tuple. This does not create the function itself — that is done with Lua — but if it is
necessary to grant privileges for a function, box.schema.func.create must be done first. For explanation

of how Tarantool maintains function data, see reference on _ func space.

The possible options are:

6.1.

Built-in modules reference




Tarantool, Beinyck 1.7.5

e if _not_exists = true|false (default = false) - boolean; true means there should be no error
if the _func tuple already exists.

e setuid = true|false (default = false) - with true to make Tarantool treat the function’s caller
as the function’s creator, with full privileges. Remember that SETUID works only over binary
ports. SETUID doesn’t work if you invoke a function via an admin console or inside a Lua script.

e language = ,LUA““C* (default = ‘LUA’).

ITapameTpsbl

e func-name (string) — name of function, which should not be a number and should
not contain special characters

e options (table) — if _not_exists, setuid, language.

Return nil

Example:

box.schema.func.create('calculate')
box.schema.func.create('calculate', {if_not_exists = false})
box.schema.func.create('calculate', {setuid = false})
box.schema.func.create('calculate', {language = 'LUA'})

box.schema. func.drop (func-name [, {options} ])
Drop a function tuple. For explanation of how Tarantool maintains function data, see reference on

_ func space.
ITapameTpst
e func-name (string) — the name of the function

e options (table) — if_exists = truel|false (default = false) - boolean; true
means there should be no error if the func tuple does not exist.

Example:

box.schema.func.drop('calculate')

box.schema.func.exists (func-name)
Return true if a function tuple exists; return false if a function tuple does not exist.

ITapameTrpsbl
e func-name (string) — the name of the function
Rtype bool

Example:

box.schema.func.exists('calculate')

BnoxeHubiii moayne box.session

The box.session submodule allows querying the session state, writing to a session-specific temporary Lua
table, or setting up triggers which will fire when a session starts or ends. A session is an object associated
with each client connection.

box.session.id()

142 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

Return the unique identifier (ID) for the current session. The result can be 0 meaning there
is no session.

Rtype number

box.session.exists (id)
Return 1 if the session exists, 0 if the session does not exist.
Rtype number

box.session.peer(id)
This function works only if there is a peer, that is, if a connection has been made to a separate Tarantool
instance.

Return The host address and port of the session peer, for example «127.0.0.1:55457». If the
session exists but there is no connection to a separate instance, the return is null. The
command is executed on the server instance, so the «local name» is the server instance’s
host and port, and the «peer name» is the client’s host and port.

Rtype string
Possible errors: ,session.peer(): session does not exist*
box.session.sync()
Return the value of the sync integer constant used in the binary protocol.
Rtype number
box.session.user()
Return the name of the current user
Rtype string
box.session.type()
Return the type of connection or cause of action.
Rtype string
Possible return values are:

e binary®“ if the connection was done via the binary protocol, for example to a target made with
boz.cfg{listen—. .. };

e console“ if the connection was done via the administrative console, for example to a target made
with console.listen;

e repl® if the connection was done directly, for example when wusing Tarantool as a client;
o _applier if the action is due to replication, regardless of how the connection was done;

e  background” if the action is in a background fiber, regardless of whether the Tarantool server was
started in the background.

box.session.type() is useful for an on_ replace() trigger on a replica — the value will be ,applier if
and only if the trigger was activated because of a request that was done on the master.

box.session. su(user-name[, function-to-ezecute ])
Change Tarantool’s current user — this is analogous to the Unix command su.

Or, if function-to-execute is specified, change Tarantool’s current user temporarily while executing the
function — this is analogous to the Unix command sudo.

ITapameTrpsl

6.1. Built-in modules reference 143


https://github.com/tarantool/tarantool/blob/1.7/src/box/iproto_constants.h

Tarantool, Beinyck 1.7.5

e user-name (string) — name of a target user

e function-to-execute — name of a function, or definition of a function. Additional
parameters may be passed to box.session.su, they will be interpreted as
parameters of function-to-execute.

Example

tarantool> function f(a) return box.session.user() .. a end

tarantool> box.session.su('guest', f, '-xxx')

- guest-xxx

tarantool> box.session.su('guest',function(...) return ... end,1,2)

-1
-2

box.session.storage
A Lua table that can hold arbitrary unordered session-specific names and values, which will last until
the session ends. For example, this table could be useful to store current tasks when working with a
Tarantool queue manager.

Example

tarantool> box.session.peer(box.session.id())

- 127.0.0.1:45129

tarantool> box.session.storage.random_memorandum = "Don't forget the eggs"

tarantool> box.session.storage.radius_of_mars = 3396

tarantool> m = ''

tarantool> for k, v in pairs(box.session.storage) do
> m=m.. k.. '=t..v.. "
> end

tarantool> m

- 'radius_of_mars=3396 random_memorandum=Don''t forget the eggs. '

box.session.on_connect (trigger-function [, old-trigger-function ] )
Define a trigger for execution when a new session is created due to an event such as console.connect. The
trigger function will be the first thing executed after a new session is created. If the trigger execution
fails and raises an error, the error is sent to the client and the connection is closed.

ITapameTrpsbl

144 Fnasa 6. Cnpasou4Huku


https://github.com/tarantool/queue

Tarantool, Beinyck 1.7.5

box.

e trigger-function (function) — function which will become the trigger function

e old-trigger-function (function) — existing trigger function which will be
replaced by trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.
Details about trigger characteristics are in the t¢riggers section.

Example

tarantool> function f ()
> x=x + 1
> end
tarantool> box.session.on_connect (f)

Ilpenynpexgenme: If a trigger always results in an error, it may become impossible to connect
to a server to reset it.

session.on_disconnect (trigger-function [, old-trigger-function ])

Define a trigger for execution after a client has disconnected. If the trigger function causes an error,
the error is logged but otherwise is ignored. The trigger is invoked while the session associated with
the client still exists and can access session properties, such as box.session.id.

ITapameTrpsl
e trigger-function (function) — function which will become the trigger function

e old-trigger-function (function) — existing trigger function which will be
replaced by trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.
Details about trigger characteristics are in the t¢riggers section.

Example #1

tarantool> function f ()
> x =x +1
> end
tarantool> box.session.on_disconnect (f)

Example #2

After the following series of requests, a Tarantool instance will write a message using the log module
whenever any user connects or disconnects.

function log_connect ()
local log = require('log')
local m = 'Connection. user=' .. box.session.user() .. ' id=' .. box.session.id()
log.info(m)

end

function log_disconnect ()
local log = require('log')
local m = 'Disconnection. user=' .. box.session.user() .. ' id=' .. box.session.id()

(continues on next page)

6.1.

Built-in modules reference 145




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

log.info (m)
end

box.session.on_connect (log_connect)
box.session.on_disconnect(log_disconnect)

Here is what might appear in the log file in a typical installation:

2014-12-15 13:21:34.444 [11360] main/103/iproto I>
Connection. user=guest id=3

2014-12-15 13:22:19.289 [11360] main/103/iproto I>
Disconnection. user=guest id=3

box.session.on_auth (irigger-function [, old-trigger-function ])

Define a trigger for execution during authentication.
The on_auth trigger function is invoked in these circumstances:

(1) The console.connect function includes an authentication check for all users except ,,guest“. For
this case, the on_auth trigger function is invoked after the on_connect trigger function, if and
only if the connection has succeeded so far.

(2) The binary protocol has a separate authentication packet. For this case, connection and
authentication are considered to be separate steps.

Unlike other trigger types, on_auth trigger functions are invoked before the event. Therefore a trigger
function like function auth_function () v = box.session.user(); end will set v to «guest», the
user name before the authentication is done. To get the user name after the authentication is done,
use the special syntax: function auth_function (user_name) v = user_name; end

If the trigger fails by raising an error, the error is sent to the client and the connection is closed.
ITapameTrpsbl
e trigger-function (function) — function which will become the trigger function

e old-trigger-function (function) — existing trigger function which will be
replaced by trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.
Details about trigger characteristics are in the triggers section.

Example 1

tarantool> function £ ()
> x =x +1
> end
tarantool> box.session.on_auth(f)

Example 2
This is a more complex example, with two server instances.

The first server instance listens on port 3301; its default user name is ,,admin“. There are two on_auth
triggers:

e The first trigger has a function with no arguments, it can only look at box.session.user().

146

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

e The second trigger has a function with a user_name argument, it can look at both box.session.
user () and user_name.

The second server instance will connect with console.connect, and then will display the variables that
were set by the trigger functions.

-- On the first server instance, which listens on port 3301
box.cfg{listen=3301}
function functionl()

print ('function 1, box.session.user()='..box.session.user())
end

function function2(user_name)
print ('function 2, box.session.user()='..box.session.user())
print ('function 2, user_name='..user_name)
end

box.session.on_auth(functionl)
box.session.on_auth(function2)
box.schema.user.passwd('admin')

-- On the second server instance, that conmnects to port 3301
console = require('console')
console.connect ('admin:admin@localhost:3301")

The result looks like this:

function 2, box.session.user()=guest
function 2, user_name=admin

function 1, box.session.user()=guest

Submodule box.slab
The box.slab submodule provides access to slab allocator statistics. The slab allocator is the main allocator
used to store tuples. This can be used to monitor the total memory usage and memory fragmentation.

box.runtime.info()
Show a memory usage report (in bytes) for the Lua runtime.

Return
e lua is the heap size of the Lua garbage collector;
e maxalloc is the maximal memory quota that can be allocated for Lua;
e used is the current memory size used by Lua.

Rtype table

Example:

tarantool> box.runtime.info()

- lua: 913710
maxalloc: 4398046510080
used: 12582912

tarantool> box.runtime.info() .used

- used: 12582912

6.1. Built-in modules reference 147



Tarantool, Beinyck 1.7.5

box.slab.info ()

Show an aggregated memory usage report (in bytes) for the slab allocator.

This report is useful for assessing out-of-memory risks: the risks are high if both arena_used_ratio
and quota_used_ratio are high (90-95%).

If quota_used_ratio is low, then high arena_used_ratio and/or items_used_ratio indicate that
the memory fragmentation is low (i.e. the memory is used efficiently).

If quota_used_ratio is high (approaching 100%), then low arena_used_ratio (50-60%) indicates
that the memory is heavily fragmentized. Most probably, there is no immediate out-of-memory risk
in this case, but generally this is an issue to consider. For example, probable risks are that the entire
memory quota is used for tuples, and there is are no slabs left for a piece of an index. Or that all slabs
are allocated for storing tuples, but in fact all the slabs are half-empty.

Return

e items_size is the total amount of memory (including allocated, but currently free
slabs) used only for tuples, no indexes;

e items_used_ratio = items_used / slab_count * slab_size (these are slabs used
only for tuples, no indexes);

e quota_size is the maximum amount of memory that the slab allocator can use
for both tuples and indexes (as configured in memiz memory parameter, e.g. the
default is 1 gigabyte = 2730 bytes = 1,073,741,824 bytes);

e quota_used_ratio = quota_used / quota_size;
e arena_used_ratio — arena_used / arena_size;

e items_used is the efficient amount of memory (omitting allocated, but currently
free slabs) used only for tuples, no indexes;

e quota_used is the amount of memory that is already distributed to the slab allocator;

e arena_size is the total memory used for tuples and indexes together (including
allocated, but currently free slabs);

e arena_used is the efficient memory used for storing tuples and indexes together
(omitting allocated, but currently free slabs).

Rtype table

Example:

tarantool> box.slab.info()

- items_size: 228128
items_used_ratio: 1.8
quota_size: 1073741824
quota_used_ratio: 0.8}
arena_used_ratio: 43.2)
items_used: 4208
quota_used: 8388608
arena_size: 2325176
arena_used: 1003632

tarantool> box.slab.info() .arena_used

- 1003632

148

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

box.slab.stats()

Show a detailed memory usage report (in bytes) for the slab allocator. The report is broken
down into groups by data itemn size as well as by slab size (64-byte, 136-byte, etc). The report
includes the memory allocated for storing both tuples and indexes.

return
e mem_free is the allocated, but currently unused memory;
e mem_used is the memory used for storing data items (tuples and indexes);
e item_count is the number of stored items;
e item_size is the size of each data item;
e slab_count is the number of slabs allocated;
e slab_size is the size of each allocated slab.

rtype table

Example:

Here is a sample report for the first group:

tarantool> box.slab.stats() [1]
- mem_free: 16232

mem_used: 48

item_count: 2

item_size: 24

slab_count: 1

slab_size: 16384

This report is saying that there are 2 data items (item_count — 2) stored in one (slab_count
= 1) 24-byte slab (item_size = 24), so mem_used = 2 * 24 = 48 bytes. Also, slab_size is
16384 bytes, of which 16384 - 48 = 16232 bytes are free (mem_free).

A complete report would show memory usage statistics for all groups:

tarantool> box.slab.stats()
- - mem_free: 16232
mem_used: 48
item_count: 2
item_size: 24
slab_count: 1
slab_size: 16384
- mem_free: 15720
mem_used: 560
item_count: 14
item_size: 40
slab_count: 1
slab_size: 16384
<.o.0>
- mem_free: 32472
mem_used: 192
item_count: 1
item_size: 192
slab_count: 1

(continues on next page)

6.1. Built-in modules reference 149



Tarantool, Beinyck 1.7.5

(mpomosKEeHNe C IPeABLAYIIeH CTPAHHUIE)

slab_size: 32768

- mem_free: 1097624
mem_used: 999424
item_count: 61
item_size: 16384
slab_count: 1
slab_size: 2097152

The total mem_used for all groups in this report equals arena_used in boz.slab.info() report.

BnoxeHHbiii moagynb box.space

The box . space submodule has the data-manipulation functions select, insert, replace, update, upsert,
delete, get, put. It also has members, such as id, and whether or not a space is enabled. Submodule source

code is available in file src/box/lua/schema.lua.

A list of all box.space functions follows, then comes a list of all box.space members.

The functions and members of box.space

Name

Use

space_ object:auto_increment()

Generate key + Insert a tuple

space_object:bsize()

Get count of bytes

space__ object:count()

Get count of tuples

space__object:create_index()

Create an index

space_object:delete()

Delete a tuple

space_ object:drop()

Destroy a space

space_ object:get()

Select a tuple

space_ object:insert()

Insert a tuple

space__object:len()

Get count of tuples

space_ object:on_ replace()

Create a replace trigger

space__object:pairs()

Prepare for iterating

space_ object:put()

Insert or replace a tuple

space__ object:rename()

Rename a space

space_ object:replace()

Insert or replace a tuple

space__object:run__triggers()

Enable/disable a replace trigger

space_object:select()

Select one or more tuples

space__ object:truncate()

Delete all tuples

space_ object:update()

Update a tuple

space__object:upsert()

Update a tuple

space__ object.enabled

Flag, true if space is enabled

space_ object.field_ count

Required number of fields

space__ object.id

Numeric identifier of space

space_ object.index

Container of space’s indexes

box.space. _cluster

(Metadata) List of replica sets

box.space. _func

Metadata) List of function tuples

box.space. _index

Metadata) List of indexes

boz.space. _priv

box.space. _schema

( )
( )
(Metadata) List of privileges
(Metadata) List of schemas

boz.space. _space

(Metadata) List of spaces

[MpoponrkaeTca Ha cnepytoLlein CTpaHuLe

150

Fnasa 6. Cnpasou4Huku



https://github.com/tarantool/tarantool/blob/1.7/src/box/lua/schema.lua

Tarantool, Beinyck 1.7.5

Tabanua 1 — npogomkeHne ¢ NpeablAyLel CTPaHNLbI
Name Use
bozx.space. _user (Metadata) List of users

object space_object

space_object:auto_increment ({fuple)
Insert a new tuple using an auto-increment primary key. The space specified by space _object must
have an ,unsigned* or ,jinteger or ,number* primary key index of type TREE. The primary-key
field will be incremented before the insert.

ITapameTrpbi
e space_object (space_object) — an object reference
e tuple (table/tuple) — tuple’s fields, other than the primary-key field
Return the inserted tuple.
Rtype tuple
Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.
Possible errors: index has wrong type or primary-key indexed field is not a number.

Example:

tarantool> box.space.tester:auto_increment{'Fld#1', 'F1d#2'}

- [1, 'Fla#1', 'Fld#2']

tarantool> box.space.tester:auto_increment{'F1d#3'}

- [2, '"F1a#3']

space_object:bsize()
ITapameTrpsi
e space_object (space_object) — an object reference
Return Number of bytes in the space.

Example:

tarantool> box.space.tester:bsize()

- 22

Note re storage engine: vinyl does not support bsize().

space_object:count ([key] [, iterator ] )
Return the number of tuples. If compared with len(), this method works slower because count ()
scans the entire space to count the tuples.

ITapameTpsI
e space_object (space_object) — an object reference

e key (scalar/table) — primary-key field values, must be passed as a Lua table if
key is multi-part

6.1. Built-in modules reference 151



Tarantool, Beinyck 1.7.5

e iterator — comparison method
Return Number of tuples.

Example:

tarantool> box.space.tester:count(2, {iterator='GE'})

-1

space_object:create_index (indez-name [, options ])
Create an indez. It is mandatory to create an index for a space before trying to insert tuples into
it, or select tuples from it. The first created index, which will be used as the primary-key index,
must be unique.

ITapamerpbi
e space_object (space_object) — an object reference

e index_name (string) — name of index, which should not be a number and should
not contain special characters

e options (table) —
Return index object
Rtype index object

Options for space_object:create_index:

152 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

Name Effect Type Default
type type of index | string (,HASH* or ,TREE® or ,BITSET* or | ,,TREE®
~RITREE®)

id unique number last index’s id,
identifier +1

unique index is | boolean true
unique

if not exist$ no error if | boolean false
duplicate
name

parts field-numbers | {field no, ,unsigned“ or ,string“ or | {1,
+ types Lnteger* or ,number“ or ,array“ or | 'unsigned'}

,scalar*}

dimension affects number 2
RTREFE
only

distance affects string (euclid or ,manhattan®) ,euclid“
RTREE
only

bloom fpr | affects vinyl | number vinyl_bloom_£px
only

page_size affects  vinyl | number vinyl_page_sizg
only

range size | affects vinyl | number vinyl_range_siz
only

run_count peafféetel vinyl | number vinyl_run_count
only

run_size raffiaffects vinyl | number vinyl_run_size|
only

Note re storage engine: vinyl has extra options which by default are based on configuration
parameters vinyl_bloom_ fpr, vinyl _page_ size, vinyl _range_size, vinyl _run_ count_per_level,
and vinyl_run_ size_ratio — see the description of those parameters. The current values can be
seen by selecting from box.space. _indezx.

Possible errors: too many parts. Index ,,. .

. already exists. Primary key must be unique.

_per_level

ratio

tarantool> s = box.space.spacebb

tarantool> s:create_index('primary', {unique = true, parts = {1, 'unsigned', 2, 'string'}

-1

Details about index field types:

The six index field types (unsigned | string | integer | number | array | scalar) differ depending on what
values are allowed, and what index types are allowed.

unsigned: unsigned integers between 0 and 18446744073709551615, about 18 quintillion. May
also be called ,uint* or ,num®, but ,num* is deprecated. Legal in memtx TREE or HASH indexes,
and in vinyl TREE indexes.

string: any set of octets, up to the mazimum length. May also be called ,str*. Legal in memtx

6.1.

Built-in modules reference

153



Tarantool, Beinyck 1.7.5

TREE or HASH or BITSET indexes, and in vinyl TREE indexes.

e integer: integers between -9223372036854775808 and 18446744073709551615. May also be called
Lnt. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

e number: integers between -9223372036854775808 and 18446744073709551615, single-precision
floating point numbers, or double-precision floating point numbers. Legal in memtx TREE or
HASH indexes, and in vinyl TREE indexes.

e array: array of numbers. Legal in memtx RTREE indexes.

e scalar:

booleans (true or false), or integers between

-9223372036854 775808

and

18446744073709551615, or single-precision floating point numbers, or double-precison floating-
point numbers, or strings. When there is a mix of types, the key order is: booleans, then numbers,
then strings. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

Index field types to use in create index

4

Tun uo- | What can be in it Where is it legal | IIpu-
as g MephI:
WHJIEKCH-
pOBaHUs
unsigned | integers between 0 and 18446744073709551615 memtx TREE or | 123456
HASH indexes,
vinyl TREE
indexes
string strings — any set of octets memtx TREEor | ,LA B
HASH indexes | C*
vinyl TREE | ,\65
indexes \66
\67
integer integers between -9223372036854775808 and | memtx TREE or | -2°63
18446744073709551615 HASH indexes,
vinyl TREE
indexes
number | integers between -9223372036854775808 and | memtx TREE or | 1.234
18446744073709551615, single-precision floating point | HASH indexes, | -44
numbers, double-precision floating point numbers vinyl TREE | 1.447e-4
indexes
array array of integers between -9223372036854775808 and | memtx RTREE | {10,
9223372036854775807 indexes 11} {3,
5 9,
10}
scalar booleans (true or false), integers between - | memtx TREE or | true -
9223372036854775808 and  18446744073709551615, | HASH indexes, | 11.234
single-precision floating point numbers, double-precision | vinyl TREE | . ,,py“
floating point numbers, strings indexes

Note re storage engine: vinyl supports only the TREE index type, and vinyl secondary indexes must
be created before tuples are inserted.

space_object:delete(key)
Delete a tuple identified by a primary key.

ITapameTpsbI

e space_object (space_object) — an object reference

154

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e key (scalar/table) — primary-key field values, must be passed as a Lua table if
key is multi-part

Return the deleted tuple
Rtype tuple

Complexity factors: Index size, Index type

IIpumeuyanue:

Note re storage engine:
vinyl will return nil, rather than the deleted tuple.

Example:

tarantool> box.space.tester:delete(1)

- [1, 'My first tuple']

tarantool> box.space.tester:delete(1)

tarantool> box.space.tester:delete('a')
- error: 'Supplied key type of part O does not match index part type:
expected unsigned'

space_object:drop()

Drop a space.
ITapameTrpbi
e space_object (space_object) — an object reference
Return nil
Possible errors: If space_object does not exist.
Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.space_that_does_not_exist:drop()

space_object:get (key)

Search for a tuple in the given space.
ITapameTrpbi
e space_object (space_object) — an object reference

e key (scalar/table) — value to be matched against the index key, which may be
multi-part.

Return the tuple whose index key matches key, or nil.
Rtype tuple
Possible errors: If space_object does not exist.

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

6.1.

Built-in modules reference




Tarantool, Beinyck 1.7.5

The box.space...select function returns a set of tuples as a Lua table; the box.space...
get function returns at most a single tuple. And it is possible to get the first tuple in a space
by appending [1]. Therefore box.space.tester:get{1} has the same effect as box.space.
tester:select{1}[1], if exactly one tuple is found.

Example:

box.space.tester:get{1}

space_object:insert (tuple)
Insert a tuple into a space.

ITapamerpbt
e space_object (space_object) — an object reference
e tuple (tuple/table) — tuple to be inserted.
Return the inserted tuple
Rtype tuple

Possible errors: If a tuple with the same unique-key value already exists, returns
ER_TUPLE_FQOUND.

Example:

tarantool> box.space.tester:insert{5000, 'tuple number five thousand'}

- [5000, 'tuple number five thousand ']

space_object:1len()
Return the number of tuples in the space. If compared with count(), this method works faster
because len() does not scan the entire space to count the tuples.

ITapameTpsbI
e space_object (space_object) — an object reference
Return Number of tuples in the space.

Example:

tarantool> box.space.tester:len()

-2

Note re storage engine: vinyl does not support len(). Possible workarounds are to use count() or
#select(...).

space_object:on_replace (trigger-function [, old-trigger-function ])
Create a «replace triggers. The trigger-function will be executed whenever a replace() or
insert () or update() or upsert() or delete() happens to a tuple in <space-name>.

ITapameTrpsl
e trigger-function (function) — function which will become the trigger function

e old-trigger-function (function) — existing trigger function which will be
replaced by trigger-function

Return nil or function pointer

156 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

If it is necessary to know whether the trigger activation happened due to replication or on a
specific connection type, the function can refer to box.session.type().

Details about trigger characteristics are in the triggers section.

Example #1:

tarantool> function f ()
> x=x+1
> end
tarantool> box.space.X:on_replace(f)

The trigger-function can have two parameters: old tuple, new tuple. For example, the following
code causes nil to be printed when the insert request is processed, and causes [1, ,,Hi“| to be printed
when the delete request is processed:

box.schema.space.create('space_1")
box.space.space_1l:create_index('space_1_index',{})
function on_replace_function (old, new) print(old) end
box.space.space_l:on_replace(on_replace_function)
box.space.space_1:insert{1, 'Hi'}
box.space.space_1l:delete{l}

Example #2:

The following series of requests will create a space, create an index, create a function which
increments a counter, create a trigger, do two inserts, drop the space, and display the counter
value - which is 2, because the function is executed once after each insert.

tarantool> s = box.schema.space.create('space53')
tarantool> s:create_index('primary', {parts = {1, 'unsigned'}})
tarantool> function replace_trigger ()
> replace_counter = replace_counter + 1
> end
tarantool> s:on_replace(replace_trigger)
tarantool> replace_counter = 0
tarantool> t = s:insert{l, 'First replace'}
tarantool> t = s:insert{2, 'Second replace'}
tarantool> s:drop()
tarantool> replace_counter

space_object:pairs( [key[, itemtor] ])
Search for a tuple or a set of tuples in the given space, and allow iterating over one tuple at a
time.

ITapameTrpsI
e space_object (space_object) — an object reference

e key (scalar/table) — value to be matched against the index key, which may be
multi-part

e iterator — see index_ object:pairs
Return iterator which can be used in a for/end loop or with totable()
Possible errors: No such space; wrong type.

Complexity factors: Index size, Index type.

6.1. Built-in modules reference 157


https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Beinyck 1.7.5

For examples of complex pairs requests, where one can specify which index to search and
what condition to use (for example «greater thans instead of «equal to»), see the later section
index_object:pairs.

Example:

tarantool> s = box.schema.space.create('space33"')

tarantool> -- indez 'X' has default parts {1, 'unsigned'}
tarantool> s:create_index('X', {})

tarantool> s:insert{0, 'Hello my '}, s:insert{l, 'Lua world'}

- [0, 'Hello my ']
- [1, 'Lua world'l]

tarantool> tmp = ''

tarantool> for k, v in s:pairs() do
>  tmp = tmp .. v[2]
> end

tarantool> tmp

- Hello my Lua world

space_object:rename (space-name)
Rename a space.

ITapameTrpsI
e space_object (space_object) — an object reference
e space-name (string) — new name for space
Return nil
Possible errors: space_object does not exist.

Example:

tarantool> box.space.spacebb:rename('space56')

tarantool> box.space.spaceb6:rename('spaceb5')

space_object:replace(tuple)

space_object:put (tuple)
Insert a tuple into a space. If a tuple with the same primary key already exists, box.space.
..:replace() replaces the existing tuple with a new one. The syntax variants box.space. ..
:replace() and box.space...:put() have the same effect; the latter is sometimes used to show
that the effect is the converse of box.space...:get().

ITapameTrpbi

158

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e space_object (space_object) — an object reference
e tuple (table/tuple) — tuple to be inserted
Return the inserted tuple.
Rtype tuple

Possible errors: If a different tuple with the same unique-key value already exists, returns
ER_TUPLE_FOUND. (This will only happen if there is a unique secondary index.)

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.tester:replace{5000, 'tuple number five thousand'}

space_object:run_triggers (true/false)
At the time that a trigger is defined, it is automatically enabled - that is, it will be executed.
Replace triggers can be disabled with box.space.space-name :run_triggers(false) and re-
enabled with box.space. space-name :run_triggers(true).

Return nil
Example:

The following series of requests will associate an existing function named F with an existing space
named T, associate the function a second time with the same space (so it will be called twice),
disable all triggers of T, and delete each trigger by replacing with nil.

tarantool> box.space.T:on_replace(F)

tarantool> box.space.T:on_replace(F)

tarantool> box.space.T:run_triggers(false)

tarantool> box.space.T:on_replace(nil, F)
.T:

tarantool> box.space.T:on_replace(nil, F)

space_object:select ([key])
Search for a tuple or a set of tuples in the given space.

ITapameTpsbI
e space_object (space_object) — an object reference

e key (scalar/table) — value to be matched against the index key, which may be
multi-part.

Return the tuples whose primary-key fields are equal to the fields of the passed key.
If the number of passed fields is less than the number of fields in the primary key,
then only the passed fields are compared, so select{1,2} will match a tuple whose
primary key is {1,2,3}.

Rtype array of tuples
Possible errors: No such space; wrong type.
Complexity factors: Index size, Index type.

Example:

tarantool> s = box.schema.space.create('tmp', {temporary=true})

tarantool> s:create_index('primary',{parts = {1,'unsigned', 2, 'string'}})

(continues on next page)

6.1.

Built-in modules reference 159




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> s:insert{1,'A'}

- [1, 'A']

tarantool> s:insert{l,'B'}

- [1, 'B']

tarantool> s:insert{l,'C'}

- [1, ¢l

tarantool> s:insert{2,'D'}

- [2, 'D']

tarantool> -- must equal both primary-key fields
tarantool> s:select{l,'B'}

- - [1, 'B']

tarantool> -- must equal only one primary-key field
tarantool> s:select{1}

- - [, 'ar]
- [1, 'B']
- [1, "¢l
tarantool> -- must equal O fields, so returns all tuples

tarantool> s:select{}

- - [1’ |A']
- [1’ ‘B’]
- [1, 'c']
- [2’ |D|]

For examples of complex select requests, where one can specify which index to search and what
condition to use (for example «greater than» instead of «equal to») and how many tuples to
return, see the later section index_object:select.

space_object:truncate()

Deletes all tuples.
ITapameTpsbI
e space_object (space_object) — an object reference
Complexity factors: Index size, Index type, Number of tuples accessed.

Return nil

IIpumeuanne: Note that truncate must be called only by the user who created the space OR
under a setuid function created by that user. Read more about setuid functions in reference on
boz.schema.func.create().

160

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

Example:

tarantool> box.space.tester:truncate()

tarantool> box.space.tester:len()

-0

space_object:update (key, {{operator, field no, value}, ... })
Update a tuple.

The update function supports operations on fields — assignment, arithmetic (if the field is
numeric), cutting and pasting fragments of a field, deleting or inserting a field. Multiple operations
can be combined in a single update request, and in this case they are performed atomically and
sequentially. Each operation requires specification of a field number. When multiple operations
are present, the field number for each operation is assumed to be relative to the most recent
state of the tuple, that is, as if all previous operations in a multi-operation update have already
been applied. In other words, it is always safe to merge multiple update invocations into a single
invocation, with no change in semantics.

Possible operators are:

e + for addition (values must be numeric)

- for subtraction (values must be numeric)

& for bitwise AND (values must be unsigned numeric)

| for bitwise OR (values must be unsigned numeric)

e - for bitwise XOR (exclusive OR) (values must be unsigned numeric)

: for string splice

! for insertion

# for deletion

= for assignment
For ! and = operations the field number can be -1, meaning the last field in the tuple.
ITapameTrpbi

e space_object (space_object) — an object reference

e key (scalar/table) — primary-key field values, must be passed as a Lua table if
key is multi-part

e operator (string) — operation type represented in string

e field_no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

e value (lua_value) — what value will be applied
Return the updated tuple.
Rtype tuple
Possible errors: it is illegal to modify a primary-key field.

Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

6.1. Built-in modules reference 161



Tarantool, Beinyck 1.7.5

Thus, in the instruction:

s:update(44, {{'+', 1, 55 }, {'=', 3, 'x'}})

the primary-key value is 44, the operators are '+' and '=' meaning add a value to a field and
then assign a value to a field, the first affected field is field 1 and the value which will be added
to it is 55, the second affected field is field 3 and the value which will be assigned to it is 'x"'.

Example:

Assume that initially there is a space named tester with a primary-key index whose type is
unsigned. There is one tuple, with field[1] = 999 and field[2] = 'A".

In the update: box.space.tester:update(999, {{'=', 2, 'B'}}) The first argument is
tester, that is, the affected space is tester. The second argument is 999, that is, the affected tuple
is identified by primary key value = 999. The third argument is =, that is, there is one operation
— assignment to a field. The fourth argument is 2, that is, the affected field is field[2]. The
fiftth argument is 'B', that is, field[2] contents change to 'B'. Therefore, after this update,
field[1] = 999 and field[2] = 'B'.

In the update: box.space.tester:update({999}, {{'=', 2, 'B'}}) the arguments are the
same, except that the key is passed as a Lua table (inside braces). This is unnecessary when the
primary key has only one field, but would be necessary if the primary key had more than one
field. Therefore, after this update, field[1] = 999 and field[2] = 'B' (no change).

In the update: box.space.tester:update({999}, {{'=', 3, 1}}) the arguments are the same,
except that the fourth argument is 3, that is, the affected field is field[3]. It is okay that, until
now, field[3] has not existed. It gets added. Therefore, after this update, field[1] = 999,
field[2] = 'B', field[3] = 1.

In the update: box.space.tester:update({999}, {{'+', 3, 1}}) the arguments are the same,
except that the third argument is '+', that is, the operation is addition rather than assignment.
Since field[3] previously contained 1, this means we’re adding 1 to 1. Therefore, after this
update, field[1] = 999, field[2] = 'B', field[3] = 2.

In the update: box.space.tester:update({999}, {{'I', 3, 1}, {'=', 2, 'C'}}) the idea
is to modify two fields at once. The formats are '|' and =, that is, there are two operations,
OR and assignment. The fourth and fifth arguments mean that field[3] gets OR’ed with 1.
The seventh and eighth arguments mean that field[2] gets assigned 'C'. Therefore, after this
update, field[1] = 999, field[2] = 'C', field[3] = 3.

In the update: box.space.tester:update ({999}, {{'#', 2, 1}, {'-', 2, 3}}) The idea is
to delete £ield[2], then subtract 3 from field[3]. But after the delete, there is a renumbering,
so field[3] becomes field[2] before we subtract 3 from it, and that’s why the seventh argument
is 2, not 3. Therefore, after this update, field[1] = 999, field[2] = 0.

In the update: box.space.tester:update({999}, {{'=', 2, 'XYZ'}}) we’re making a long
string so that splice will work in the next example. Therefore, after this update, field[1] = 999,
field[2] = 'XYZ'.

In the update: box.space.tester:update({999}, {{':', 2, 2, 1, "t!1'}}) The third
argument is ':', that is, this is the example of splice. The fourth argument is 2 because the
change will occur in field[2]. The fifth argument is 2 because deletion will begin with the
second byte. The sixth argument is 1 because the number of bytes to delete is 1. The seventh
argument is '!!' because '!!' is to be added at this position. Therefore, after this update,
field[1] = 999, field[2] = 'X!!Z".

space_object :upsert (tuple wvalue, {{operator, field no, value}, ...})

Update or insert a tuple.

162

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

If there is an existing tuple which matches the key fields of tuple_value, then the request has the
same effect as space_ object:update() and the {{operator, field_no, value}, ...} parameter
is used. If there is no existing tuple which matches the key fields of tuple_value, then the request
has the same effect as space_object:insert() and the {tuple_value} parameter is used. However,
unlike insert or update, upsert will not read a tuple and perform error checks before returning
— this is a design feature which enhances throughput but requires more caution on the part of the
user.

ITapamerpbi
e space_object (space_object) — an object reference
e tuple (table/tuple) — default tuple to be inserted, if analogue isn’t found
e operator (string) — operation type represented in string

e field_no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

e value (lua_value) — what value will be applied
Return null

Possible errors: it is illegal to modify a primary-key field. It is illegal to use upsert with a space
that has a unique secondary index.

Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

Example:

box.space.tester:upsert({12,'c'}, {{'=', 3, 'a'}, {'=', 4, 'b'}})

space_object.enabled
Whether or not this space is enabled. The value is false if the space has no index.

space_object.field_count
The required field count for all tuples in this space. The field count can be set initially with:
box.schema.space.create(..., {

field_count = field_count_value ,

1))

The default value is 0, which means there is no required field count.

Example:

tarantool> box.space.tester.field_count

-0

space_object.id
Ordinal space number. Spaces can be referenced by either name or number. Thus, if space
tester has id = 800, then box.space.tester:insert{0} and box.space[800] :insert{0} are
equivalent requests.

Example:

6.1. Built-in modules reference 163



Tarantool, Beinyck 1.7.5

tarantool> box.space.tester.id

- 512

space_object.index
A container for all defined indexes. There is a Lua object of type boz.index with methods to search
tuples and iterate over them in predefined order.

Rtype table

Example:

tarantool> #box.space.tester.index

-1

tarantool> box.space.tester.index.primary.type

- TREE

box.space._cluster
_cluster is a system space for support of the replication feature.

box.space._func
_func is a system space with function tuples made by box.schema.func.create().
Tuples in this space contain the following fields:
e the numeric function id, a number,
e the function name,
o flag,
e a language name (optional): ,LUA* (default) or ,C“.

The _func space does not include the function’s body. You continue to create Lua functions in
the usual way, by saying function function_name () ... end, without adding anything
in the _func space. The _func space only exists for storing function tuples so that their
names can be used within grant/revoke functions.

You can:

e Create a _func tuple with box.schema.func.create(),

e Drop a _func tuple with box.schema.func.drop(),

e Check whether a _func tuple exists with boz.schema.func.exists().
Example:

In the following example, we create a function named ‘f7’, put it into Tarantool’s _func space and
grant .execute privilege for this function to ,,guest’ user.

tarantool> function £7()
> Dbox.session.uid()
> end

(continues on next page)

164 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> box.schema.func.create('f7')

tarantool> box.schema.user.grant('guest', 'execute', 'function', 'f7')

tarantool> box.schema.user.revoke('guest', 'execute', 'function', 'f7')

box.space._index
_index is a system space.

Tuples in this space contain the following fields:
e id (= id of space),
e iid (= index number within space),
e name,
* type,
e opts (e.g. unique option), [tuple-field-no, tuple-field-type ...]|.

Here is what _index contains in a typical installation:

tarantool> box.space._index:select{}
- - [272, 0, 'primary', 'tree', {'unique': true}, [[0, 'string']]]
- [280, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [280, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [280, 2, 'mame', 'tree', {'unique': true}, [[2, 'string']]]
- [281, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [281, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [281, 2, 'name', 'tree', {'unique': true}, [[2, 'string']]]
- [288, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned'], [1, 'unsigned']]]
- [288, 2, 'name', 'tree', {'unique': true}, [[0, 'unsigned']l, [2, 'string']]]
- [289, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned'], [1, 'unsigned']]]
- [289, 2, 'name', 'tree', {'unique': true}, [[0, 'unsigned'], [2, 'string']]]
- [296, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [296, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [296, 2, 'name', 'tree', {'unique': true}, [[2, 'string'l]]]

box.space._priv
_priv is a system space where privileges are stored.

Tuples in this space contain the following fields:
e the numeric id of the user who gave the privilege («grantor id»),

e the numeric id of the user who received the privilege («grantee id»),

the type of object: ,space”, function® or ,universe®,

the numeric id of the object,

the type of operation: «read> = 1, «writes = 2, «execute» = 4, or a combination such as
«read,write,executes.

6.1. Built-in modules reference 165



Tarantool, Beinyck 1.7.5

You can:

Grant a privilege with box.schema.user.grant().

Revoke a privilege with boz.schema.user.revoke().

IIpumeuanue:

Generally, privileges are granted or revoked by the owner of the object (the user who created it),
or by the ,admin“ user.

Before dropping any objects or users, make sure that all their associated privileges have been
revoked.

Only the ,,admin® user can grant privileges for the ,universe".
Only the ,,admin* user or the creator of a space can drop, alter, or truncate the space.

Only the ,admin* user or the creator of a user can change a different user’s password.

box.space._schema
_schema is a system space.

This space contains the following tuples:

version tuple with version information for this Tarantool instance,
cluster tuple with the instance’s replica set 1D,
max_id tuple with the maximal space ID,

once. .. tuples that correspond to specific boz.once() blocks from the instance’s initialization file.
The first field in these tuples contains the key value from the corresponding box.once() block
prefixed with once“ (e.g. oncehello), so you can easily find a tuple that corresponds to a specific
box.once() block.

Example:

Here is what _schema contains in a typical installation (notice the tuples for two box.once() blocks,
'oncebye' and 'oncehello'):

tarantool> box.space._schema:select{}

['cluster', 'b4e15788-d962-4442-892e-d6c1dd5d13f2"']
['max_id', 512]

['oncebye']

['oncehello']

['version', 1, 7, 2]

box.space._space
_space is a system space.

Tuples in this space contain the following fields:

id,
owner (= id of user who owns the space),
name, engine, field_count,

flags (e.g. temporary), format.

166

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

These fields are established by space.create().
Example #1:

The following function will display all simple fields in all tuples of _space.

function example()
local ta = {}
local i, line
for k, v in box.space._space:pairs() do

i=1

line = ''

while i <= #v do
if type(v[i]) ~= 'table' then

line = line .. v[i] .. ' '

end

i=43i+1

end

table.insert (ta, line)
end
return ta
end

Here is what example() returns in a typical installation:

tarantool> example()

- '512
- '513
- '514

tester memtx 0O
origin vinyl 0 '
archive memtx 0 '

- - '272 1 _schema memtx 0 '
- '280 1 _space memtx O '
- '281 1 _vspace sysview 0 '
- '288 1 _index memtx O '
- '296 1 _func memtx O '
- '304 1 _user memtx 0 '
- '305 1 _vuser sysview 0 '
- '312 1 _priv memtx O '
- '313 1 _vpriv sysview 0 '
- '320 1 _cluster memtx O '
1
1
1

Example #2:

The following requests will create a space using box.schema.space.create() with a format clause.
Then it retrieves the _space tuple for the new space. This illustrates the typical use of the format
clause, it shows the recommended names and data types for the fields.

tarantool> box.schema.space.create('TM', {
> id = 12345,

> format = {
> [1] = {["name"] = "field_1"},
> [2] = {["type"] = "unsigned"}
>}
> P

- index: []

on_replace: 'function: 0x41c67338'
temporary: false

(continues on next page)

6.1. Built-in modules reference 167




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

id: 12345

engine: memtx

enabled: false

name: TM

field_count: O
- created

tarantool> box.space._space:select (12345)

- - [123845, 1, 'TM', 'memtx', O, {}, [{'name': 'field_1'}, {'type': 'unsigned'}]]

box.space._user

_user is a system space where user-names and password hashes are stored.
Tuples in this space contain the following fields:

e the numeric id of the tuple («id»),

e the numeric id of the tuple’s creator,

e the name,

e the type: ,user or ,role”,

optional password.

There are four special tuples in the _user space: ,,guest”, ,admin®, , public and ,replication‘.

Name ID | Type| Description

guest 0 | user | Default user when connecting remotely. Usually an untrusted user with few
privileges.

adminl | user | Default user when using Tarantool as a console. Usually an administrative user
with all privileges.

public2 role | Pre-defined role, automatically assigned to new users when they are created with
box.schema.user.create(user-name). Therefore, a convenient way to grant
ead* on space .t to every user that will ever exist is with box.schema.role.
grant ('public','read', 'space','t').

replicadion role | Pre-defined role, assigned by the ,,admin“ user to users who need to use replication
features.

To select a tuple from the _user space, use box.space._user:select(). For example, here is what
happens with a select for user id = 0, which is the ,,guest” user, which by default has no password:

tarantool> box.space._user:select{0}

- - [0, 1, 'guest', 'user']

Ilpenynpexgenume: To change tuples in the _user space, do not use ordinary box. space functions
for insert or update or delete. The _user space is special, so there are special functions which have
appropriate error checking.

To create a new user, use box.schema.user.create():

168

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

box.schema.user.create(user-name)
box.schema.user.create(user-name, {if_not_exists = true})
box.schema.user.create(user-name , {password = passwordl})
To change the user’s password, use boz.schema.user.password():

-- To change the current user's password
box.schema.user.passwd(password)

-- To change a different user's password

-- (usually only 'admin' can do it)

box.schema.user.passwd(user-name , password)

To drop a user, use boz.schema.user.drop():

box.schema.user.drop(user-name)

To check whether a user exists, use boz.schema.user.exists(), which returns true or false:
box.schema.user.exists(user-name)

To find what privileges a user has, use boz.schema.user.info():
box.schema.user.info(user-name)

IIpumeuanme: The maximum number of users is 32.

Example:

Here is a session which creates a new user with a strong password, selects a tuple in the _user space,
and then drops the user.

tarantool> box.schema.user.create('JeanMartin', {password = 'Iwtso_6_os$$'})

tarantool> box.space._user.index.name:select{'JeanMartin'}

- - [17, 1, 'JeanMartin', 'user', {'chap-shal': 't3xjUpQdrt8570+YRvGbMY5py8Q="2}]

tarantool> box.schema.user.drop('JeanMartin')

Example: use box.space functions to read _space tuples

This function will illustrate how to look at all the spaces, and for each display: approximately how many
tuples it contains, and the first field of its first tuple. The function uses Tarantool box . space functions len()
and pairs(). The iteration through the spaces is coded as a scan of the _space system space, which contains
metadata. The third field in _space contains the space name, so the key instruction space_name = v[3]
means space_name is the space_name field in the tuple of _space that we’ve just fetched with pairs(). The
function returns a table:

function example()
local tuple_count, space_name, line
local ta = {}
for k, v in box.space._space:pairs() do
space_name = v[3]

if box.space[space_name].index[0] ~= nil then
tuple_count = 'l or more'
else

tuple_count = 'O’
end

(continues on next page)

6.1. Built-in modules reference 169




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

line = space_name .. ' tuple_count =' .. tuple_count
if tuple_count == 'l or more' then
for k1, vl in box.space[space_name]:pairs() do
line = line .. '. first field in first tuple = ' .. v1[1]
break
end
end

table.insert(ta, line)
end
return ta
end

And here is what happens when one invokes the function:

tarantool> example()

- - _schema tuple_count =1 or more. first field in first tuple = cluster
- _space tuple_count =1 or more. first field in first tuple = 272
- _vspace tuple_count =1 or more. first field in first tuple = 272
- _index tuple_count =1 or more. first field in first tuple = 272
- _vindex tuple_count =1 or more. first field in first tuple = 272
- _func tuple_count =1 or more. first field in first tuple =1
- _vfunc tuple_count =1 or more. first field in first tuple = 1
- _user tuple_count =1 or more. first field in first tuple = 0
- _vuser tuple_count =1 or more. first field in first tuple = 0
- _priv tuple_count =1 or more. first field in first tuple =1
- _vpriv tuple_count =1 or more. first field in first tuple =1
- _cluster tuple_count =1 or more. first field in first tuple = 1

Example: use box.space functions to organize a _space tuple

The objective is to display field names and field types of a system space — using metadata to find metadata.
To begin: how can one select the _space tuple that describes _space?

A simple way is to look at the constants in box.schema, which tell us that there is an item named SPACE 1D
== 288, so these statements will retrieve the correct tuple:

box.space._space:select{ 288 }
or

box.space._space:select{ box.schema.SPACE_ID }

Another way is to look at the tuples in box.space. _index, which tell us that there is a secondary index named
y,hame” for space number 288, so this statement also will retrieve the correct tuple:

box.space._space.index.name:select{ '_space' }

However, the retrieved tuple is not easy to read:

tarantool> box.space._space.index.name:select{'_space'}

- - [280, 1, '_space', 'memtx', 0, {}, [{'name': 'id', 'type': 'num'}, {'name': 'owner',

(continues on next page)

170 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

'type': 'num'}, {'name': 'name', 'type': 'str'}, {'name': 'engine', 'type': 'str'},
{'name': 'field_count', 'type': 'num'}, {'name': 'flags', 'type': 'str'}, {
'name': 'format', 'type': '*'}]]

It looks disorganized because field number 7 has been formatted with recommended names and data types.
How can one get those specific sub-fields? Since it’s visible that field number 7 is an array of maps, this for
loop will do the organizing:

tarantool> do
> local tuple_of_space = box.space._space.index.name:get{'_space'}

> for _, field in ipairs(tuple_of_space[7]) do
> print(field.name .. ', ' .. field.type)

> end

> end

id, num

owner, num

name, str
engine, str
field_count, num
flags, str
format, *

Submodule box.stat

The box.stat submodule provides access to request and network statistics. Show the average number of
requests per second, and the total number of requests since startup, broken down by request type and network
events statistics.

tarantool> type(box.stat), type(box.stat.net) -- virtual tables

- table
- table

tarantool> box.stat, box.stat.net

- net: &0 []
- %0

tarantool> box.stat ()

- DELETE:
total: 1873949
rps: 123
SELECT:
total: 1237723
rps: 4099
INSERT:
total: O
rps: O
EVAL:
total: 0
rps: O

(continues on next page)

6.1. Built-in modules reference 171




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

CALL:
total: O
rps: 0O

REPLACE:
total: 1239123
rps: 7849

UPSERT:
total: O
rps: O

AUTH:
total: O
rps: 0O

ERROR:
total: O
rps: O

UPDATE:
total: O
rps: O

tarantool> box.stat() .DELETE -- & selected item of the table
- total: O
rps: O

tarantool> box.stat.net()
- SENT:
total: O
rps: O
EVENTS:
total: 2
rps: O
LOCKS:
total: 6
rps: O
RECEIVED:
total: O
rps: O

Function box.snapshot

box.snapshot ()

Take a snapshot of all data and store it in memtx dir/<latest-lsn>.snap. To take a snapshot,
Tarantool first enters the delayed garbage collection mode for all data. In this mode, tuples which were
allocated before the snapshot has started are not freed until the snapshot has finished. To preserve
consistency of the primary key, used to iterate over tuples, a copy-on-write technique is employed. If
the master process changes part of a primary key, the corresponding process page is split, and the
snapshot process obtains an old copy of the page. In effect, the snapshot process uses multi-version
concurrency control in order to avoid copying changes which are superseded while it is running.

Since a snapshot is written sequentially, one can expect a very high write performance (averaging to
80MB /second on modern disks), which means an average database instance gets saved in a matter of
minutes.

172 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

IIpumeuanme: As long as there are any changes to the parent index memory through concurrent
updates, there are going to be page splits, and therefore you need to have some extra free memory
to run this command. 10% of memiz_memory is, on average, sufficient. This statement waits until a
snapshot is taken and returns operation result.

IIpumeuanue: Change notice: Prior to Tarantool version 1.6.6, the snapshot process caused a fork,
which could cause occasional latency spikes. Starting with Tarantool version 1.6.6, the snapshot process
creates a consistent read view and this view is written to the snapshot file by a separate thread (the
«Write Ahead Log» thread).

Although box.snapshot () does not cause a fork, there is a separate fiber which may produce snapshots
at regular intervals — see the discussion of the checkpoint daemon.

Example:

tarantool> box.info.version

- 1.7.0-1216-g73f7154

tarantool> box.snapshot ()

- ok

tarantool> box.snapshot ()

- error: can't save snapshot, errno 17 (File exists)

Taking a snapshot does not cause the server to start a new write-ahead log. Once a snapshot is taken,
old WALSs can be deleted as long as all replicated data is up to date. But the WAL which was current at
the time box.snapshot () started must be kept for recovery, since it still contains log records written
after the start of box.snapshot().

An alternative way to save a snapshot is to send a SIGUSR1 signal to the instance. While this approach
could be handy, it is not recommended for use in automation: a signal provides no way to find out
whether the snapshot was taken successfully or not.

BnoxeHHbiii moayne box.tuple

The box.tuple submodule provides read-only access for the tuple userdata type. It allows, for a single
tuple: selective retrieval of the field contents, retrieval of information about size, iteration over all the fields,
and conversion to a Lua table.

box.tuple.new (value)

Construct a new tuple from either a scalar or a Lua table. Alternatively, one can get new tuples from
tarantool’s select or insert or replace or update requests, which can be regarded as statements that do
new () implicitly.

ITapameTrpsbr
e value (lua-value) — the value that will become the tuple contents.
Return a new tuple

Rtype tuple

6.1. Built-in modules reference 173



https://www.lua.org/pil/2.5.html

Tarantool, Beinyck 1.7.5

In the following example, x will be a new table object containing one tuple and t will be a new tuple
object. Saying t returns the entire tuple t.

Example:

tarantool> x = box.space.tester:insert{
> 33,
> tonumber('1'),
> tonumber64('2')
> }:totable()

tarantool> t = box.tuple.new{'abc', 'def', 'ghi', 'abc'}

tarantool> t

- ['abc', 'def', 'ghi', 'abc']

object tuple_object

#<tuple_object>
The # operator in Lua means «return count of components». So, if t is a tuple instance, #t will
return the number of fields.

Rtype number

In the following example, a tuple named t is created and then the number of fields in t is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4'}

tarantool> #t

-4

tuple_object:bsize()
If t is a tuple instance, t:bsize() will return the number of bytes in the tuple. With both
the memtx storage engine and the vinyl storage engine the default maximum is one megabyte
(memtz_maz_tuple_size or vinyl _maz_tuple size). Every field has one or more «length» bytes
preceding the actual contents, so bsize() returns a value which is slightly greater than the sum
of the lengths of the contents.

Return number of bytes
Rtype number

In the following example, a tuple named t is created which has three fields, and for each field it
takes one byte to store the length and three bytes to store the contents, and a bit for overhead,
so bsize() returns 3*(1+3)+1.

tarantool> t = box.tuple.new{'aaa', 'bbb', 'ccc'}

tarantool> t:bsize()

(continues on next page)

174

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- 13

<tuple_object> (field-number)
If t is a tuple instance, t [field-number] will return the field numbered field-number in the tuple.
The first field is t[1].

Return field value.
Rtype lua-value

In the following example, a tuple named t is created and then the second field in t is returned.

tarantool> t = box.tuple.new{'Fld#1', 'F1d#2', 'F1d#3', 'Fld#4'}

tarantool> t[2]

- Fld#2

tuple_object:find( [ﬁeld—number ] , search-value)

tuple_object:findall( [ﬁeld-number] , search-value)
If t is a tuple instance, t:find (search-value) will return the number of the first field in t that
matches the search value, and t:findall(search-value [, search-value ...]) will return
numbers of all fields in t that match the search value. Optionally one can put a numeric argument
field-number before the search-value to indicate “start searching at field number field-number.”

Return the number of the field in the tuple.
Rtype number

In the following example, a tuple named t is created and then: the number of the first field in t
which matches ,a“ is returned, then the numbers of all the fields in t which match ,a“ are returned,
then the numbers of all the fields in t which match ,a“ and are at or after the second field are
returned.

tarantool> t = box.tuple.new{'a', 'b', 'c', 'a'}

tarantool> t:find('a’')

-1

tarantool> t:findall('a')

tarantool> t:findall(2, 'a')

-4

tuple_object:transform(start-field-number, ﬁelds—to-remove[, field-value, ])
If t is a tuple instance, t:transform(start-field-number, fields-to-remove) will return a
tuple where, starting from field start-field-number, a number of fields (fields-to-remove)

6.1. Built-in modules reference 175



Tarantool, Beinyck 1.7.5

are removed. Optionally one can add more arguments after fields-to-remove to indicate new
values that will replace what was removed.

ITapamerpbt
e start-field-number (integer) — base 1, may be negative
e fields-to-remove (integer) —
e field-value(s) (lua-value) —

Return tuple

Rtype tuple

In the following example, a tuple named t is created and then, starting from the second field, two
fields are removed but one new one is added, then the result is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4', 'Fld#5'}

tarantool> t:transform(2, 2, 'x')

- ['Fla#1', 'x', 'Fld#4', 'Fld#5']

tuple_object :unpack( [start—ﬁeld—number[, end-field-number ] ] )
If t is a tuple instance, t :unpack () will return all fields, t :unpack (1) will return all fields starting

with field number 1, t:unpack(1,5) will return all fields between field number 1 and field number
5.

Return field(s) from the tuple.
Rtype lua-value(s)

In the following example, a tuple named t is created and then all its fields are selected, then the
result is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4', 'Fld#5'}

tarantool> t:unpack()
- Fld#1
- Fld#2
- Fld#3
- Fld#4
- Fld#5

tuple_object:totable( [start—ﬁeld—number[, end—ﬁeld—number] ])
If t is a tuple instance, t:totable() will return all fields, t:totable(1) will return all fields
starting with field number 1, t:totable(1,5) will return all fields between field number 1 and
field number 5. It is preferable to use t:totable() rather than t:unpack().

Return field(s) from the tuple
Rtype lua-table

In the following example, a tuple named t is created, then all its fields are selected, then the result
is returned.

176 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4', 'Fld#5'}

tarantool> t:totable()

- ['Fla#1', 'Fld#2', 'F1d#3', 'Fld#4', 'F1d4#5']

tuple_object:pairs()
In Lua, lua-table-value:pairs() is a method which returns: function, lua-table-value, nil.
Tarantool has extended this so that tuple-value:pairs() returns: function, tuple-value,
nil. It is useful for Lua iterators, because Lua iterators traverse a value’s components until an
end marker is reached.

Return function, tuple-value, nil
Rtype function, lua-value, nil

In the following example, a tuple named t is created and then all its fields are selected using a
Lua for-end loop.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4', 'Fld#5'}

tarantool> tmp = ''

tarantool> for k, v in t:pairs() do
> tmp = tmp .. Vv
> end

tarantool> tmp

- F1d#1F1d#2F1d#3F1d#4F1d#5

tuple_object:update ({{operator, field no, value}, ...})
Update a tuple.

This function updates a tuple which is not in a space. Compare the function box.space.
space-name :update (key , {{format, field_no, waluel}, ...}) which updates a tuple in a
space.

For details: see the description for operator, field_no, and value in the section boz.space.space-
name:update{key, format, {field number, value}...).

ITapamerpbi

e operator (string) — operation type represented in string (e.g. ,,= for ,assign new
value®)

e field_no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

e value (lua_value) — what value will be applied
Return new tuple

Rtype tuple

6.1.

Built-in modules reference 177


https://www.lua.org/pil/7.3.html

Tarantool, Beinyck 1.7.5

In the following example, a tuple named t is created and then its second field is updated to equal
B

bk

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'F1d#3', 'Fld#4', 'Fld#5'}

tarantool> t:update({{'=', 2, 'B'}})

- ['Fla#1', 'B', 'F1d#3', 'Fld#4', 'F1d#5']

Mpumep

This function will illustrate how to convert tuples to/from Lua tables and lists of scalars:

tuple = box.tuple.new({scalarl, scalar2, ... scalar_n}) -- scalars to tuple
lua_table = {tuple:unpack()} -- tuple to Lua table
lua_table = tuple:totable() -- tuple to Lua table
scalarl, scalar2, ... scalar_n = tuple:unpack() -- tuple to scalars
tuple = box.tuple.new(lua_table) -- Lua table to tuple

Then it will find the field that contains ,b“, remove that field from the tuple, and display how many
bytes remain in the tuple. The function uses Tarantool box.tuple functions new(), unpack(), £ind(),
transform(), bsize().

function example()
local tuplel, tuple2, lua_table_1, scalarl, scalar2, scalar3, field_number
local luatablel = {}
tuplel = box.tuple.new({'a', 'b', 'c'})
luatablel = tuplel:totable()
scalarl, scalar2, scalar3 = tuplel:unpack()
tuple2 = box.tuple.new(luatablel[1],luatablel[2],luatablel[3])
field_number = tuple2:find('b')
tuple2 = tuple2:transform(field_number, 1)
return 'tuple2 = ' , tuple2 , ' # of bytes = ' , tuple2:bsize()
end

... And here is what happens when one invokes the function:

tarantool> example()
- tuple2 =

_ [vav, 1c']

- ' # of bytes ="'
-5

Functions for transaction management

For general information and examples, see section Transaction control.

Observe the following rules when working with transactions:

Rule #1

178 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

The requests in a transaction must be sent to a server as a single block. It is not enough to enclose them
between begin and commit or rollback. To ensure they are sent as a single block: put them in a function, or
put them all on one line, or use a delimiter so that multi-line requests are handled together.

Rule #2

All database operations in a transaction should use the same storage engine. It is not safe to access tuple sets
that are defined with {engine='vinyl'} and also access tuple sets that are defined with {engine="'memtx'},
in the same transaction.

box.begin()
Begin the transaction. Disable implicit yields until the transaction ends. Signal that writes to the write-
ahead log will be deferred until the transaction ends. In effect the fiber which executes box.begin()
is starting an «active multi-request transaction», blocking all other fibers.

box.commit ()
End the transaction, and make all its data-change operations permanent.

box.rollback()
End the transaction, but cancel all its data-change operations. An explicit call to functions outside
box.space that always yield, such as fiber.sleep() or fiber.yield(), will have the same effect.

box.savepoint ()
Return a descriptor of a savepoint (type = table), which can be wused later by
box.rollback_to_savepoint(savepoint). Savepoints can only be created while a transaction is active,
and they are destroyed when a transaction ends.

box.rollback_to_savepoint (savepoint)
Do not end the transaction, but cancel all its data-change and box.savepoint() operations that were
done after the specified savepoint.

Example:

function £()
box.begin() -- start transaction
box.space.t:insert{1} -- this will not be rolled back
local s = box.savepoint ()
box.space.t:insert{2} -- this will be rolled back
box.rollback_to_savepoint(s)
box.commit () -- end transaction

end

Every submodule contains one or more Lua functions. A few submodules contain members as well as
functions. The functions allow data definition (create alter drop), data manipulation (insert delete update
upsert select replace), and introspection (inspecting contents of spaces, accessing server configuration).

6.1.2 Mopgynb clock

The clock module returns time values derived from the Posix / C CLOCK GETTIME function or
equivalent. Most functions in the module return a number of seconds; functions whose names end in «64»
return a 64-bit number of nanoseconds.

clock.time()
clock.time64()
clock.realtime()

6.1. Built-in modules reference 179


http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html

Tarantool, Beinyck 1.7.5

clock.realtime64()
The wall clock time. Derived from C function clock gettime(CLOCK REALTIME). This is the best

function for knowing what the official time is, as determined by the system administrator.
Return seconds or nanoseconds since epoch (1970-01-01 00:00:00), adjusted.
Rtype number or number64

Example:

-- This wtll print an approzimate number of years since 1970.
clock = require('clock')
print(clock.time() / (365%24%60%60))

See also fiber.time64 and the standard Lua function os.clock.

clock.monotonic ()

clock.monotonic64()
The monotonic time. Derived from C function clock gettime(CLOCK MONOTONIC). Monotonic
time is similar to wall clock time but is not affected by changes to or from daylight saving time, or
by changes done by a user. This is the best function to use with benchmarks that need to calculate
elapsed time.

Return seconds or nanoseconds since the last time that the computer was booted.
Rtype number or number64

Example:

-- This will print nanoseconds since the start.
clock = require('clock')
print(clock.monotonic64())

clock.proc()

clock.proc64()
The processor time. Derived from C function clock_gettime (CLOCK_PROCESS_CPUTIME_ID). This is
the best function to use with benchmarks that need to calculate how much time has been spent within
a CPU.

Return seconds or nanoseconds since processor start.
Rtype number or number64

Example:

-- This wtll print nanoseconds in the CPU since the start.
clock = require('clock')
print(clock.proc64())

clock.thread()

clock.thread64()
The thread time. Derived from C function clock_gettime (CLOCK_THREAD_CPUTIME_ID). This is the
best function to use with benchmarks that need to calculate how much time has been spent within a
thread within a CPU.

Return seconds or nanoseconds since the transaction processor thread started.
Rtype number or number64

Example:

180 Fnasa 6. Cnpasou4Huku


http://www.lua.org/manual/5.1/manual.html#pdf-os.clock

Tarantool, Beinyck 1.7.5

-- This wtll print seconds in the thread since the start.
clock = require('clock')
print(clock.thread64())

clock.bench(function[, ])
The time that a function takes within a processor. This function uses clock.proc(), therefore it
calculates elapsed CPU time. Therefore it is not useful for showing actual elapsed time.

ITapameTrpsl
e function (function) — function or function reference
e ... — whatever values are required by the function.

Return table. first element - seconds of CPU time, second element - whatever the function
returns.

Example:

-- Benchmark a function which sleeps 10 seconds.
-- NB: bench() will not calculate sleep time.
-- So the returned value will be {a number less than 10, 88}.
clock = require('clock')
fiber = require('fiber')
function f(param)
fiber.sleep(param)
return 88
end
clock.bench(f, 10)

6.1.3 Mopgynb console

The console module allows one Tarantool instance to access another Tarantool instance, and allows one
Tarantool instance to start listening on an admin port.

console.connect (uri)
Connect to the instance at URI, change the prompt from ,,tarantool>“ to ,ur< > and act henceforth
as a client until the user ends the session or types control-D.

The console.connect function allows one Tarantool instance, in interactive mode, to access another
Tarantool instance. Subsequent requests will appear to be handled locally, but in reality the requests
are being sent to the remote instance and the local instance is acting as a client. Once connection is
successful, the prompt will change and subsequent requests are sent to, and executed on, the remote
instance. Results are displayed on the local instance. To return to local mode, enter control-D.

If the Tarantool instance at uri requires authentication, the connection might look something like:
console.connect ('admin:secretpassword@distanthost.com:3301"').

There are no restrictions on the types of requests that can be entered, except those which are due
to privilege restrictions — by default the login to the remote instance is done with user name =
»guest. The remote instance could allow for this by granting at least one privilege: box.schema.
user.grant ('guest', 'execute', 'universe').

ITapameTrpsl
e uri (string) — the URI of the remote instance

Return nil

6.1. Built-in modules reference 181



Tarantool, Beinyck 1.7.5

Possible errors: the connection will fail if the target Tarantool instance was not initiated with box.
cfg{listen=...3}.

Example:

tarantool> console = require('console')

tarantool> console.connect('198.18.44.44:3301")

198.18.44.44:3301> -- prompt s telling us that instance is remote

console.listen(uri)
Listen on URI. The primary way of listening for incoming requests is via the connection-information
string, or URI, specified in box.cfg{listen=...}. The alternative way of listening is via the URI
specified in console.listen(...). This alternative way is called «administratives or simply «admin
ports. The listening is usually over a local host with a Unix domain socket.

ITapameTrpsI
e uri (string) — the URI of the local instance

The <«admins address is the URI to listen on. It has no default value, so it must be specified
if connections will occur via an admin port. The parameter is expressed with URI = Universal
Resource Identifier format, for example «/tmpdir/unix domain _socket.sock», or a numeric TCP port.
Connections are often made with telnet. A typical port value is 3313.

Example:

tarantool> console = require('console')

tarantool> console.listen('unix/:/tmp/X.sock')
. main/103/console/unix/:/tmp/X I> started
- fd: 6
name:
host: unix/
family: AF_UNIX
type: SOCK_STREAM
protocol: 0
port: /tmp/X.sock

console.start()
Start the console on the current interactive terminal.

Example:

A special use of console.start() is with initialization files. Normally, if one starts the Tarantool
instance with tarantool 4nitialization file there is no console. This can be remedied by adding
these lines at the end of the initialization file:

local console = require('console')
console.start ()

console.ac( [true/false ] )
Set the auto-completion flag. If auto-completion is true, and the user is using Tarantool as a client or

182 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

the user is using Tarantool via console.connect (), then hitting the TAB key may cause tarantool to
complete a word automatically. The default auto-completion value is true.

console.delimiter (marker)
Set a custom end-of-request marker for Tarantool console.

The default end-of-request marker is a newline (line feed). Custom markers are not necessary because
Tarantool can tell when a multi-line request has not ended (for example, if it sees that a function
declaration does not have an end keyword). Nonetheless for special needs, or for entering multi-line
requests in older Tarantool versions, you can change the end-of-request marker. As a result, newline
alone is not treated as end of request.

To go back to normal mode, say: console.delimiter('')<marker>
ITapameTrpsbl
e marker (string) — a custom end-of-request marker for Tarantool console

Example:

console = require('console'); console.delimiter('!"')
function £ ()
statement_1 = 'a'
statement_2 = 'b'
end!
console.delimiter('')!

6.1.4 Mogynb crypto

«Crypto» is short for «Cryptographys», which generally refers to the production of a digest value from
a function (usually a Cryptographic hash function), applied against a string. Tarantool’s crypto module
supports ten types of cryptographic hash functions (AES, DES, DSS, MD4, MD5, MDC2, RIPEMD, SHA-0,
SHA-1, SHA-2). Some of the crypto functionality is also present in the Modyaw digest module. The functions
in crypto are:

crypto.cipher.{aes128|aes192|aes256|des}.{cbc|cfblecb|ofb}.encrypt (string, key,
initialization_ vector)
crypto.cipher.{aes128|aes192|aes256|des}.{cbc|cfblecb|ofb}.decrypt (string, key,

initialization_ vector)
Pass or return a cipher derived from the string, key, and (optionally, sometimes) initialization vector.

The four choices of algorithms:
o aesl28 - aes-128 (with 192-bit binary strings using AES)
e aesl92 - aes-192 (with 192-bit binary strings using AES)
e aes256 - aes-256 (with 256-bit binary strings using AES)
e des - des (with 56-bit binary strings using DES, though DES is not recommended)
Four choices of block cipher modes are also available:
cbc - Cipher Block Chaining
e cfb - Cipher Feedback
o ecb - Electronic Codebook
e ofb - Output Feedback

For more information on, read article about Encryption Modes

Example:

6.1. Built-in modules reference 183


https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/MDC-2
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Tarantool, Beinyck 1.7.5

crypto.cipher.aes192.cbc.encrypt ('string', 'key', 'initialization')
crypto.cipher.aes256.ecb.decrypt ('string', 'key', 'initialization')

crypto.digest.{dss|dssl|md4 |md5|mdc2|ripemd160} (string)
crypto.digest.{sha|shallsha224|sha256|sha384|shab512} (string)
Pass or return a digest derived from the string. The twelve choices of algorithms:

e dss - dss (using DSS)

e dssl - dss (using DSS-1)

e md4 - md4 (with 128-bit binary strings using MD4)

e md5 - md5 (with 128-bit binary strings using MD5)

e mdc2 - mdc2 (using MDC2)

e ripemd160 -

e sha - sha (with 160-bit binary strings using SHA-0)

e shal - sha-1 (with 160-bit binary strings using SHA-1)

e sha224 - sha-224 (with 224-bit binary strings using SHA-2)
e sha256 - sha-256 (with 256-bit binary strings using SHA-2)
e sha384 - sha-384 (with 384-bit binary strings using SHA-2)
e sha512 - sha-512(with 512-bit binary strings using SHA-2).

Example:

crypto.digest.md4('string')
crypto.digest.shab12('string')

Incremental methods in the crypto module

Suppose that a digest is done for a string ,,A“ then a new part ,,B“ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ,AB“, but it is faster to take
what was computed before for ,A“ and apply changes based on the new part ,B“. This is called multi-step
or «incrementaly digesting, which Tarantool supports for all crypto functions..

crypto = require('crypto')

-- print aes-192 digest of 'AB', with one step, then incrementally
print (crypto.cipher.aes192.cbc.encrypt('AB', 'key'))

¢ = crypto.cipher.aes192.cbc.encrypt.new()

c:init ()

c:update('A', 'key')

c:update('B', 'key')

print(c:result())

c:free()

-- print sha-256 digest of 'AB', with one step, then incrementally
print (crypto.digest.sha256('AB'))

c = crypto.digest.sha256.new()

c:init ()

c:update('A")

c:update('B')

(continues on next page)

184 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

print(c:result())
c:free()

Getting the same results from digest and crypto modules

The following functions are equivalent. For example, the digest function and the crypto function will both
produce the same result.

crypto.cipher.aes256.cbc.encrypt ('string', 'key') == digest.aes256cbc.encrypt('string', 'key')
crypto.digest.md4('string') == digest.md4('string')
crypto.digest.md5('string') == digest.md5('string')
crypto.digest.sha('string') == digest.sha('string')

crypto.digest.shal('string') == digest.shal('string')

crypto.digest.sha224('string') == digest.sha224('string')
crypto.digest.sha266('string') == digest.sha256('string')
crypto.digest.sha384('string') == digest.sha384('string')
crypto.digest.shab12('string') == digest.shab12('string')

6.1.5 Module csv

The csv module handles records formatted according to Comma-Separated-Values (CSV) rules.
The default formatting rules are:

e Lua escape sequences such as \n or \10 are legal within strings but not within files,

e Commas designate end-of-field,

e Line feeds, or line feeds plus carriage returns, designate end-of-record,

Leading or trailing spaces are ignored,

e Quote marks may enclose fields or parts of fields,

When enclosed by quote marks, commas and line feeds and spaces are treated as ordinary characters,
and a pair of quote marks «» is treated as a single quote mark.

The possible options which can be passed to csv functions are:

e delimiter = string (default: comma) — single-byte character to designate end-of-field

e quote_char = string (default: quote mark) — single-byte character to designate encloser of string

e chunk_size
efficiency)

number (default: 4096) — number of characters to read at once (usually for file-IO

e skip_head_lines = number (default: 0) — number of lines to skip at the start (usually for a header)

csv.load(readable [, {options} ])
Get CSV-formatted input from readable and return a table as output. Usually readable is either a
string or a file opened for reading. Usually options is not specified.

ITapameTpsl

e readable (object) — a string, or any object which has a read() method, formatted
according to the CSV rules

e options (table) — see above

6.1. Built-in modules reference 185



http://www.lua.org/pil/2.4.html

Tarantool, Beinyck 1.7.5

Return loaded value
Rtype table
Example:

Readable string has 3 fields, field#2 has comma and space so use quote marks:

tarantool> csv = require('csv')

tarantool> csv.load('a,"b,c ",d')
- --a

- 'b,c !

-d

Readable string contains 2-byte character = Cyrillic Letter Palochka: (This displays a palochka if and
only if character set = UTF-8.)

tarantool> csv.load('a\\211\\128b")

- - - a\211\128b

Semicolon instead of comma for the delimiter:

tarantool> csv.load('a,b;c,d', {delimiter = ';'})

- - -a,b
- ¢c,d

Readable file . /file.csv contains two CSV records. Explanation of fio is in section fio. Source CSV
file and example respectively:

tarantool> -- input in file.csv is:
tarantool> -- a,'b,c ",d
tarantool> -- a\\211\\128b
tarantool> fio = require('fio')
tarantool> f = fio.open('./file.csv', {'0_RDONLY'})
tarantool> csv.load(f, {chunk_size = 4096})
- - - a

- 'b,c '

-d

- - a\\211\\128b

tarantool> f:close()
- true

csv.dump(csv—table[, options, writable ])
Get table input from csv-table and return a CSV-formatted string as output. Or, get table input

186 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

from csv-table and put the output in writable. Usually options is not specified. Usually writable,
if specified, is a file opened for writing. csv.dump() is the reverse of csv.load().

ITapameTrpsbl
e csv-table (table) — a table which can be formatted according to the CSV rules.
e options (table) — optional. see above
e writable (object) — any object which has a write() method
Return dumped value
Rtype string, which is written to writable if specified
Example:

CSV-table has 3 fields, field#2 has «,» so result has quote marks

tarantool> csv = require('csv')

tarantool> csv.dump({'a','b,c ','d'})

_ ‘a,"b,c ”,d

Round Trip: from string to table and back to string

tarantool> csv_table = csv.load('a,b,c')

tarantool> csv.dump(csv_table)

csv.iterate(input, {options})
Form a Lua iterator function for going through CSV records one field at a time. Use of an iterator is
strongly recommended if the amount of data is large (ten or more megabytes).

ITapameTrpsI
e csv-table (table) — a table which can be formatted according to the CSV rules.
e options (table) — see above
Return Lua iterator function
Rtype iterator function
Example:

csv.iterate() is the low level of csv.load() and csv.dump(). To illustrate that, here is a function which
is the same as the csv.load() function, as seen in the Tarantool source code.

tarantool> load = function(readable, opts)
>  opts = opts or {}
> local result = {}

(continues on next page)

6.1. Built-in modules reference 187


https://github.com/tarantool/tarantool/blob/1.7/src/lua/csv.lua

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

for i, tup in csv.iterate(readable, opts) do
result[i] = tup

end

return result

vV V V V Vv

end

tarantool> load('a,b,c')
- --a

-b

- c

6.1.6 Mopynb digest

A «digest» is a value which is returned by a function (usually a Cryptographic hash function), applied
against a string. Tarantool’s digest module supports several types of cryptographic hash functions (AES,
MD4, MD5, SHA-0, SHA-1, SHA-2) as well as a checksum function (CRC32), two functions for base64, and
two non-cryptographic hash functions (guava, murmur). Some of the digest functionality is also present in
the crypto module.

The functions in digest are:

digest.aes256¢cbc.encrypt (string, key, iv)
digest.aes256cbc.decrypt (string, key, iv)
Returns 256-bit binary string = digest made with AES.

digest.md4 (string)
Returns 128-bit binary string = digest made with MD4.

digest.md4_hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md4.

digest.md5 (string)
Returns 128-bit binary string = digest made with MD5.

digest.md5_hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md5.

digest.sha(string)
Returns 160-bit binary string = digest made with SHA-0.|br| Not recommended.

digest.sha_hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with sha.

digest.shal(string)
Returns 160-bit binary string = digest made with SHA-1.

digest.shal_hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with shal.

digest.sha224 (string)
Returns 224-bit binary string = digest made with SHA-2.

digest.sha224_hex(string)
Returns 56-byte string = hexadecimal of a digest calculated with sha224.

188 Fnasa 6. Cnpasou4Huku


https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Base64
https://code.google.com/p/guava-libraries/wiki/HashingExplained
https://en.wikipedia.org/wiki/MurmurHash

Tarantool, Beinyck 1.7.5

digest.sha256 (string)
Returns 256-bit binary string = digest made with SHA-2.

digest.sha256_hex (string)
Returns 64-byte string = hexadecimal of a digest calculated with sha256.

digest.sha384(string)
Returns 384-bit binary string = digest made with SHA-2.

digest.sha384_hex(string)
Returns 96-byte string = hexadecimal of a digest calculated with sha384.

digest.shab12(string)
Returns 512-bit binary tring = digest made with SHA-2.

digest.shab512_hex(string)
Returns 128-byte string = hexadecimal of a digest calculated with sha512.

digest.base64_encode (string)
Returns base64 encoding from a regular string.

digest.base64_decode (string)
Returns a regular string from a base64 encoding.

digest.urandom(integer)
Returns array of random bytes with length = integer.

digest.crc32(string)
Returns 32-bit checksum made with CRC32.

The cre32 and crc32 _update functions use the CRC-32C (Castagnoli) polynomial value: 0x1EDC6F41
/ 4812730177. If it is necessary to be compatible with other checksum functions in other programming
languages, ensure that the other functions use the same polynomial value.

For example, in Python, install the crcmod package and say:

>>> import crcmod

>>> fun = crcmod.mkCrcFun('4812730177")
>>> fun('string')

3304160206L

In Perl, install the Digest: :CRC module and run the following code:

use Digest::CRC;

$d = Digest::CRC->new(width => 32, poly => Ox1EDC6F41, init => OxFFFFFFFF, refin => 1, refout
—=> 1),

$d->add('string');

print $d->digest;

(the expected output is 3304160206).

digest.crc32.new()
Initiates incremental crc32. See incremental methods notes.

digest.guava(state, bucket)
Returns a number made with consistent hash.

The guava function uses the Consistent Hashing algorithm of the Google guava library. The first
parameter should be a hash code; the second parameter should be the number of buckets; the returned
value will be an integer between 0 and the number of buckets. For example,

6.1. Built-in modules reference 189


https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use
https://en.wikipedia.org/wiki/Consistent_hashing

Tarantool, Beinyck 1.7.5

tarantool> digest.guava(10863919174838991, 11)

-8

digest.murmur (string)
Returns 32-bit binary string = digest made with MurmurHash.

digest.murmur.new( [seed ])
Initiates incremental MurmurHash. See incremental methods notes.

Incremental methods in the digest module

Suppose that a digest is done for a string ,,A“ then a new part ,,B“ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ,,AB“, but it is faster to take
what was computed before for ,A“ and apply changes based on the new part ,B“. This is called multi-step
or «incrementals digesting, which Tarantool supports with crc32 and with murmur. ..

digest = require('digest')

-- print crc32 of 'AB', with one step, then incrementally
print (digest.crc32('AB'))

c = digest.crc32.new()

c:update('A")

c:update('B')

print (c:result())

-- print murmur hash of 'AB', with one step, then incrementally
print (digest.murmur('AB'))

m = digest.murmur.new()

m:update('A")

m:update('B')

print (m:result())

Mpumep

In the following example, the user creates two functions, password_insert () which inserts a SHA-1 digest
of the word «~S~e~c"ret Wordpass» into a tuple set, and password_check() which requires input of a
password.

tarantool> digest = require('digest')

tarantool> function password_insert ()
>  box.space.tester:insert{1234, digest.shal('~S~e"c”ret Wordpass')}
>  return '0K'
> end

tarantool> function password_check(password)
> local t = box.space.tester:select{12345}

> if digest.shal(password) == t[2] then
> return 'Password is valid'
> else

(continues on next page)

190 Fnasa 6. Cnpasou4Huku



https://en.wikipedia.org/wiki/Sha-1

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> return 'Password is not valid'
> end
> end

tarantool> password_insert()

- YOK’

If a later user calls the password_check() function and enters the wrong password, the result is an error.

tarantool> password_check('Secret Password')

- 'Password is not valid'

6.1.7 Module errno

The errno module provides:
e a function strerror(),
e an operator errno(), and
e a metatable with constant error names.

The errno module is typically used within a function or within a Lua program, in association with a module
whose functions can return operating-system errors, such as fio.

errno()
Return an error number for the last operating-system-related function, or 0. To invoke it, simply say
errno (), without the module name.

Rtype integer

errno.strerror( [code ])
Return a string, given an error number. The string will contain the text of the conventional error
message for the current operating system. If code is not supplied, the error message will be for the last
operating-system-related function, or 0.

ITapameTrpsl
e code (integer) — number of an operating-system error
Rtype string
Example:

This function displays the result of a call to fio.open() which causes error 2 (errno.ENQENT). The display
includes the error number, the associated error string, and the error name.

tarantool> function £()

>  local fio = require('fio')
local errno = require('errno')
fio.open('no_such_file')
print('errno() = ' .. errno())
print('errno.strerror() = ' .. errno.strerror())

vV V V Vv

(continues on next page)

6.1. Built-in modules reference 191



https://www.lua.org/pil/13.html

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> local t = getmetatable(errno).__index
> for k, v in pairs(t) do

> if v == errno() then

> print('errno() constant = ' .. k)
> end

> end

> end

tarantool> f()

errno() = 2

errno.strerror() = No such file or directory
ENOENT

errno() comnstant

To see all possible error names stored in the errno metatable, say getmetatable(errno) (output abridged):

tarantool> getmetatable(errno)

- __newindex: 'function: 0x41666a38'
__call: 'function: 0x41666890'
__index:

ENOLINK: 67
EMSGSIZE: 90
EOVERFLOW: 75
ENQTCONN: 107
EFAULT: 14
EOPNOTSUPP: 95
EEXIST: 17
ENOSR: 63
ENOTSOCK: 88
EDESTADDRREQ: 89

6.1.8 BnoxeHHbiii moayns box.error

The box.error function is for raising an error. The difference between this function and Lua’s built-in error
function is that when the error reaches the client, its error code is preserved. In contrast, a Lua error would
always be presented to the client as ER_PROC_LUA.

box.error (reason=string [, code:number] )
When called with a Lua-table argument, the code and reason have any user-desired values. The result

will be those values.
ITapameTrpsl
e code (integer) —
e reason (string) —

box.error ()
When called without arguments, box.error() re-throws whatever the last error was.

192 Fnasa 6. Cnpasou4Huku


https://www.lua.org/pil/8.3.html

Tarantool, Beinyck 1.7.5

box.error (code, errtemt[, errtext ])

box.

box

Emulate a request error, with text based on one of the pre-defined Tarantool errors defined in the file
errcode.h in the source tree. Lua constants which correspond to those Tarantool errors are defined as
members of box.error, for example box.error.NO_SUCH_USER == 45.

ITapameTrpsl
e code (number) — number of a pre-defined error
e errtext(s) (string) — part of the message which will accompany the error
Hampuwmep:

the NO_SUCH_USER message is «User 'Ys' is not found» — it includes one «%s» component which
will be replaced with errtext. Thus a call to box.error(box.error.NO_SUCH_USER, 'joe') or box.
error (45, 'joe') will result in an error with the accompanying message «User 'joe' is not
found».

Except whatever is specified in errcode-number.

Example:

tarantool> box.error{code = 555, reason = 'Arbitrary message'}

- error: Arbitrary message

tarantool> box.error()

- error: Arbitrary message

tarantool> box.error (box.error.FUNCTION_ACCESS_DENIED, 'A', 'B', 'C')

- error: A access denied for user 'B' to function 'C'

error.last()

Returns a description of the last error, as a Lua table with five members: «lines (number) Tarantool
source file line number, «code» (number) error’s number, «type», (string) error’s C++ class, «message»
(string) error’s message, «file» (string) Tarantool source file. Additionally, if the error is a system error
(for example due to a failure in socket or file i0), there may be a sixth member: «errno» (number) C
standard error number.

rtype: table

.error.clear()

Clears the record of errors, so functions like box.error() or boz.error.last() will have no effect.

Example:

tarantool> box.error{code = 555, reason = 'Arbitrary message'}

- error: Arbitrary message

tarantool> box.schema.space.create('#')

- error: Invalid identifier '#' (expected letters, digits or an underscore)

tarantool> box.error.last()

- line: 278

(continues on next page)

6.1.

Built-in modules reference 193



https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

code: 70

type: ClientError

message: Invalid identifier '#' (expected letters, digits or an underscore)
file: /tmp/buildd/tarantool-1.7.0.252.g1654e31 precise/src/box/key_def.cc

tarantool> box.error.clear()

tarantool> box.error.last()

- null

6.1.9 Mopyns fiber

With the fiber module, you can:
e create, run and manage fibers,

e send and receive messages between different processes (i.e. different connections, sessions, or fibers) via
channels, and

e use a synchronization mechanism for fibers, similar to «condition variables» and similar to operating-
system functions such as pthread_cond_wait () plus pthread_cond_signal().

Fibers

A fiber is a set of instructions which are executed with cooperative multitasking. Fibers managed by the
fiber module are associated with a user-supplied function called the fiber function.

A fiber has three possible states: running, suspended or dead. When a fiber is created with fiber.create(),
it is running. When a fiber yields control with fiber.sleep(), it is suspended. When a fiber ends (because the
fiber function ends), it is dead.

All fibers are part of the fiber registry. This registry can be searched with fiber.find() - via fiber id (fid),
which is a numeric identifier.

A runaway fiber can be stopped with fiber object.cancel. However, fiber object.cancel is advisory —
it works only if the runaway fiber calls fiber.testcancel() occasionally. Most box.* functions, such as
boz.space. . . delete() or boz.space. . .update(), do call fiber.testcancel() but boz.space. .. select{} does not. In
practice, a runaway fiber can only become unresponsive if it does many computations and does not check
whether it has been cancelled.

The other potential problem comes from fibers which never get scheduled, because they are not subscribed
to any events, or because no relevant events occur. Such morphing fibers can be killed with fiber.kill() at
any time, since fiber.kill() sends an asynchronous wakeup event to the fiber, and fiber.testcancel() is checked
whenever such a wakeup event occurs.

Like all Lua objects, dead fibers are garbage collected. The garbage collector frees pool allocator memory
owned by the fiber, resets all fiber data, and returns the fiber (now called a fiber carcass) to the fiber pool.
The carcass can be reused when another fiber is created.

A fiber has all the features of a Lua coroutine and all the programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

194 Fnasa 6. Cnpasou4Huku


http://www.lua.org/pil/contents.html#9

Tarantool, Beinyck 1.7.5

fiber.create (function [, function-arguments ] )

Create and start a fiber. The fiber is created and begins to run immediately.

ITapameTrpsbl
e function — the function to be associated with the fiber
e function-arguments — what will be passed to function
Return created fiber object
Rtype userdata

Example:

tarantool> fiber = require('fiber')

tarantool> function function_name ()
>  fiber.sleep(1000)
> end

tarantool> fiber_object = fiber.create(function_name)

fiber.self ()
Return fiber object for the currently scheduled fiber.
Rtype userdata

Example:

tarantool> fiber.self ()
- status: running

name: interactive

id: 101

fiber.find (id)
ITapameTpsbl
e id — numeric identifier of the fiber.
Return fiber object for the specified fiber.
Rtype userdata

Example:

tarantool> fiber.find(101)
- status: running

name: interactive

id: 101

fiber.sleep(time)

Yield control to the scheduler and sleep for the specified number of seconds. Only the current fiber can

be made to sleep.

6.1. Built-in modules reference

195




Tarantool, Beinyck 1.7.5

ITapameTpsl
e time — number of seconds to sleep.

Example:

tarantool> fiber.sleep(1.5)

fiber.yield()

Yield control to the scheduler. Equivalent to fiber.sleep(0), except that fiber.sleep(0) depends on a

timer, fiber.yield() does not.

Example:

tarantool> fiber.yield()

fiber.status()
Return the status of the current fiber.

Return the status of fiber. One of: “dead”, “suspended”, or “running”.

Rtype string

Example:

tarantool> fiber.status()

- running

fiber.info()
Return information about all fibers.

Return number of context switches, backtrace, id, total memory, used memory, name for

each fiber.
Rtype table

Example:

tarantool> fiber.info()
- 101:
csw: T
backtrace: []
fid: 101
memory :
total: 65776
used: 0
name: interactive

fiber.kill (id)

Locate a fiber by its numeric id and cancel it. In other words, fiber.kill() combines fiber.find() and

fiber _object:cancel().

ITapameTpsl

196

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

e id — the id of the fiber to be cancelled.
Exception the specified fiber does not exist or cancel is not permitted.

Example:

tarantool> fiber.kill(fiber.id()) -- kill self, may make program end

- error: fiber is cancelled

fiber.testcancel()
Check if the current fiber has been cancelled and throw an exception if this is the case.

Example:

tarantool> fiber.testcancel()

- error: fiber is cancelled

object fiber_object

fiber_object:id()
ITapameTrpsI
e self — fiber object, for example the fiber object returned by fiber.create
Return id of the fiber.
Rtype number

Example:

tarantool> fiber_object = fiber.self ()

tarantool> fiber_object:id()

- 101

fiber_object :name ()
ITapamerpbt
e self — fiber object, for example the fiber object returned by fiber.create
Return name of the fiber.
Rtype string

Example:

tarantool> fiber.self () :name()

- interactive

fiber_object:name(name)
Change the fiber name. By default a Tarantool server’s interactive-mode fiber is named

6.1. Built-in modules reference 197




Tarantool, Beinyck 1.7.5

sinteractive and new fibers created due to fiber.create are named ,lua“. Giving fibers distinct
names makes it easier to distinguish them when using fiber.info.

ITapamerpbi
e self — fiber object, for example the fiber object returned by fiber.create
e name (string) — the new name of the fiber.

Return nil

Example:

tarantool> fiber.self() :name('non-interactive')

fiber_object:status()
Return the status of the specified fiber.

ITapameTpsI

e self — fiber object, for example the fiber object returned by fiber.create
Return the status of fiber. One of: “dead”, “suspended”, or “running”.
Rtype string

Example:

tarantool> fiber.self() :status()

- running

fiber_object:cancel()
Cancel a fiber. Running and suspended fibers can be cancelled. After a fiber has been cancelled,

attempts to operate on it will cause errors, for example fiber object:id() will cause error: the
fiber is dead.

ITapameTpsI
e self — fiber object, for example the fiber object returned by fiber.create
Return nil
Possible errors: cancel is not permitted for the specified fiber object.

Example:

tarantool> fiber.self():cancel() -- kill self, may make program send

- error: fiber is cancelled

fiber_object.storage
Local storage within the fiber. The storage can contain any number of named values, subject to
memory limitations. Naming may be done with fiber_object .storage.name or fiber_object .
storage['name ']. or with a number fiber_object .storage[number]. Values may be either
numbers or strings. The storage is garbage-collected when fiber_object :cancel() happens.

Example:

198 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

tarantool> fiber =

require('fiber')

tarantool> function f () fiber.sleep(1000); end

tarantool> fiber_function

- error: '[string "fiber_function =

bad arguments'

tarantool> fiber_function

tarantool> fiber_function

tarantool> fiber_function.

- string

tarantool> fiber_function:

tarantool> fiber_function.

= fiber:create(f)

fiber:create(f)"]:1: fiber.create(function, ...):

= fiber.create(f)

.storage.strl = 'string'

storage['stri']

cancel()

storage['strl']

- error: '[string "return fiber_function.storage[''strl'']"]:1: the fiber is dead'

See also box.session.storage.
fiber.time()

Return current system time (in seconds since the epoch) as a Lua number. The time is
taken from the event loop clock, which makes this call very cheap, but still useful for
constructing artificial tuple keys.

Rtype num

Example:

tarantool> fiber.time(), fiber.time()

- 1448466279.2415
- 1448466279.2415

fiber.time64()

Return current system time (in microseconds since the epoch) as a 64-bit integer. The time
is taken from the event loop clock.

Rtype num

Example:

tarantool> fiber.time(), fiber.time64()

- 1448466351.2708

(continues on next page)

6.1. Built-in modules reference 199



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- 1448466351270762

Mpumep

Make the function which will be associated with the fiber. This function contains an infinite loop (while 0
== 0 is always true). Each iteration of the loop adds 1 to a global variable named gvar, then goes to sleep
for 2 seconds. The sleep causes an implicit fiber.yield().

tarantool> fiber = require('fiber')
tarantool> function function_x()
> gvar = 0

> while 0 == 0 do

> gvar = gvar + 1
> fiber.sleep(2)
> end

> end

Make a fiber, associate function x with the fiber, and start function x. It will immediately «detachs so it
will be running independently of the caller.

tarantool> gvar = 0

tarantool> fiber_of_x = fiber.create(function_x)

Get the id of the fiber (fid), to be used in later displays.

tarantool> fid = fiber_of_x:id()

Pause for a while, while the detached function runs. Then ... Display the fiber id, the fiber status, and gvar
(gvar will have gone up a bit depending how long the pause lasted). The status is suspended because the
fiber spends almost all its time sleeping or yielding.

1 1

tarantool> print('#', fid, , fiber_of_x:status(),

# 102 . suspended . gvar= 399

. gvar=', gvar)

Pause for a while, while the detached function runs. Then ... Cancel the fiber. Then, once again ... Display
the fiber id, the fiber status, and gvar (gvar will have gone up a bit more depending how long the pause
lasted). This time the status is dead because the cancel worked.

tarantool> fiber_of_x:cancel()

tarantool> print('#', fid, '. ', fiber_of_x:status(), '. gvar=', gvar)
# 102 . dead . gvar= 421

(continues on next page)

200 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

Channels

Call fiber.channel() to allocate space and get a channel object, which will be called channel for examples
in this section.

Call the other routines, via channel, to send messages, receive messages, or check channel status.

Message exchange is synchronous. The channel is garbage collected when no one is using it, as with any other
Lua object. Use object-oriented syntax, for example channel:put(message) rather than fiber.channel.
put (message).

fiber.channel ( [capacity ] )
Create a new communication channel.

ITapameTrpsbl

e capacity (¢nt) — the maximum number of slots (spaces for channel:put messages)
that can be in use at once. The default is 0.

Return new channel.
Rtype userdata, possibly including the string «channel ... ».

object channel_object

channel_object:put (message [, timeout ])
Send a message using a channel. If the channel is full, channel:put () waits until there is a free
slot in the channel.

ITapameTpsbI
e message (lua-value) — what will be sent, usually a string or number or table
e timeout (number) — maximum number of seconds to wait for a slot to become free

Return If timeout is specified, and there is no free slot in the channel for the duration of
the timeout, then the return value is false. If the channel is closed, then the return
value is false. Otherwise, the return value is true, indicating success.

Rtype boolean

channel_object:close()
Close the channel. All waiters in the channel will stop waiting. All following channel:get()
operations will return nil, and all following channel:put () operations will return false.

channel_object:get ([timeout ])
Fetch and remove a message from a channel. If the channel is empty, channel:get () waits for a
message.

ITapamerpbt
¢ timeout (number) — maximum number of seconds to wait for a message

Return If timeout is specified, and there is no message in the channel for the duration
of the timeout, then the return value is nil. If the channel is closed, then the return
value is nil. Otherwise, the return value is the message placed on the channel by
channel:put().

6.1. Built-in modules reference 201




Tarantool, Beinyck 1.7.5

Rtype usually string or number or table, as determined by channel:put

channel_object:is_empty()
Check whether the channel is empty (has no messages).

Return true if the channel is empty. Otherwise false.
Rtype boolean

channel_object:count ()
Find out how many messages are in the channel.

Return the number of messages.
Rtype number

channel_object:is_full()
Check whether the channel is full.

Return true if the channel is full (the number of messages in the channel equals the
number of slots so there is no room for a new message). Otherwise false.

Rtype boolean

channel_object:has_readers()
Check whether readers are waiting for a message because they have issued channel:get() and
the channel is empty.

Return true if readers are waiting. Otherwise false.
Rtype boolean

channel_object:has_writers()
Check whether writers are waiting because they have issued channel:put() and the channel is
full.

Return true if writers are waiting. Otherwise false.
Rtype boolean
channel _object:is_closed()
Return true if the channel is already closed. Otherwise false.

Rtype boolean

Mpumep

This example should give a rough idea of what some functions for fibers should look like. It’s assumed that
the functions would be referenced in fiber.create().

fiber = require('fiber')
channel = fiber.channel (10)
function consumer_fiber()
while true do
local task = channel:get()

end
end

function consumer2_fiber ()
while true do

(continues on next page)

202 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

-- 10 seconds
local task = channel:get(10)
if task "= nil then

else
-- timeout
end
end
end

function producer_fiber()
while true do
task = box.space...:select{...}

if channel:is_empty() then
-- channel %s empty
end

if channel:is_full() then
-- channel s full
end

if channel:has_readers() then

-- there are some fibers

-- that are waiting for data
end

if channel:has_writers() then
-- there are some fibers
-- that are waiting for readers
end
channel:put (task)
end
end

function producer2_fiber()
while true do
task = box.space...select{...}
-- 10 seconds
if channel:put(task, 10) then

else
-- timeout
end
end
end

Condition variables

Call fiber.cond() to create a named condition variable, which will be called ,cond“ for examples in this
section.

Call cond:wait () to make a fiber wait for a signal via a condition variable.

6.1. Built-in modules reference 203




Tarantool, Beinyck 1.7.5

Call cond:signal() to send a signal to wake up a single fiber that has executed cond:wait ().
Call cond:broadcast() to send a signal to all fibers that have executed cond:wait ().

fiber.cond ()
Create a new condition variable.

Return new condition variable.
Rtype Lua object

object cond_object

cond_object:wait( [timeout ] )
Make the current fiber go to sleep, waiting until until another fiber invokes the signal() or
broadcast () method on the cond object. The sleep causes an implicit fiber.yield().

ITapameTpsI
e timeout — number of seconds to wait, default = forever.

Return If timeout is provided, and a signal doesn’t happen for the duration of the
timeout, wait () returns false. If a signal or broadcast happens, wait () returns true.

Rtype boolean

cond_object:signal ()
Wake up a single fiber that has executed wait () for the same variable.

Rtype nil

cond_object:broadcast ()
Wake up all fibers that have executed wait () for the same variable.

Rtype nil

Mpumep

Assume that a tarantool instance is running and listening for connections on localhost port 3301. Assume
that guest users have privileges to connect. We will use the tarantoolctl utility to start two clients.

On terminal #1, say

$ tarantoolctl connect '3301°'
tarantool> fiber = require('fiber')
tarantool> cond = fiber.cond()
tarantool> cond:wait ()

The job will hang because cond:wait () — without an optional timeout argument — will go to sleep until the
condition variable changes.

On terminal #2, say

$ tarantoolctl connect '3301'
tarantool> cond:signal()

Now look again at terminal #1. It will show that the waiting stopped, and the cond:wait () function returned
true.

This example depended on the use of a global conditional variable with the arbitrary name cond. In real life,
programmers would make sure to use different conditional variable names for different applications.

204 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

6.1.10 Module fio

Tarantool supports file input/output with an API that is similar to POSIX syscalls. All operations are
performed asynchronously. Multiple fibers can access the same file simultaneously.

The fio module contains:

e functions for common pathname manipulations,

e functions for common file manipulations, and

constants which are the same as POSIX flag values (for example fio.c.flag.0_RDONLY = POSIX
O_RDONLY).

Common pathname manipulations

fio

fio

.pathjoin(partial-string[, partial-string ])

Concatenate partial string, separated by ,,/* to form a path name.
ITapameTrpsbr
e partial-string (string) — one or more strings to be concatenated.
Return path name
Rtype string

Example:

tarantool> fio.pathjoin('/etc', 'default', 'myfile')

- /etc/default/myfile

.basename (path-name [, suffiz ] )

Given a full path name, remove all but the final part (the file name). Also remove the suffix, if it is
passed.

ITapameTpsl
e path-name (string) — path name
e suffix (string) — suffix
Return file name
Rtype string

Example:

tarantool> fio.basename('/path/to/my.lua', '.lua')

- my

fio.dirname (path-name)

Given a full path name, remove the final part (the file name).
ITapameTpsl
e path-name (string) — path name

Return directory name, that is, path name except for file name.

6.1.

Built-in modules reference 205




Tarantool, Beinyck 1.7.5

Rtype string

Example:

tarantool> fio.dirname('path/to/my.lua')

- 'path/to/'

Common file manipulations

fio.umask(mask-bits)
Set the mask bits used when creating files or directories. For a detailed description type «man 2 umask».

ITapameTrpsbl
e mask-bits (number) — mask bits.
Return previous mask bits.

Rtype number

Example:

tarantool> fio.umask(tonumber('755', 8))

- 493

fio.lstat (path-name)
fio.stat (path-name)
Returns information about a file object. For details type «man 2 Istat» or «man 2 stats.

ITapameTrpsbr

e path-name (string) — path name of file.

Return fields which describe the file’s block size, creation time, size, and other attributes.

Rtype table

Additionally, the result of fio.stat('file-name') will include methods equivalent to POSIX macros:

For example, fio.stat('/') :is_dir() will return true.

is_blk() = POSIX macro S ISBLK,
is_chr() = POSIX macro S_ISCHR,
is_dir() = POSIX macro S_ISDIR,
is_fifo() = POSIX macro S_ISFIFO,
is_link() = POSIX macro S_ISLINK,
is_reg() = POSIX macro S ISREG,
is_sock() = POSIX macro S_ISSOCK.

Example:

206

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

tarantool> fio.lstat('/etc')
- inode: 1048577
rdev: O
size: 12288
atime: 1421340698
mode: 16877
mtime: 1424615337
nlink: 160
uid: O
blksize: 4096
gid: 0O
ctime: 1424615337
dev: 2049
blocks: 24

fio.mkdir (path—name[, mode])
fio.rmdir (path-name)
Create or delete a directory. For details type «man 2 mkdir» or «man 2 rmdir».

ITapameTrpsbr
e path-name (string) — path of directory.

e mode (number) — Mode bits can be passed as a number or as string constants, for
example ;S ITWUSR». Mode bits can be combined by enclosing them in braces.

Return true if success, false if failure.
Rtype boolean

Example:

tarantool> fio.mkdir('/etc')

- false

fio.glob(path-name)
Return a list of files that match an input string. The list is constructed with a single flag that controls
the behavior of the function: GLOB_NOESCAPE. For details type «man 3 glob».

ITapameTpsbl
e path-name (string) — path-name, which may contain wildcard characters.
Return list of files whose names match the input string
Rtype table
Possible errors: nil.

Example:

tarantool> fio.glob('/etc/x*")
- - /etc/xdg

- /etc/xml

- /etc/xul-ext

6.1. Built-in modules reference 207



Tarantool, Beinyck 1.7.5

fio

fio.

fio.
fio.

fio
fio

fio.

.tempdir()

Return the name of a directory that can be used to store temporary files.

Example:

tarantool> fio.tempdir ()

- /tmp/1G31e7

cwd ()
Return the name of the current working directory.

Example:

tarantool> fio.cwd()

- /home/username/tarantool_sandbox

link(sre, dst)
symlink(sre, dst)

.readlink (src)
.unlink (sre)

Functions to create and delete links. For details type «man readlinks, «<man 2 link», «<man 2 symlinks,
«<man 2 unlink»..

ITapameTrpsbl
e src (string) existing file name.
e dst (string) — linked name.

Return fio.link and fio.symlink and fio.unlink return true if success, false if failure.
fio.readlink returns the link value if success, nil if failure.

Example:

tarantool> fio.link('/home/username/tmp.txt', '/home/username/tmp.txt2')

- true

tarantool> fio.unlink('/home/username/tmp.txt2"')

- true

rename (path-name, new-path-name)
Rename a file or directory. For details type «man 2 renames.

ITapameTrpsbl
e path-name (string) — original name.
¢ new-path-name (string) — new name.
Return true if success, false if failure.
Rtype boolean

Example:

208

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

tarantool> fio.rename('/home/username/tmp.txt', '/home/username/tmp.txt2')

- true

fio.chown(path-name, owner-user, owner-group)

fio.chmod (path-name, new-rights)
Manage the rights to file objects, or ownership of file objects. For details type «man 2 chown» or «man
2 chmod».

ITapameTrpsbl
e owner-user (string) — new user uid.
e owner-group (string) — new group uid.
e new-rights (number) — new permissions

Example:

tarantool> fio.chmod('/home/username/tmp.txt', tonumber('0755', 8))

- true

tarantool> fio.chown('/home/username/tmp.txt', 'username', 'username')

- true

fio.truncate(path-name, new-size)
Reduce file size to a specified value. For details type «<man 2 truncates.

ITapameTrpsbl

e path-name (string) —

e new-size (number) —
Return true if success, false if failure.
Rtype boolean

Example:

tarantool> fio.truncate('/home/username/tmp.txt', 99999)

- true

fio.sync()
Ensure that changes are written to disk. For details type «man 2 sync».

Return true if success, false if failure.
Rtype boolean

Example:

tarantool> fio.sync()

- true

6.1. Built-in modules reference 209



Tarantool, Beinyck 1.7.5

fio.open (path-name[, ﬂags[, mode] ])
Open a file in preparation for reading or writing or seeking.

ITapameTrpsbl
e path-name (string) —

e flags (number)— Flags can be passed as a number or as string constants, for example
,»O0_RDONLY*, ,, 0_WRONLY“, ,0_RDWR". Flags can be combined by enclosing them in
braces.

e mode (number) — Mode bits can be passed as a number or as string constants,
for example ;'S IWUSR». Mode bits are significant if flags include O CREAT
or O TMPFILE. Mode bits can be combined by enclosing them in braces.

Return file handle (later - th)
Rtype userdata
Possible errors: nil.

Example:

tarantool> fh = fio.open('/home/username/tmp.txt', {'0_RDWR', 'O_APPEND'})

tarantool> fh -- display file handle returned by fio.open

- fh: 11

object file-handle

file-handle:close()
Close a file that was opened with fio.open. For details type «man 2 closes.

ITapameTrpsbl

e fh (userdata) — file-handle as returned by fio.open().
Return true if success, false on failure.
Rtype boolean

Example:

tarantool> fh:close() -- where fh = file-handle

- true

file-handle:pread(count, offset)

file-handle:purite(new-string, offset)
Perform read /write random-access operation on a file, without affecting the current seek position
of the file. For details type «man 2 pread» or «man 2 pwrite».

ITapameTpsl
e fh (userdata) — file-handle as returned by fio.open().
e count (number) — number of bytes to read

e new-string (string) — value to write

210 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e offset (number) — offset within file where reading or writing begins

Return fh:pwrite returns true if success, false if failure. fh:pread returns the data
that was read, or nil if failure.

Example:

tarantool> fh:pread(25, 25)

file-handle:read(count)

file-handle:write (new-string)
Perform non-random-access read or write on a file. For details type «man 2 read» or «man 2
writes.

IIpumeuanme: fh:read and fh:write affect the seek position within the file, and this must be
taken into account when working on the same file from multiple fibers. It is possible to limit or
prevent file access from other fibers with fiber.ipc.

ITapamerpbi
e fh (userdata) — file-handle as returned by fio.open().
e count (number) — number of bytes to read
e new-string (string) — value to write

Return fh:write returns true if success, false if failure. fh:read returns the data that
was read, or nil if failure.

Example:

tarantool> fh:write('new data')

- true

file-handle:truncate(new-size)
Change the size of an open file. Differs from fio.truncate, which changes the size of a closed

file.
ITapameTrpsI
e fh (userdata) — file-handle as returned by fio.open().
Return true if success, false if failure.
Rtype boolean
Example:

tarantool> fh:truncate(0)

- true

6.1.

Built-in modules reference 211




Tarantool, Beinyck 1.7.5

file-handle:seek (position [, offset-from ] )

Shift position in the file to the specified position. For details type «man 2 seek».
ITapameTrpsbi
e fh (userdata) — file-handle as returned by fio.open().
e position (number) — position to seek to

e offset-from (string) —,,SEEK_END* = end of file, ,SEEK_CUR* = current position,
,,SEEK_SET* = start of file.

Return the new position if success
Rtype number
Possible errors: nil.

Example:

tarantool> fh:seek(20, 'SEEK_SET')

- 20

file-handle:stat()

Return statistics about an open file. This differs from fio.stat which return statistics about a
closed file. For details type «man 2 stat».

ITapameTrpbi

e fh (userdata) — file-handle as returned by fio.open().
Return details about the file.
Rtype table

Example:

tarantool> fh:stat()
- inode: 729866
rdev: O
size: 100
atime: 140942855
mode: 33261
mtime: 1409430660
nlink: 1
uid: 1000
blksize: 4096
gid: 1000
ctime: 1409430660
dev: 2049
blocks: 8

file-handle:fsync()

file-handle:fdatasync()
Ensure that file changes are written to disk, for an open file. Compare fio.sync, which is for all
files. For details type «man 2 fsync» or «man 2 fdatasync».

ITapameTrpsbi

212

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e th (userdata) — file-handle as returned by fio.open().
Return true if success, false if failure.

Example:

tarantool> fh:fsync()

- true

FIO constants

fio.c

Table with constants which are the same as POSIX flag values on the target platform (see man 2

stat).

Example:

tarantool> fio.c

- seek:
SEEK_SET: 0
SEEK_END: 2
SEEK_CUR: 1

mode:
S_IWGRP: 16
S_IXGRP: 8
S_IROTH: 4
S_IXOTH: 1
S_IRUSR: 256
S_IXUSR: 64
S_IRWXU: 448
S_IRWXG: 56
S_IWOTH: 2
S_IRWXO0: 7
S_IWUSR: 128
S_IRGRP: 32
flag:

0_EXCL: 2048
0_NONBLOCK: 4
O_RDONLY: O
< ..>

6.1.11 Module fun

Luafun, also known as the Lua Functional Library, takes advantage of the features of LuaJIT to help users
create complex functions. Inside the module are «sequence processors» such as map, filter, reduce, zip
— they take a user-written function as an argument and run it against every element in a sequence, which
can be faster or more convenient than a user-written loop. Inside the module are «generators> such as
range, tabulate, and rands — they return a bounded or boundless series of values. Within the module

are «reducers», «filters», «composers» ...
Standard ML, Haskell, or Erlang.

or, in short, all the important features found in languages like

6.1. Built-in modules reference

213




Tarantool, Beinyck 1.7.5

The full documentation is On the luafun section of github. However, the first chapter can be skipped because
installation is already done, it’s inside Tarantool. All that is needed is the usual require request. After
that, all the operations described in the Lua fun manual will work, provided they are preceded by the name
returned by the require request. For example:

tarantool> fun = require('fun')

tarantool> for _k, a in fun.range(3) do
> print(a)
> end

6.1.12 Module http
The http module, specifically the http.client submodule, provides the functionality of an HTTP client
with support for HT'TPS and keepalive. It uses routines in the libcurl library.

http.client. new([options ])
Construct a new HTTP client instance.

ITapameTpsl

e options (table) — the maximum number of entries in the connection cache.
Return a new HTTP client instance
Rtype userdata

Example:

tarantool> http_client = require('http.client').new({5})

object client_object

client_object:request (method, url, body, opts)
If http_client is an HTTP client instance, http_client:request() will perform an HTTP
request and, if there is a successful connection, will return a table with connection information.

ITapameTpsI
e method (string) — HTTP method, for example ,GET* or ,POST* or ,PUT“
e url (string) — location, for example  https://tarantool.org/doc*
e body (string) — optional initial message, for example ,My text string!“
e opts (table) — table of connection options, with any of these components:

— timeout - number of seconds to wait for a curl APT read request before timing
out

— ca_path - path to a directory holding one or more certificates to verify the peer
with

214 Fnasa 6. Cnpasou4Huku


http://rtsisyk.github.io/luafun
https://curl.haxx.se/libcurl/
https://tarantool.org/doc

Tarantool, Beinyck 1.7.5

— ca_file - path to an SSL certificate file to verify the peer with

— verify_host - set on/off verification of the certificate’s name (CN) against host.
See also CURLOPT SSL VERIFYHOST

— verify_peer - set on/off verification of the peer’s SSL certificate. See also
CURLOPT SSL VERIFYPEER

— ssl_key - path to a private key file for a TLS and SSL client certificate. See also
CURLOPT _SSLKEY

— ssl_cert - path to a SSL client certificate file. See also CURLOPT SSLCERT
— headers - table of HI'TP headers

— keepalive_idle - delay, in seconds, that the operating system will wait
while the connection is idle before sending keepalive probes. See also
CURLOPT_TCP_KEEPALIVE

— keepalive_interval - the interval, in seconds, that the operating
system  will wait between sending keepalive probes. See also
CURLOPT _TCP_KEEPALIVE

— low_speed_time - set the «low speed times — the time that the transfer speed
should be below the «low speed limit» for the library to consider it too slow and
abort. See also CURLOPT LOW SPEED TIME

— low_speed_limit - set the «low speed limits> — the average transfer speed in
bytes per second that the transfer should be below during «low speed times
seconds for the library to consider it to be too slow and abort. See also
CURLOPT_LOW _SPEED _ LIMIT

— verbose - set on/off verbose mode
Return connection information, with all of these components:
e status - HTTP response status
e reason - HTTP response status text
e headers - a Lua table with normalized HTTP headers
e body - response body
e proto - protocol version

Rtype table

The following «shortcuts» exist for requests:

http_client:get (url, options) - shortcut for http_client:request ("GET", url, nil,
opts)

http_client:post (url, body, options) - shortcut for http_client:request ("POST",
url, body, opts)

http_client:put(url, body, options) - shortcut for http_client:request("POST",
url, body, opts)

http_client:patch(url, body, options) - shortcut for http_client:request ("PATCH",
url, body, opts)

http_client:options(url, options) - shortcut for http_client:request("OPTIONS",
url, nil, opts)

6.1. Built-in modules reference 215


https://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYHOST.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSLKEY.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_TIME.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html

Tarantool, Beinyck 1.7.5

e http_client:head(url, options) - shortcut for http_client:request("HEAD", url,
nil, opts)

e http_client:delete(url, options) - shortcut for http_client:request("DELETE",
url, nil, opts)

e http_client:trace(url, options) - shortcut for http_client:request ("TRACE", url,
nil, opts)

e http_client:connect: (url, options) - shortcut for http_client:request ("CONNECT",
url, nil, opts)

client_object:stat ()
The http_client:stat() function returns a table with statistics:

e active_requests - number of currently executing requests
e sockets_added - total number of sockets added into an event loop

e sockets_deleted - total number of sockets sockets from an event loop

total_requests - total number of requests

http_200_responses - total number of requests which have returned code HTTP 200

http_other_responses - total number of requests which have not returned code HTTP 200

e failed_requests - total number of requests which have failed including system errors, curl
errors, and HTTP errors

Example:

Connect to an HTTP server, look at the size of the response for a ;GET“ request, and look at the
statistics for the session.

tarantool> http_client = require('http.client').new()

tarantool> r = http_client:request('GET', 'http://tarantool.org')

tarantool> string.len(r.body)

- 21725

tarantool> http_client:stat()

- total_requests: 1
sockets_deleted: 2
failed_requests: 0
active_requests: 0O
http_other_responses: 0
http_200_responses: 1
sockets_added: 2

6.1.13 Module iconv

The iconv module provides a way to convert a string with one encoding to a string with another encoding,
for example from ASCII to UTF-8. It is based on the POSIX iconv routines.

216

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

An exact list of the available encodings may depend on environment. Typically the list includes ASCII,
BIG5, KOI8R, LATIN8, MS-GREEK, SJIS, and about 100 others. For a complete list, type iconv --list
on a terminal.

iconv.new(to, from)

Construct a new iconv instance.
ITapameTrpsbl
e to (string) — the name of the encoding that we will convert to.
e from (string) — the name of the encoding that we will convert from.
Return a new iconv instance — in effect, a callable function
Rtype userdata
If either parameter is not a valid name, there will be an error message.

Example:

tarantool> converter = require('iconv').new('UTF8', 'ASCII')

iconv.converter (input-string)
Convert.

ITapamerpbi
e input-string (string) — the string to be converted (the «from» string)
Return the string that results from the conversion (the «to» string)

If anything in input-string cannot be converted, there will be an error message and the result
string will be unchanged.

Example:

We know that the Unicode code point for «I» (CYRILLIC CAPITAL LETTER DE) is hexadecimal
0414 according to the character database of Unicode. Therefore that is what it will look like in UTF-16.
We know that Tarantool typically uses the UTF-8 character set. So make a from-UTF-8-to-UTF-16
converter, use string.hex(,,/I“) to show what I’s encoding looks like in the UTF-8 source, and use
string.hex(,,/I“-after-conversion) to show what it looks like in the UTF-16 target. Since the result is
0414, we see that iconv conversion works.

tarantool> string.hex(']")

- d094

tarantool> converter = require('iconv').new('UTF16BE', 'UTF8')

tarantool> utf16_string = converter('[l')

tarantool> string.hex(utf16_string)

- '0414'

6.1.

Built-in modules reference 217



http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt.

Tarantool, Beinyck 1.7.5

6.1.14 Module json

The json module provides JSON manipulation routines. It is based on the Lua-CJSON module by Mark
Pulford. For a complete manual on Lua-CJSON please read the official documentation.

json.encode (lua-value)
Convert a Lua object to a JSON string.

ITapameTrpsbl

e lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a JSON string.
Rtype string

Example:

tarantool> json=require('json')

tarantool> json.encode(123)

- '123'

tarantool> json.encode({123})

- '[123]"

tarantool> json.encode ({123, 234, 345})

- '[123,234,345]"'

tarantool> json.encode({abc = 234, cde = 345})

- '{"cde":345,"abc":234}"

tarantool> json.encode({hello = {'world'}})

- '"{"hello": ["world"]}'

json.decode(string)
Convert a JSON string to a Lua object.

ITapameTpsbl

e string (string) — a string formatted as JSON.
Return the original contents formatted as a Lua table.
Rtype table

Example:

tarantool> json = require('json')

tarantool> json.decode('123')

- 123

(continues on next page)

218 Fnasa 6. Cnpasou4Huku


http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson-manual.html

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> json.decode('[123, "hello"]")

- [123, 'hello']

tarantool> json.decode('{"hello": "world"}').hello

- world

See the tutorial Sum a JSON field for all tuples to see how json.decode() can fit in an application.

json.NULL
A value comparable to Lua «nil»> which may be useful as a placeholder in a tuple.

Example:

-- When nil is assigned to a Lua-table field, the field is null
tarantool> {nil, 'a', 'b'}
- - null

- a

-b

-- When json.NULL is assigned to a Lua-table field, the field is json.NULL
tarantool> {json.NULL, 'a', 'b'}
- - null

- a

-b

-- When json.NULL is assigned to a JSON field, the field is null
tarantool> json.encode({field2 = json.NULL, fieldl = 'a', field3 = 'c'})

- '{"field2":null,"field1":"a","field3":"c"}'

The JSON output structure can be specified with __serialize:
e __serialize="seq" for an array
e __serialize="map" for a map

Serializing ,A*“ and ,B“ with different __serialize values causes different results:

tarantool> json.encode(setmetatable({'A', 'B'}, { __serialize="seq"}))
1 [”A\l S ||B||:| 1
tarantool> json.encode(setmetatable({'A', 'B'}, { __serialize="map"}))

Y{Hl!l:|IA|I’II2II:|IB|I}Y

tarantool> json.encode({setmetatable({f1 'A', f2 = 'B'}, { __serialize="map"})})

_ 1 [{nf2n B! s nfqM. ”A”}] 1

tarantool> json.encode({setmetatable({f1l 'A', £2 = 'B'}, { __serialize="seq"})})

(continues on next page)

6.1. Built-in modules reference 219




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- a1

Configuration settings
There are configuration settings which affect the way that Tarantool encodes invalid numbers or types. They
are all boolean true/false values

e cfg.encode_invalid_numbers (default is true) — allow nan and inf

e cfg.encode_use_tostring (default is false) — use tostring for unrecognizable types

e cfg.encode_invalid_as_nil (default is false) — use null for all unrecognizable types

e cfg.encode_load_metatables (default is false) — load metatables

For example, the following code will interpret 0/0 (which is «not a number») and 1/0 (which is «infinity»)
as special values rather than nulls or errors:

json = require('json')
json.cfg{encode_invalid_numbers = true}
x = 0/0

y = 1/0

json.encode ({1, x, y, 2})

The result of the json.encode () request will look like this:

tarantool> json.encode({1l, x, y, 2})

- '[1,nan,inf,2]

The same configuration settings exist for json, for MsgPack, and for YAML.

6.1.15 Module log

The Tarantool server puts all diagnostic messages in a log file specified by the log configuration parameter.
Diagnostic messages may be either system-generated by the server’s internal code, or user-generated with
the log. log_level_function_name function.

log.error (message)

log.warn(message)

log.info(message)

log.verbose(message)

log.debug(message)
Output a user-generated message to the log file, given log level function name = error or warn or
info or verbose or debug.

ITapameTpsl

e message (string) — The actual output will be a line containing the current
timestamp, a module name, ,E“ or ,W“ or I or ,V¢ or ,D“ or ,R"
depending on log_level_function_name, and message. Output will not occur
if log_level_function_name is for a type greater than log level. Messages may

220 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

contain C-style format specifiers %d or %s, so log.error('...%d...%s', =, y)
will work if x is a number and y is a string.

Return nil
log.logger_pid()

log.rotate()

Mpumep

$ tarantool

tarantool> box.cfg{log_level=3, logger='tarantool.txt'}
tarantool> log = require('log')

tarantool> log.error('Error')

tarantool> log.info('Info %s', box.info.version)
tarantool> os.exit()

$ less tarantool.txt

2...0 [6257] main/101/interactive C> version 1.7.0-355-ga4f762d
2...1 [6257] main/101/interactive C> log level 3
2...0 [6257] main/101/interactive [C]:-1 E> Error

The ,Error* line is visible in tarantool.txt preceded by the letter E.

The ,Info“ line is not present because the log_level is 3.

6.1.16 Mopynb msgpack

The msgpack module takes strings in MsgPack format and decodes them, or takes a series of non-MsgPack
values and encodes them. Tarantool makes heavy internal use of MsgPack because tuples in Tarantool are
stored as MsgPack arrays.

msgpack.encode (lua_ value)
Convert a Lua object to a MsgPack string.

ITapameTrpsbr

e lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a MsgPack string.
Rtype string

msgpack.decode (string)
Convert a MsgPack string to a Lua object.

ITapameTpsI

e string — a string formatted as MsgPack.

e the original contents formatted as a Lua table;

e the number of bytes that were decoded.

Rtype lua object

6.1. Built-in modules reference 221



http://msgpack.org/

Tarantool, Beinyck 1.7.5

msgpack.NULL
A value comparable to Lua «nil»> which may be useful as a placeholder in a tuple.

Mpumep

tarantool> msgpack = require('msgpack')

tarantool> y = msgpack.encode({'a',1,'b',2})

tarantool> z = msgpack.decode (y)

éééantool> z[1]1, z[2], =z[3], =z[4]

N O =

tarantool> box.space.tester:insert{20, msgpack.NULL, 20}

- [20, null, 20]

The MsgPack output structure can be specified with __serialize:
e __serialize = "seq" or "sequence" for an array
e __serialize = "map" or "mapping" for a map

Serializing ,,A“ and ,B“ with different __serialize values causes different results. To show this, here is a
routine which encodes {,4%“B“} both as an array and as a map, then displays each result in hexadecimal.

function hexdump (bytes)
local result = ''
for i = 1, #bytes do
result = result .. string.format("/x", string.byte(bytes, i)) v
end
return result

end

msgpack = require('msgpack')
ml = msgpack.encode(setmetatable({'A', 'B'}, {

__serialize = "seq"
»)
m2 = msgpack.encode(setmetatable({'A', 'B'}, {
__serialize = "map"
»)
print ('array encoding: ', hexdump(ml))
print ('map encoding: ', hexdump(m2))
Result:

array encoding: 92 al 41 al 42
map encoding: 82 01 al 41 02 al 42

The MsgPack Specification page explains that the first encoding means:

222 Fnasa 6. Cnpasou4Huku



http://github.com/msgpack/msgpack/blob/master/spec.md

Tarantool, Beinyck 1.7.5

’fixarray(Q), fixstr(1l), "A", fixstr(1), "B"

and the second encoding means:

’fixmap(2), key(1), fixstr(1l), "A", key(2), fixstr(2), "B".

Here are examples for all the common types, with the Lua-table representation on the left, with the MsgPack
format name and encoding on the right.

Common Types and MsgPack Encodings

{} Jxmap® if metatable is ,map* = 80 otherwise ,fixarray*“ = 90

A HSxstr = al 61

false Sfalse = ¢2

true Lrue = c3

127 »positive fixint“ = 7f

65535 Luint 16% = cd ff ff

4294967295 uint 32° —ce AAAH

nil ,nil“ = ¢c0

msgpack.NULL | same as nil

[0] =5 Jfixmap(1)“ + ,positive fixint* (for the key) + ,positive fixint“ (for the value) = 81 00
05

[0] = nil Hfixmap(0)“ = 80 — nil is not stored when it is a missing map value

1.5 JHoat 64 = cb 3f {8 00 00 00 00 00 00

Also, some MsgPack configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

6.1.17 Mopynb net.box

The net.box module contains connectors to remote database systems. One variant, to be discussed later, is
connecting to MySQL or MariaDB or PostgreSQL (see SQL DBMS modules reference). The other variant,
which is discussed in this section, is connecting to Tarantool server instances via a network using the built-in
net.box module.

You can call the following methods:
e require('net.box') to get a net.box object (named net_box for examples in this section),
e net_box.connect () to connect and get a connection object (named conn for examples in this section),
e other net.box () routines, passing conn:, to execute requests on a remote box,
e conn:close to disconnect.

All net.box methods are fiber-safe, that is, it is safe to share and use the same connection object across
multiple concurrent fibers. In fact, it’s perhaps the best programming practice with Tarantool. When multiple
fibers use the same connection, all requests are pipelined through the same network socket, but each fiber
gets back a correct response. Reducing the number of active sockets lowers the overhead of system calls and
increases the overall server performance. There are, however, cases when a single connection is not enough
— for example, when it’s necessary to prioritize requests or to use different authentication IDs.

The diagram below shows possible connection states and transitions:
On this diagram:

e The state machine starts in the ,initial“ state.

6.1. Built-in modules reference 223



Tarantool, Beinyck 1.7.5

e net_box.connect () method changes the state to ,connecting” and spawns a worker fiber.

e If authentication and schema upload are required, it’s possible later on to re-enter the ,fetch schema“

state from ,active if a request fails due to a schema version mismatch error, so schema reload is
triggered.

e conn.close() method sets the state to ,closed” and kills the worker. If the transport is already in the

serror state, close() does nothing.

net_box. connect ( URI[, {option[s]} ] )

net_box.new( URI[, {option[s]} ])

ITpumeuanme: The names connect() and new() are synonymous with the only difference that
connect () is the preferred name, while new() is retained for backward compatibility.

Create a new connection. The connection is established on demand, at the time of the first request.
It can be re-established automatically after a disconnect (see reconnect_after option below). The
returned conn object supports methods for making remote requests, such as select, update or delete.

For a local Tarantool server, there is a pre-created always-established connection object named
net_boz .self. Its purpose is to make polymorphic use of the net_box API easier. Therefore conn
= net_boz .connect('localhost:3301') can be replaced by conn = net_boz .self. However, there
is an important difference between the embedded connection and a remote one. With the embedded
connection, requests which do not modify data do not yield. When using a remote connection, due to
the implicit rules any request can yield, and database state may have changed by the time it regains
control.

Possible options:

e wait_connected: by default, connection creation is blocked until the connection is established, but
passing wait_connected=false makes it return immediately. Also, passing a timeout makes it
wait before returning (e.g. wait_connected=1.5 makes it wait at most 1.5 secs).

IIpumeuanwne: In the presence of reconnect_after, wait_connected ignores transient failures.
The wait completes once the connection is established or is closed explicitly.

e reconnect_after: a net.box instance automatically reconnects any time the connection is broken
or if a connection attempt fails. This makes transient network failures become transparent to
the application. Reconnect happens automatically in the background, so queries/requests that
suffered due to connectivity loss are transparently retried. The number of retries is unlimited,
connection attempts are done over the specified timeout (e.g. reconnect_after=5 for 5 secs).
Once a connection is explicitly closed (or garbage-collected), reconnects stop.

e call 16: [since 1.7.2] by default, net.box connections comply with a new binary protocol
command for CALL, which is not backward compatible with previous versions. The new CALL
no longer restricts a function to returning an array of tuples and allows returning an arbitrary
MsgPack/JSON result, including scalars, nil and void (nothing). The old CALL is left intact for
backward compatibility. It will be removed in the next major release. All programming language
drivers will be gradually changed to use the new CALL. To connect to a Tarantool instance that
uses the old CALL, specify call_16=true.

e console: depending on the option’s value, the connection supports different methods (as if instances
of different classes were returned). With console = true, you can use conn methods close(),
is_connected(), wait_state(), eval() (in this case, both binary and Lua console network

224

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

protocols are supported). With console = false (default), you can also use conn database
methods (in this case, only the binary protocol is supported).

ITapameTpsI

e URI (string) — the URI of the target for the connection

e options — possible options are wait _connected, reconnect_after, call 16 and console
Return conn object

Rtype userdata

Example:

conn = net_box.connect('localhost:3301"')
conn = net_box.connect('127.0.0.1:3302', {wait_connected = false})
conn = net_box.connect('127.0.0.1:3303', {reconnect_after = 5, call_16 = true})

object conn

conn:ping()
Execute a PING command.

Return true on success, false on error
Rtype boolean

Example:

net_box.self:ping()

conn:wait_connected([timeout])
Wait for connection to be active or closed.

ITapameTpsI

e timeout (number) — in seconds
Return true when connected, false on failure.
Rtype boolean

Example:

net_box.self:wait_connected()

conn:is_connected()
Show whether connection is active or closed.

Return true if connected, false on failure.
Rtype boolean

Example:

net_box.self:is_connected()

conn:wait_state(state[s][, timeout])
[since 1.7.2] Wait for a target state.

ITapamerpbi

6.1. Built-in modules reference 225



Tarantool, Beinyck 1.7.5

e states (string) — target states

e timeout (number) — in seconds
Return true when a target state is reached, false on timeout or connection closure
Rtype boolean

Example:

-- wait infinitely for 'active' state:
conn:wait_state('active')

-- wait for 1.5 secs at most:
conn:wait_state('active', 1.5)

-- wait infinitely for either “active” or “fetch_schema state:
conn:wait_state({active=true, fetch_schema=true})

conn:close()
Close a connection.

Connection objects are garbage collected just like any other objects in Lua, so an explicit
destruction is not mandatory. However, since close() is a system call, it is good programming
practice to close a connection explicitly when it is no longer needed, to avoid lengthy stalls of the
garbage collector.

Example:

conn:close()

conn.space.<space-name>:select{field-value, ...}
conn.space. space-name :selectq{. ..} is the remote-call equivalent of the local call box.space.
space-name :select{...}.

IIpumeuanme: Due to the implicit yield rules a local box.space.space-name :select{...}
does not yield, but a remote conn.space.space-name :select{...} call does yield, so global
variables or database tuples data may change when a remote conn.space. space-name : select{.
..} occurs.

conn.space.<space-name>:get{field-value, ...}
conn.space. space-name :get(...) is the remote-call equivalent of the local call box.space.
space-name :get(...).

conn.space.<space-name>:insert{field-value, ...}
conn.space. space-name :insert(...) is the remote-call equivalent of the local call box.space.
space-name :insert(...).

conn.space.<space-name>:replace{field-value, ...}
conn.space. space-name :replace(...) is the remote-call equivalent of the local call box.
space. space-name :replace(...).

conn.space.<space-name>:update{field-value, ...}
conn.space. space-name :update(...) is the remote-call equivalent of the local call box.space.
space-name :update(...).

conn.space.<space-name>:upsert{field-value, ...}
conn.space. space-name :upsert(...) is the remote-call equivalent of the local call box.space.
space-name :upsert(...).

226 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

conn.space.<space-name>:delete{field-value, ...}
conn. space. space-name :delete(...) is the remote-call equivalent of the local call box.space.
space-name :delete(...).

conn: call (function-name [, arguments ])
conn:call('func', '1', '2', '3') is the remote-call equivalent of func('1', '2', '3').
That is, conn:call is a remote stored-procedure call.

Example:

conn:call('function5')

conn:eval (Lua-string)
conn:eval (Lua-string) evaluates and executes the expression in Lua-string, which may be
any statement or series of statements. An execute privilege is required; if the user does not
have it, an administrator may grant it with box.schema.user.grant (username, 'execute',
'universe').

Example:

conn:eval('return 5+5')

conn:timeout (timeout)
timeout(...) is a wrapper which sets a timeout for the request that follows it.

Example:

conn:timeout (0.5).space.tester:update({1}, {{'=', 2, 15}})

All remote calls support execution timeouts. Using a wrapper object makes the remote connection
APIT compatible with the local one, removing the need for a separate timeout argument, which
the local version would ignore. Once a request is sent, it cannot be revoked from the remote
server even if a timeout expires: the timeout expiration only aborts the wait for the remote server
response, not the request itself.

Mpumep

This example shows the use of most of the net.box methods.
The sandbox configuration for this example assumes that:
e the Tarantool instance is running on localhost 127.0.0.1:3301,

e there is a space named tester with a numeric primary key and with a tuple that contains a key value
= 800,

e the current user has read, write and execute privileges.

Here are commands for a quick sandbox setup:

box.cfg{listen = 3301}

s = box.schema.space.create('tester')

s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
t = s:insert ({800, 'TEST'})

box.schema.user.grant('guest', 'read,write,execute', 'universe')

And here starts the example:

6.1. Built-in modules reference 227




Tarantool, Beinyck 1.7.5

tarantool> net_box = require('net.box')

tarantool> function example()
> local conn, wtuple
if net_box.self:ping() then
table.insert(ta, 'self:ping() succeeded')
table.insert(ta, ' (no surprise -- self connection is pre-established)')
end
if box.cfg.listen == '3301' then
table.insert(ta, 'The local server listen address = 3301')
else
table.insert(ta, 'The local server listen address is not 3301')
table.insert(ta, '( (maybe box.cfg{...listen="3301"...} was not stated)')
table.insert(ta, '( (so connect will fail)')
end
conn = net_box.connect('127.0.0.1:3301")
conn.space.tester:delete{800}
table.insert(ta, 'conn delete done on tester.')
conn.space.tester:insert{800, 'data'}
table.insert(ta, 'conn insert done on tester, index 0')
table.insert(ta, ' primary key value = 800.')
wtuple = conn.space.tester:select{800}
table.insert(ta, 'conn select done on tester, index 0')
table.insert(ta, ' number of fields = ' .. #wtuple)
conn.space.tester:delete{800}
table.insert(ta, 'conn delete done on tester')
conn.space.tester:replace{800, 'New data', 'Extra data'}
table.insert(ta, 'conn:replace done on tester')
conn:timeout(0.5) .space.tester:update ({800}, {{'=', 2, 'Fld#1'}})
table.insert(ta, 'conn update done on tester')
conn:close()
table.insert(ta, 'conn close done')
end

VVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYV

tarantool> ta = {}

tarantool> example()

tarantool> ta
- - self:ping() succeeded
- ' (no surprise -- self connection is pre-established)'
- The local server listen address = 3301
- conn delete done on tester.
- conn insert done on tester, index 0
- ' primary key value = 800.'
- conn select done on tester, index O
- ' number of fields = 1'
- conn delete done on tester
- conn:replace done on tester
- conn update done on tester
- conn close done

228 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

6.1.18 Module os

The os module contains the functions execute(), rename(), getenv(), remove(), date(), exit(), time(), clock(),
tmpname(), environ(), setenv(), setlocale(), difftime(). Most of these functions are described in the Lua

manual Chapter 22 The Operating System Library.

os.execute (shell-command)
Execute by passing to the shell.

ITapameTrpsl

e shell-command (string) — what to execute.

Example:

tarantool> os.execute('ls -1 /usr')

total 200

drwxr-xr-x 2 root root 65536 Apr 22 15:49
drwxr-xr-x 59 root root 20480 Apr 18 07:58
drwxr-xr-x 210 root root 65536 Apr 18 07:59
drwxr-xr-x 12 root root 4096 Apr 22 15:49
drwxr-xr-x 2 root root 12288 Jan 31 09:50

bin
include
1lib
local
sbin

os.rename (old-name, new-name)
Rename a file or directory.

ITapameTrpsbl

e old-name (string) — name of existing file or directory,

e new-name (string) — changed name of file or directory.

Example:

tarantool> os.rename('local','foreign')

- null
- 'local: No such file or directory'
-2

os.getenv (variable-name)
Get environment variable.

Parameters: (string) variable-name = environment variable name.

Example:

tarantool> os.getenv('PATH')

- /usr/local/sbin:/usr/local/bin:/usr/sbin

os.remove(name)
Remove file or directory.

Parameters: (string) name = name of file or directory which will be removed.

Example:

6.1. Built-in modules reference

229



https://www.lua.org/pil/contents.html#22

Tarantool, Beinyck 1.7.5

tarantool> os.remove('file')

- true

os.date (format-string [, time-since-epoch ] )

Return a formatted date.

Parameters: (string) format-string = instructions; (string) time-since-epoch = number of seconds since
1970-01-01. If time-since-epoch is omitted, it is assumed to be the current time.

Example:

tarantool> os.date("%A %B %d4d")

- Sunday April 24

os.exit()

Exit the program. If this is done on a server instance, then the instance stops.

Example:

tarantool> os.exit()
user@user-shell:”~/tarantool_sandbox$

os.time()

Return the number of seconds since the epoch.

Example:

tarantool> os.time()

- 1461516945

os.clock()

Return the number of CPU seconds since the program start.

Example:

tarantool> os.clock()

- 0.05

os.tmpname ()

Return a name for a temporary file.

Example:

tarantool> os.tmpname ()

- /tmp/lua_7SWim2

os.environ()

Return a table containing all environment variables.

Example:

230

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

tarantool> os.environ() ['TERM']..os.environ() ['SHELL']

- xterm/bin/bash

os.setenv(variable-name, variable-value)
Set an environment variable.

Example:

tarantool> os.setenv('VERSION','99")

os.setlocale( [new—locale-string ])

Change the locale. If new-locale-string is not specified, return the current locale.

Example:

tarantool> require('string').sub(os.setlocale(),1,20)

- LC_CTYPE=en_US.UTF-8

os.difftime(timel, time2)
Return the number of seconds between two times.

Example:

tarantool> os.difftime(os.time() - 0)

- 1486594859

6.1.19 Mopgynb pickle

pickle.pack(format, argument[, argument ])

To use Tarantool binary protocol primitives from Lua, it’s necessary to convert Lua variables to binary

format. The pickle.pack() helper function is prototyped after Perl ,,pack®.

Format specifiers

6.1. Built-in modules reference

231



http://perldoc.perl.org/functions/pack.html

Tarantool, Beinyck 1.7.5

b, converts Lua variable to a 1-byte integer, and stores the integer in the resulting string

B

s, S | converts Lua variable to a 2-byte integer, and stores the integer in the resulting string, low
byte first

i, I | converts Lua variable to a 4-byte integer, and stores the integer in the resulting string, low
byte first

I, L | converts Lua variable to an 8-byte integer, and stores the integer in the resulting string, low
byte first

n converts Lua variable to a 2-byte integer, and stores the integer in the resulting string, big
endian,

N converts Lua variable to a 4-byte integer, and stores the integer in the resulting string, big

q, converts Lua variable to an 8-byte integer, and stores the integer in the resulting string, big

Q endian,

f converts Lua variable to a 4-byte float, and stores the float in the resulting string

d converts Lua variable to a 8-byte double, and stores the double in the resulting string

a, A | converts Lua variable to a sequence of bytes, and stores the sequence in the resulting string

ITapameTpsl
e format (string) — string containing format specifiers
e argument(s) (scalar-value) — scalar values to be formatted
Return a binary string containing all arguments, packed according to the format specifiers.

Rtype string

Possible errors: unknown format specifier.

Example:

tarantool> pickle = require('pickle')

tarantool> box.space.tester:insert{0, 'hello world'}

- [0, 'hello world'l]

tarantool> box.space.tester:update ({0}, {{'=', 2, 'bye world'}})

- [0, 'bye world']

tarantool> box.space.tester:update ({0}, {
> {'=', 2, pickle.pack('iiA', 0, 3, 'hello')}
> 1

- [0, "\0\0\0\0\x03\0\0\0Ohello"]

tarantool> box.space.tester:update ({0}, {{'=', 2, 4}})

- [0, 4]

tarantool> box.space.tester:update ({0}, {{'+', 2, 4}})

- [0, 8]

tarantool> box.space.tester:update ({0}, {{'~', 2, 4}})

(continues on next page)

232 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

- [0, 12]

pickle.unpack (format, binary-string)
Counterpart to pickle.pack(). Warning: if format specifier ,A“ is used, it must be the last item.

ITapameTrpsbr

e format (string) —

e binary-string (string) —
Return A list of strings or numbers.
Rtype table

Example:

tarantool> pickle = require('pickle')

tarantool> tuple = box.space.tester:replace{0}

tarantool> string.len(tuple[1])

-1

tarantool> pickle.unpack('b', tuple[1])

- 438

tarantool> pickle.unpack('bsi', pickle.pack('bsi', 255, 65535, 4294967295))

- 255
- 65535
- 4294967295

tarantool> pickle.unpack('ls', pickle.pack('ls', tonumber64('18446744073709551615'), 65535))

tarantool> num, num64, str = pickle.unpack('slA', pickle.pack('slA', 666,
> tonumber64 ('666666666666666'), 'string'))

6.1.20 Mopynb socket

The socket module allows exchanging data via BSD sockets with a local or remote host in connection-
oriented (TCP) or datagram-oriented (UDP) mode. Semantics of the calls in the socket API closely follow
semantics of the corresponding POSIX calls. Function names and signatures are mostly compatible with
luasocket.

The functions for setting up and connecting are socket, sysconnect, tcp_connect. The functions for sending
data are send, sendto, write, syswrite. The functions for receiving data are recv, recvfrom, read. The
functions for waiting before sending/receiving data are wait, readable, writable. The functions for setting

6.1. Built-in modules reference 233


https://github.com/diegonehab/luasocket

Tarantool, Beinyck 1.7.5

flags are nonblock, setsockopt. The functions for stopping and disconnecting are shutdown, close. The
functions for error checking are errno, error.

Socket functions

Purposes

Names

setup

socket()

«»

socket.tcp_ connect()

«»

socket.tep_server()

«»

socket_object:sysconnect()

«»

socket_object:send()

sending

socket_ object:sendto()

«»

socket_ object:write()

«»

socket_object:syswrite()

receiving

socket_object:recv()

«»

socket_ object:recufrom()

«»

socket_object:read()

flag setting

socket_object:nonblock()

«»

socket_ object:setsockopt()

«»

socket_object:linger()

client /server socket_object:listen()
< socket_ object:accept()
teardown socket_object:shutdown()

«»

socket_object:close()

error checking

socket_object:error()

«»

socket_object:errno()

information

socket.getaddrinfo()

«»

socket_object:getsockopt()

<>

socket _object:peer()

«»

socket_object:name()

state checking

socket_ object:readable()

«»

socket_object:writable()

«»

socket_object:wait()

«»

socket.iowait()

Typically a socket session will begin with the setup functions, will set one or more flags, will have a loop
with sending and receiving functions, will end with the teardown functions — as an example at the end of this

section will show. Throughout, there may be error-checking and waiting functions for synchronization. To
prevent a fiber containing socket functions from «blocking» other fibers, the implicit yield rules will cause a
yield so that other processes may take over, as is the norm for cooperative multitasking.

For all examples in this section the socket name will be sock and the function invocations will look like
sock:function_name(...).

socket.__call(domain, type, protocol)
Create a new TCP or UDP socket. The argument values are the same as in the Linux socket(2) man

page.
Return an unconnected socket, or nil.
Rtype userdata

Example:

socket ('AF_INET', 'SOCK_STREAM', 'tcp')

234 Fnasa 6. Cnpasou4Huku


http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html

Tarantool, Beinyck 1.7.5

socket .tcp_connect(host[, port[, timeout] ])

Connect a socket to a remote host.
ITapameTrpsbl
e host (string) — URL or IP address
e port (number) — port number
e timeout (number) — timeout
Return a connected socket, if no error.
Rtype userdata

Example:

socket.tcp_connect('127.0.0.1', 3301)

socket.getaddrinfo (host, type [, {option-list} ] )

The socket.getaddrinfo() function is useful for finding information about a remote site so
that the correct arguments for sock:sysconnect() can be passed. This function may use the
worker _pool_threads configuration parameter.

Return A table containing these fields: «host», «familys», «types», «protocols, «port».
Rtype table
Example:

socket.getaddrinfo('tarantool.org', 'http') will return variable information such as

- - host: 188.93.56.70
family: AF_INET
type: SOCK_STREAM
protocol: tcp
port: 80

- host: 188.93.56.70
family: AF_INET
type: SOCK_DGRAM
protocol: udp
port: 80

socket.tcp_server (host, port, handler—function[, timeout])

The socket.tcp_server () function makes Tarantool act as a server that can accept connections.
Usually the same objective is accomplished with boz.cfg{listen=. .. }.

ITapameTpsl
e host (string) — host name or IP

e port (number) — host port, may be 0

handler (function/table) — what to execute when a connection occurs
e timeout (number) — number of seconds to wait before timing out

The handler-function parameter may be a function name (for example function_55), a function
declaration (for example function () print('!') end), or a table including handler = function (for
example {handler=function_55, name='A'}).

Example:

6.1.

Built-in modules reference 235




Tarantool, Beinyck 1.7.5

socket.tcp_server('localhost', 3302, function () end)

object socket_object

socket_object:sysconnect (host, port)
Connect an existing socket to a remote host. The argument values are the same as in
tep  connect(). The host must be an IP address.

Parameters:

¢ Either:
— host - a string representation of an IPv4 address or an IPv6 address;
— port - a number.

e Or:
— host - a string containing «unix/»;
— port - a string containing a path to a unix socket.

e Or:
— host - a number, 0 (zero), meaning «all local interfacess;
— port - a number. If a port number is 0 (zero), the socket will be bound to a random

local port.
Return the socket object value may change if sysconnect() succeeds.

Rtype boolean

Example:

socket = require('socket')
sock = socket('AF_INET', 'SOCK_STREAM', 'tcp')
sock:sysconnect (0, 3301)

socket_object:send(data)
socket_object:write(data)
Send data over a connected socket.

ITapamerpbt
e data (string) —
Return the number of bytes sent.
Rtype number
Possible errors: nil on error.

socket_object:syswrite(size)
Write as much data as possible to the socket buffer if non-blocking. Rarely used. For details see
this description.

socket_object:recv(size)
Read size bytes from a connected socket. An internal read-ahead buffer is used to reduce the
cost of this call.

ITapameTrpbi

e size (integer) —

236 Fnasa 6. Cnpasou4Huku


https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Beinyck 1.7.5

Return a string of the requested length on success.
Rtype string

Possible errors: On error, returns an empty string, followed by status, errno, errstr. In case the
writing side has closed its end, returns the remainder read from the socket (possibly an empty
string), followed by «eof» status.

socket_object:read(limit[, timeout])

socket_object:read( delimiter[, timeout ] )

socket_object:read ({limit=limit} [, timeout ])

socket_object:read({delimiter=delimiter} [, timeout ])

socket_object:read({limit=limit, delimiter:delimiter}[, timeout])
Read from a connected socket until some condition is true, and return the bytes that were read.
Reading goes on until 1imit bytes have been read, or a delimiter has been read, or a timeout has
expired.

ITapameTrpbi

e limit (integer) — maximum number of bytes to read, for example 50 means «stop
after 50 bytes»

e delimiter (string) — separator for example 7 means «stop after a question
marks

e timeout (number) — maximum number of seconds to wait for example 50 means
«stop after 50 seconds».

Return an empty string if there is nothing more to read, or a nil value if error, or a string
up to 1imit bytes long, which may include the bytes that matched the delimiter
expression.

Rtype string

socket_object:sysread(size)
Return data from the socket buffer if non-blocking. In case the socket is blocking, sysread() can
block the calling process. Rarely used. For details, see also this description.

ITapamerpbi

e size (integer) — maximum number of bytes to read, for example 50 means «stop
after 50 bytes»

Return an empty string if there is nothing more to read, or a nil value if error, or a
string up to size bytes long.

Rtype string

socket_object:bind(host[, port])
Bind a socket to the given host/port. A UDP socket after binding can be used to receive data
(see socket_object.recufrom). A TCP socket can be used to accept new connections, after it has
been put in listen mode.

ITapameTpsI
e host —
e port —
Return a socket object on success

Rtype userdata

6.1.

Built-in modules reference 237


https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Beinyck 1.7.5

Possible errors: Returns nil, status, errno, errstr on error.

socket_object:listen(backlog)
Start listening for incoming connections.

ITapameTpsI

e backlog —~ On Linux the listen backlog backlog may be from
/proc/sys/net/core/somaxconn, on BSD the backlog may be SOMAXCONN.

Return true for success, false for error.
Rtype boolean.

socket_object:accept ()
Accept a new client connection and create a new connected socket. It is good practice to set the
socket’s blocking mode explicitly after accepting.

Return new socket if success.
Rtype userdata
Possible errors: nil.

socket_object:sendto (host, port, data)
Send a message on a UDP socket to a specified host.

ITapameTpbi
e host (string) —
e port (number) —
e data (string) —
Return the number of bytes sent.
Rtype number
Possible errors: on error, returns status, errno, errstr.

socket_object:recvfrom(limit)
Receive a message on a UDP socket.

ITapamerpbi
e limit (integer) —
Return message, a table containing «host», «family» and «port» fields.
Rtype string, table
Possible errors: on error, returns status, errno, errstr.
Example:

After message_content, message_sender = recvfrom(1) the value of message_content might
be a string containing ,,X* and the value of message_sender might be a table containing

message_sender.host = '18.44.0.1"'
message_sender.family = 'AF_INET'
message_sender.port = 43065

socket_object:shutdown (how)
Shutdown a reading end, a writing end, or both ends of a socket.

ITapamerpbi

238 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e how — socket. SHUT RD, socket.SHUT WR, or socket. SHUT RDWR.
Return true or false.
Rtype boolean

socket_object:close()
Close (destroy) a socket. A closed socket should not be used any more. A socket is closed
automatically when its userdata is garbage collected by Lua.

Return true on success, false on error. For example, if sock is already closed, sock:close()
returns false.

Rtype boolean

socket_object:error()

socket_object:errno()
Retrieve information about the last error that occurred on a socket, if any. Errors do not cause
throwing of exceptions so these functions are usually necessary.

Return result for sock:errno(), result for sock:error(). If there is no error, then
sock:errno() will return 0 and sock:error().

Rtype number, string

socket_object:setsockopt (level, name, value)
Set socket flags. The argument values are the same as in the Linux getsockopt(2) man page. The
ones that Tarantool accepts are:

e SO_ACCEPTCONN
¢ SO_BINDTODEVICE
¢ SO_BROADCAST

¢ SO_DEBUG

e SO_DOMAIN

e SO_ERROR

¢ SO_DONTROUTE

o SO KEEPALIVE

e SO_MARK

¢ SO_OOBINLINE

¢ SO_PASSCRED

¢ SO_PEERCRED

e SO_PRIORITY

¢ SO_PROTOCOL

¢ SO_RCVBUF

¢ SO_RCVBUFFORCE
e SO_RCVLOWAT

o SO_SNDLOWAT

¢ SO_RCVTIMEO

¢ SO_SNDTIMEO

6.1. Built-in modules reference 239


http://man7.org/linux/man-pages/man2/setsockopt.2.html

Tarantool, Beinyck 1.7.5

SO_REUSEADDR

e SO_SNDBUF

SO _SNDBUFFORCE
SO_TIMESTAMP

e SO _TYPE

Setting SO LINGER is done with sock:linger(active).

socket_object:getsockopt (level, name)
Get socket flags. For a list of possible flags see sock:setsockopt ().

socket_object: linger([active])
Set or clear the SO LINGER flag. For a description of the flag, see the Linux man page.

ITapameTrpbi
e active (boolean) —
Return new active and timeout values.
socket_object :nonblock([ﬂag])
e sock:nonblock() returns the current flag value.
e sock:nonblock(false) sets the flag to false and returns false.
e sock:nonblock(true) sets the flag to true and returns true.

This function may be useful before invoking a function which might otherwise block indefinitely.

socket_object:readable( [timeout ])
Wait until something is readable, or until a timeout value expires.

Return true if the socket is now readable, false if timeout expired;

socket_object :writable([timeout])
Wait until something is writable, or until a timeout value expires.

Return true if the socket is now writable, false if timeout expired;

socket_object:wait ([timeout ])
Wait until something is either readable or writable, or until a timeout value expires.

Return ,R* if the socket is now readable, ,W* if the socket is now writable, ,RW* if the

socket is now both readable and writable, ./ (empty string) if timeout expired;

socket_object :name ()
The sock:name () function is used to get information about the near side of the connection. If a
socket was bound to xyz.com: 45, then sock:name will return information about [host:xyz.com,
port:45]. The equivalent POSIX function is getsockname().

Return A table containing these fields: «host», «familys, «type», «protocols, «ports.
Rtype table

socket_object:peer ()
The sock:peer() function is used to get information about the far side of a connection. If
a TCP connection has been made to a distant host tarantool.org:80, sock:peer() will
return information about [host:tarantool.org, port:80]. The equivalent POSIX function is
getpeername ().

Return A table containing these fields: <host», «family», «type», «protocols, «ports.

240

Fnasa 6. Cnpasou4Huku


http://man7.org/linux/man-pages/man1/loginctl.1.html

Tarantool, Beinyck 1.7.5

Rtype table

socket.iowait (fd, read—or—write—ﬂags[, timeout ])
The socket.iowait () function is used to wait until read-or-write activity occurs for a file descriptor.

ITapameTrpsI
e fd — file descriptor
e read-or-write-flags — R“ or 1 = read, ,W* or 2 = write, ,RW* or 3 = read|write.
e timeout — number of seconds to wait

If the fd parameter is nil, then there will be a sleep until the timeout. If the timeout parameter is nil
or unspecified, then timeout is infinite.

Ordinarily the return value is the activity that occurred (,R* or ,W* or ,RW* or 1 or 2 or 3). If the
timeout period goes by without any reading or writing, the return is an error = ETIMEDOUT.

Example: socket.iowait(sock:fd(), 'r', 1.11)

Mpumepsi:

Use of a TCP socket over the Internet

In this example a connection is made over the internet between a Tarantool instance and tarantool.org, then
an HTTP <«head» message is sent, and a response is received: «<HTTP/1.1 200 0K» or something else if the
site has moved. This is not a useful way to communicate with this particular site, but shows that the system
works.

tarantool> socket = require('socket')

tarantool> sock = socket.tcp_connect('tarantool.org’, 80)

tarantool> type(sock)

- table

tarantool> sock:error()

- null

tarantool> sock:send("HEAD / HTTP/1.0\r\nHost: tarantool.org\r\n\r\n")

- 40
tarantool> sock:read(17)

- HTTP/1.1 302 Move

tarantool> sock:close()

- true

6.1. Built-in modules reference 241




Tarantool, Beinyck 1.7.5

Use of a UDP socket on localhost

Here is an example with datagrams. Set up two connections on 127.0.0.1 (localhost): sock_1 and sock_2.
Using sock_2, send a message to sock_1. Using sock_1, receive a message. Display the received message.
Close both connections. This is not a useful way for a computer to communicate with itself, but shows that
the system works.

tarantool> socket = require('socket')

tarantool> sock_1 = socket('AF_INET', 'SOCK_DGRAM', 'udp’)

tarantool> sock_1:bind('127.0.0.1")

- true

tarantool> sock_2 = socket('AF_INET', 'SOCK_DGRAM', 'udp')

tarantool> sock_2:sendto('127.0.0.1', sock_1:name().port,'X"')

- true

tarantool> message = sock_l:recvfrom()

tarantool> message

- X

tarantool> sock_1:close()

- true

tarantool> sock_2:close()

- true

Use tcp _server to accept file contents sent with socat

Here is an example of the tcp server function, reading strings from the client and printing them. On the
client side, the Linux socat utility will be used to ship a whole file for the tcp _server function to read.

Start two shells. The first shell will be a server instance. The second shell will be the client.

On the first shell, start Tarantool and say:

box.cfg{}
socket = require('socket')
socket.tcp_server('0.0.0.0"', 3302, function(s)
while true do
local request
request = s:read("\n");
if request == "" or request == nil then

(continues on next page)

242 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

break
end
print (request)
end
end)

The above code means: use tcp server() to wait for a connection from any host on port 3302. When it
happens, enter a loop that reads on the socket and prints what it reads. The «delimiters for the read
function is «\n» so each read() will read a string as far as the next line feed, including the line feed.

On the second shell, create a file that contains a few lines. The contents don’t matter. Suppose the first line
contains A, the second line contains B, the third line contains C. Call this file «tmp.txt».

On the second shell, use the socat utility to ship the tmp.txt file to the server instance’s host and port:

$ socat TCP:localhost:3302 ./tmp.txt

Now watch what happens on the first shell. The strings «A», «B», «C» are printed.

6.1.21 Mopynb strict

The strict module has functions for turning «strict mode» on or off. When strict mode is on, an attempt
to use an undeclared global variable will cause an error. A global variable is considered «undeclareds if it
has never had a value assigned to it. Often this is an indication of a programming error.

By default strict mode is off, unless tarantool was built with the -DCMAKE_BUILD_TYPE=Debug option — see
the description of build options in section building-from-source.

Example:

tarantool> strict = require('strict')

tarantool> strict.on()

tarantool> a = b -- strict mode 2s on so this will cause an error

- error: ... variable ''b'' is not declared'

tarantool> strict.off()

tarantool> a = b -- strict mode is off so this will not cause an error

6.1.22 Module tap

The tap module streamlines the testing of other modules. It allows writing of tests in the TAP protocol. The
results from the tests can be parsed by standard TAP-analyzers so they can be passed to utilities such as
prove. Thus one can run tests and then use the results for statistics, decision-making, and so on.

tap.test (test-name)
Initialize.

6.1. Built-in modules reference 243



https://en.wikipedia.org/wiki/Test_Anything_Protocol
https://metacpan.org/pod/distribution/Test-Harness/bin/prove

Tarantool, Beinyck 1.7.5

The result of tap.test is an object, which will be called taptest in the rest of this discussion, which
is necessary for taptest:plan() and all the other methods.

ITapameTrpsbl

e test-name (string) — an arbitrary name to give for the test outputs.
Return taptest
Rtype userdata

tap = require('tap')
taptest = tap.test('test-name')

object taptest

taptest:plan(count)
Indicate how many tests will be performed.

ITapameTpsbI
e count (number) —
Return nil

taptest:check()
Checks the number of tests performed. This check should only be done after all planned tests are
complete, so ordinarily taptest:check() will only appear at the end of a script.

Will display # bad plan: ... if the number of completed tests is not equal to the number of
tests specified by taptest:plan(...).

Return nil

taptest:diag(message)
Display a diagnostic message.

ITapamerpsbt
e message (string) — the message to be displayed.
Return nil

taptest:ok(condition, test-name)
This is a basic function which is used by other functions. Depending on the value of condition,
print ,,0k“ or ,not ok“ along with debugging information. Displays the message.

ITapameTrpsI
e condition (boolean) — an expression which is true or false
e test-name (string) — name of test

Return true or false.

Rtype boolean

Example:

tarantool> taptest:ok(true, 'x')
ok - x

- true

(continues on next page)

244

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> tap = require('tap')

tarantool> taptest = tap.test('test-name')
TAP version 13

tarantool> taptest:ok(l + 1 == 2, 'X')
ok - X

- true

taptest:fail (test-name)

taptest:fail('x"') is equivalent to taptest:ok(false, 'x'). Displays the message.

ITapameTrpsbi

e test-name (string) — name of test
Return true or false.
Rtype boolean

taptest:skip(message)
taptest:skip('x') is equivalent to taptest:ok(true, 'x'
message.

ITapameTpsI
e test-name (string) — name of test
Return nil

Example:

'# skip'). Displays the

tarantool> taptest:skip('message')
ok - message # skip

- true

taptest:is(got, expected, test-name)

Check whether the first argument equals the second argument. Displays extensive message if the

result is false.
ITapameTpsI
e got (number) — actual result
e expected (number) — expected result
e test-name (string) — name of test
Return true or false.
Rtype boolean

taptest:isnt (got, expected, test-name)
This is the negation of taptest:is(...).

ITapameTpsI

6.1.

Built-in modules reference

245




Tarantool, Beinyck 1.7.5

e got (number) — actual result
e expected (number) — expected result
e test-name (string) — name of test
Return true or false.
Rtype boolean

taptest:isnil(value, test-name)

taptest:isstring(value, test-name)

taptest:isnumber (value, test-name)

taptest:istable(value, test-name)

taptest:isboolean (value, test-name)

taptest:isudata(wvalue, test-name)

taptest:iscdata(wvalue, test-name)
Test whether a value has a particular type. Displays a long message if the value is not of the
specified type.

ITapameTrpbt

e value (lua-value) —

e test-name (string) — name of test
Return true or false.
Rtype boolean

taptest:is_deeply (got, expected, test-name)
Recursive version of taptest:is(...), which can be be used to compare tables as well as scalar
values.

Return true or false.
Rtype boolean
ITapameTpsI
e got (lua-value) — actual result
e expected (lua-value) — expected result

e test-name (string) — name of test

Mpumep

To run this example: put the script in a file named ./tap.lua, then make tap.lua executable by saying chmod
a+x ./tap.lua, then execute using Tarantool as a script processor by saying ./tap.lua.

#!/usr/bin/tarantool
local tap = require('tap')
test = tap.test('my test name'")
test:plan(2)
test:ok(2 * 2 == 4, "2 % 2 is 4")
test:test ('some subtests for test2'", function(test)
test:plan(2)
test:is(2 + 2, 4, "2 + 2 is 4")
test:isnt(2 + 3, 4, "2 + 3 is not 4")
end)
test:check()

246 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

The output from the above script will look approximately like this:

TAP version 13
1..2
ok - 2 x 2 is 4
# Some subtests for test2
1..2
ok - 2 + 2 is 4,
ok - 2 + 3 is not 4
# Some subtests for test2: end
ok - some subtests for test2

6.1.23 Mopgynsb tarantool
By saying require('tarantool'), one can answer some questions about how the tarantool server was built,
such as «what flags were used», or «what was the version of the compilers.

Additionally one can see the uptime and the server version and the process id. Those information items can
also be accessed with box.info() but use of the tarantool module is recommended.

Example:

tarantool> tarantool = require('tarantool')

tarantool> tarantool
- build:
target: Linux-x86_64-RelWithDebInfo
options: cmake . -DCMAKE_INSTALL_PREFIX=/usr -DENABLE_BACKTRACE=0N
mod_format: so
flags: ' -fno-common -fno-omit-frame-pointer -fno-stack-protector -fexceptions
-funwind-tables -fopenmp -msse2 -std=cll -Wall -Wextra -Wno-sign-compare -Wno-strict-aliasing
-fno-gnu89-inline'
compiler: /usr/bin/x86_64-linux-gnu-gcc /usr/bin/x86_64-linux-gnu-g++
uptime: 'function: 0x408668e0'
version: 1.7.0-66-g9093daa
pid: 'function: 0x40866900'

tarantool> tarantool.pid()

- 30155

tarantool> tarantool.uptime()

- 108.64641499519

6.1.24 Module vuuid

A «UUID» is a Universally unique identifier. If an application requires that a value be unique only within
a single computer or on a single database, then a simple counter is better than a UUID, because getting a
UUID is time-consuming (it requires a syscall). For clusters of computers, or widely distributed applications,
UUIDs are better.

The functions that can return a UUID are:

6.1. Built-in modules reference 247



https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Syscall

Tarantool, Beinyck 1.7.5

o uuid()
o wuid.bin()
o wuid.str()

The functions that can convert between different types of UUID are:

e wuid_ object:bin()
e wuid_ object:str()
o wuid.fromstr()

o wuid.frombin()

The function that can determine whether a UUID is an all-zero value is:

e wuid_ object:isnil()

uuid.nil
A nil object

uuid.__call()
Return a UUID
Rtype cdata
uuid.bin()
Return a UUID
Rtype 16-byte string
uuid.str()
Return a UUID
Rtype 36-byte binary string
uuid.fromstr (uuid_ str)
ITapameTrpsbr
e uuid_str — UUID in 36-byte hexadecimal string
Return converted UUID
Rtype cdata
uuid.frombin(uuid_ bin)
ITapameTrpsbl
e uuid_str — UUID in 16-byte binary string
Return converted UUID
Rtype cdata

object uuid_object

uuid_object :bin([byte—order])
byte-order can be one of next flags:

o I¢ - little-endian,

e b“ - big-endian,

248

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e h“ - endianness depends on host (default),

e n“ - endianness depends on network

ITapameTpsI
e byte-order (string) —oneof '1', 'b', 'h' or 'n'.
Return UUID converted from cdata input value.

Rtype 16-byte binary string

uuid_object:str()
Return UUID converted from cdata input value.
Rtype 36-byte hexadecimal string

uuid_object:isnil()
The all-zero UUID value can be expressed as uuid. NULL, or as wuuid.
fromstr (' 00000000-0000-0000-0000-000000000000"'). The comparison with an all-zero
value can also be expressed as uuid_with_type_cdata == uuid.NULL.

Return true if the value is all zero, otherwise false.

Rtype bool

Mpumep

tarantool> uuid = require('uuid')

tarantool> uuid(), uuid.bin(), uuid.str()
- 16ffedc8-cbae-4f93-a0be-349f3ab70baa

- !!binary FvG+VylMfUC6kIyeM81DYw==

- 67c999d2-5dce-4e58-bel6-aclbcb93160f

tarantool> uu = uuid()

tarantool> #uu:bin(), #uu:str(), type(uu), uu:isnil()
- 16

- 36

- cdata

- false

6.1.25 Module uri

A «URI» is a «Uniform Resource Identifiers. The [ETF standard says a URI string looks like
this: [scheme:|scheme-specific-part[#fragment] A common type, a hierarchical URI, looks like this:
[scheme:][//authority][path][?query][#fragment] For example the string , https://tarantool.org/z.html#y* has
three components: https is the scheme, tarantool.org/x.html is the path, and y is the fragment. Tarantool’s
URI module provides routines which convert URI strings into their components, or turn components into
URI strings.

6.1. Built-in modules reference 249



https://www.ietf.org/rfc/rfc2396.txt

Tarantool, Beinyck 1.7.5

uri.parse(URI-string)
ITapameTrpsbl
e URI-string — a Uniform Resource Identifier

Returns URI-components-table. Possible components are fragment, host, login, password,
path, query, scheme, service.

Rtype Table

Example:

tarantool> uri = require('uri')

tarantool> uri.parse('http://x.html#y')

- host: x.html
scheme: http
fragment: y

uri.format (URI-components-table)
ITapameTpsl
e URI-components-table — a series of name:value pairs, one for each component
Returns URI-string. Thus uri.format() is the reverse of uri.parse().
Rtype string

Example:

tarantool> uri.format({host = 'x.html', scheme = 'http', fragment = 'y'})

- http://x.html#y

6.1.26 Module xlog

The xlog module contains one function: pairs (). It can be used to read Tarantool’s snapshot files or write-
ahead-log (WAL) files. A description of the file format is in section Data persistence and the WAL file format.

xlog.pairs([ﬁle—name])
Open a file, and allow iterating over one file entry at a time.

Returns iterator which can be used in a for/end loop.

Rtype iterator
Possible errors: File does not contain properly formatted snapshot or write-ahead-log information.
Example:

This will read the first write-ahead-log (WAL) file that was created in the wal_ dir directory in our
«Getting starteds ezercises.

Each result from pairs() is formatted with MsgPack so its structure can be specified with __ serialize.

250 Fnasa 6. Cnpasou4Huku


https://www.lua.org/pil/7.1.html

Tarantool, Beinyck 1.7.5

xlog = require('xlog')

t = {}

for k, v in xlog.pairs('00000000000000000000.x1og") do
table.insert(t, setmetatable(v, { __serialize = "map'"}))

end

return t

The first lines of the result will look like:

...)
- - {'BODY"': {'space_id': 272, 'index_base': 1, 'key': ['max_id'],
"tuple': [['+', 2, 111},
'HEADER ' : {'type': 'UPDATE', 'timestamp': 1477846870.8541,
'1sn': 1, 'server_id': 1}}
- {'BODY': {'space_id': 280,
"tuple': [512, 1, 'tester', 'memtx', 0, {}, [11},
"HEADER': {'type': 'INSERT', 'timestamp': 1477846870.8597,
'1sn': 2, 'server_id': 1}}

6.1.27 Module yaml

The yaml module takes strings in YAML format and decodes them, or takes a series of non-YAML values
and encodes them.

yaml.encode (lua_ value)
Convert a Lua object to a YAML string.

ITapameTpsbr

e lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a YAML string.
Rtype string

yaml.decode (string)
Convert a YAML string to a Lua object.

ITapameTrpsl

e string — a string formatted as YAML.
Return the original contents formatted as a Lua table.
Rtype table

yaml.NULL
A value comparable to Lua «nil» which may be useful as a placeholder in a tuple.

Mpumep

tarantool> yaml = require('yaml')

tarantool> y = yaml.encode({'a', 1, 'b', 2})

(continues on next page)

6.1. Built-in modules reference 251



http://yaml.org/

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> z = yaml.decode(y)

tarantool> z[1], z[2], z[31, z[4]

N T =P

tarantool> if yaml.NULL == nil then print('hi') end
hi

The YAML collection style can be specified with __serialize:
e __serialize="sequence" for a Block Sequence array,
e __serialize="seq" for a Flow Sequence array,
e __serialize="mapping" for a Block Mapping map,
e __serialize="map" for a Flow Mapping map.

Serializing ,A*“ and ,,B“ with different __serialize values causes different results:

tarantool> yaml = require('yaml')

tarantool> yaml.encode(setmetatable({'A', 'B'}, { __serialize="sequence"}))

t
o .
E.
ot
[o]
[o]
=
v
E
=
o
=]
O
[*]
Q
o
~
-~
2]
[0]
ct
=]
[]
ct
[\
ct
[\
o'
=
o
~
~
H
-
1]
=
H
N
1

= 'B'}, { __serialize="map"}1})

o+ -
o .
E .
ot
[o]
[o]
=
v
E
[
o
=]
[e]
[o]
o
[0)
—~
-~
2]
[0]
ct
=]
(]
t
o
t
[\
o
=
[0]
~
A
Hh
-
I

'A', f2 = 'B'}, { __serialize="mapping"})})

(continues on next page)

252 Fnasa 6. Cnpasou4Huku



http://yaml.org/spec/1.1/#id930798

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

Also, some YAML configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

6.1.28 Pa3sHoe

tonumber64 (value)

Convert a string or a Lua number to a 64-bit integer. The input value can be expressed in decimal,
binary (for example 0b1010), or hexadecimal (for example -0xffff). The result can be used in arithmetic,
and the arithmetic will be 64-bit integer arithmetic rather than floating-point arithmetic. (Operations
on an unconverted Lua number use floating-point arithmetic.) The tonumber64() function is added
by Tarantool; the name is global.

Example:

tarantool> type(123456789012345), type(tonumber64(123456789012345))

- number
- number

tarantool> i = tonumber64('1000000000")

tarantool> type(i), i / 2, i - 2, 1 * 2, i +2, i % 2,1 "~ 2
- number

- 500000000

- 999999998

- 2000000000

- 1000000002

-0

- 1000000000000000000

dostring(lua—chunk—string[, lua-chunk-string-argument ... ])

Parse and execute an arbitrary chunk of Lua code. This function is mainly useful to define and run
Lua code without having to introduce changes to the global Lua environment.

ITapameTrpsbl
e lua-chunk-string (string) — Lua code

e lua-chunk-string-argument (lua-value) — zero or more scalar values which will
be appended to, or substitute for, items in the Lua chunk.

Return whatever is returned by the Lua code chunk.
Possible errors: If there is a compilation error, it is raised as a Lua error.

Example:

tarantool> dostring('abc')

error: '[string "abc"]:1: ''='' expected near ''<eof>'''

(continues on next page)

6.1.

Built-in modules reference 253




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> dostring('return 1')

-1

1
>

tarantool> dostring('return ... 'hello', 'world')

- hello
- world

tarantool> dostring([[
> local f = function(key)
local t = box.space.tester:select{key}
if t 7= nil then
return t[1]
else
return nil
end
end
return £(...)11, 1)

V V. V V V V V V

- null

6.1.29 Kopabl owinbok ot 6a3bl JaHHbIX

In the current version of the binary protocol, error messages, which are normally more descriptive than error
codes, are not present in server responses. The actual message may contain a file name, a detailed reason
or operating system error code. All such messages, however, are logged in the error log. Below are general
descriptions of some popular codes. A complete list of errors can be found in file errcode.h in the source tree.

List of error codes

ER _NONMASTH

RIn replication) A server instance cannot modify data unless it is a master.

ER_ILLEGAL D

ARdeddparameters. Malformed protocol message.

ER_MEMORY 1

SOt of memory: memtr _memory limit has been reached.

ER_WAL_IO

Failed to write to disk. May mean: failed to record a change in the write-ahead log.
Some sort of disk error.

ER_KEY PART

 KGUNIE count is not the same as index part count

ER_NO_SUCH |

SPACHpecified space does not exist.

ER_NO_SUCH |

INh&specified index in the specified space does not exist.

ER_PROC_LUA

An error occurred inside a Lua procedure.

ER_FIBER_STA

CRhe recursion limit was reached when creating a new fiber. This usually indicates that
a stored procedure is recursively invoking itself too often.

ER_UPDATE F

[EXiDerror occurred during update of a field.

ER_TUPLE_FO

UATduplicate key exists in a unique index.

6.1.30 Handling errors

Here are some procedures that can make Lua functions more robust when there are errors, particularly

database errors.

1. Invoke with p

call.

254

Fnasa 6. Cnpasou4Huku


https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Beinyck 1.7.5

Take advantage of Lua’s mechanisms for «Error handling and exceptions», particularly pcall. That
is, instead of simply invoking with

box.space. space-name : function-name ()

say

if pcall(box.space.space-name . function-name , box.space.space-name)

For some Tarantool box functions, pcall also returns error details including a file-name and
line-number within Tarantool’s source code. This can be seen by unpacking. For example:

x, y = pcall(function() box.schema.space.create('') end)

y:unpack ()

See the tutorial Sum a JSON field for all tuples to see how pcall can fit in an application.
2. Examine and raise with box.error.

To make a new error and pass it on, the box.error module provides boz.error(code, errtext [, errtext

To find the last error, the box.error module provides box.error.last(). (There is also a way to find the
text of the last operating-system error for certain functions — errno.strerror([code]).)

3. Log.
Put messages in a log using the log module.
And filter messages that are automatically generated, with the log configuration parameter.

Generally, for Tarantool built-in functions which are designed to return objects: the result will be an object,
or nil, or a Lua error. For example consider the fio_read.lua program in our cookbook:

#!/usr/bin/env tarantool

local fio = require('fio')

local errno = require('errno')

local f = fio.open('/tmp/xxxx.txt', {'0_RDONLY' })
if not f then

error("Failed to open file: "..errno.strerror())
end
local data = f:read(4096)
f:close()
print (data)

After a function call that might fail, like fio.open() above, it is common to see syntax like if not f then

. or if £ == nil then ..., which check for common failures. But if there had been a syntax error, for
example fio.opex instead of fio.open, then there would have been a Lua error and f would not have been
changed. If checking for such an obvious error had been a concern, the programmer would probably have
used pcall().

All functions in Tarantool modules should work this way, unless the manual explicitly says otherwise.

6.1.31 Debug facilities

Tarantool users can benefit from built-in debug facilities that are part of:

e Lua (debug library, see details below) and

6.1. Built-in modules reference 255



http://www.lua.org/pil/8.4.html
https://www.lua.org/pil/8.3.html
https://www.lua.org/manual/5.1/manual.html#5.9

Tarantool, Beinyck 1.7.5

e Lualit (debug.™ functions).

The debug library provides an interface for debugging Lua programs. All functions in this library reside in
the debug table. Those functions that operate on a thread have an optional first parameter that specifies
the thread to operate on. The default is always the current thread.

Ilpumeuanume: This library should be used only for debugging and profiling and not as a regular
programming tool, as the functions provided here can take too long to run. Besides, several of these functions
can compromise otherwise secure code.

The functions in debug are:

debug.debug()
Enters an interactive mode and runs each string that the user types in. The user can, among other
things, inspect global and local variables, change their values and evaluate expressions.

Enter cont to exit this function, so that the caller can continue its execution.

ITpumeuanme: Commands for debug.debug() are not lexically nested within any function and so
have no direct access to local variables.

debug.getfenv(object)
ITapameTrpsbl
e object — object to get the environment of

Return the environment of the object

debug.gethook( [thread ] )
Return the current hook settings of the thread as three values:
e the current hook function
e the current hook mask

e the current hook count as set by the debug.sethook() function

debug.getinfo([thread], function[, what])
ITapameTrpsbl
e function — function to get information on
e what (string) — what information on the function to return
Return a table with information about the function

You can pass in a function directly, or you can give a number that specifies a function running at level
function of the call stack of the given thread: level 0 is the current function (getinfo() itself), level
1 is the function that called getinfo(), and so on. If function is a number larger than the number
of active functions, getinfo() returns nil.

The default for what is to get all information available, except the table of valid lines. If present, the
option f adds a field named func with the function itself. If present, the option L adds a field named
activelines with the table of valid lines.

debug.getlocal( [thread ] , level, local)

ITapameTrpsbr

256 Fnasa 6. Cnpasou4Huku


http://luajit.org/extensions.html

Tarantool, Beinyck 1.7.5

e level (number) — level of the stack
e local (number) — index of the local variable

Return the name and the value of the local variable with the index local of the function
at level level of the stack or nil if there is no local variable with the given index; raises

an error if level is out of range

IIpumeuanue: You can call debug.getinfo() to check whether the level is valid.

debug.getmetatable (object)
ITapameTrpsbl
e object — object to get the metatable of

Return a metatable of the object or nil if it does not have a metatable

debug.getregistry()
Return the registry table
debug.getupvalue (func, up)
ITapameTpsl
e func (function) — function to get the upvalue of
e up (number) — index of the function upvalue

Return the name and the value of the upvalue with the index up of the function func or
nil if there is no upvalue with the given index

debug.setfenv(object, table)
Sets the environment of the object to the table.

ITapameTpsI
e object — object to change the environment of

e table (table) — table to set the object environment to
Return the object

debug.sethook([thread], hook, mask[, count])
Sets the given function as a hook. When called without arguments, turns the hook off.

ITapameTpsl

e hook (function) — function to set as a hook

e mask (string) — describes when the hook will be called; may have the following
values:
— ¢ - the hook is called every time Lua calls a function
— r - the hook is called every time Lua returns from a function
— 1 - the hook is called every time Lua enters a new line of code

e count (number) — describes when the hook will be called; when different from zero,

the hook is called after every count instructions.

debug.setlocal([thread], level, local, value)
Assigns the value value to the local variable with the index local of the function at level level of

the stack.

6.1. Built-in modules reference 257



Tarantool, Beinyck 1.7.5

ITapameTpsl
e level (number) — level of the stack
e local (number) — index of the local variable
e value — value to assign to the local variable

Return the name of the local variable or nil if there is no local variable with the given
index; raises an error if level is out of range

IIpumeuanme: You can call debug.getinfo() to check whether the level is valid.

debug. setmetatable(object, table)
Sets the metatable of the object to the table.

ITapameTrpsI
e object — object to change the metatable of
e table (table) — table to set the object metatable to

debug. setupvalue (func, up, value)
Assigns the value value to the upvalue with the index up of the function func.

ITapameTrpsbr
e func (function) — function to set the upvalue of
e up (number) — index of the function upvalue
e value — value to assign to the function upvalue
Return the name of the upvalue or nil if there is no upvalue with the given index
debug.traceback([thread], [message][, level])
ITapameTpsbl
e message (string) — an optional message prepended to the traceback
e level (number) — specifies at which level to start the traceback (default is 1)

Return a string with a traceback of the call stack

6.2 CnpaBOYHUK MO CTOPOHHUM OMBAVOTEKam

This reference covers third-party Lua modules for Tarantool.

6.2.1 SQL DBMS Modules

The discussion here in the reference is about incorporating and using two modules that have already been
created: the «SQL DBMS rockss for MySQL and PostgreSQL.

To call another DBMS from Tarantool, the essential requirements are: another DBMS, and Tarantool. The
module which connects Tarantool to another DBMS may be called a «connectors. Within the module there
is a shared library which may be called a «drivers.

Tarantool supplies DBMS connector modules with the module manager for Lua, LuaRocks. So the connector
modules may be called «rocks».

258 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

The Tarantool rocks allow for connecting to SQL servers and executing SQL statements the same way that
a MySQL or PostgreSQL client does. The SQL statements are visible as Lua methods. Thus Tarantool can
serve as a «MySQL Lua Connectors or «PostgreSQL Lua Connectors, which would be useful even if that
was all Tarantool could do. But of course Tarantool is also a DBMS, so the module also is useful for any
operations, such as database copying and accelerating, which work best when the application can work on
both SQL and Tarantool inside the same Lua routine. The methods for connect/select /insert/etc. are similar
to the ones in the net.box module.

From a user’s point of view the MySQL and PostgreSQL rocks are very similar, so the following sections —
«MySQL Example» and «PostgreSQL Example> — contain some redundancy.

MySQL Example

This example assumes that MySQL 5.5 or MySQL 5.6 or MySQL 5.7 has been installed. Recent MariaDB
versions will also work, the MariaDB C connector is used. The package that matters most is the MySQL
client developer package, typically named something like libmysqlclient-dev. The file that matters most from
this package is libmysglclient.so or a similar name. One can use find or whereis to see what directories
these files are installed in.

It will be necessary to install Tarantool’s MySQL driver shared library, load it, and use it to connect to a
MySQL server instance. After that, one can pass any MySQL statement to the server instance and receive
results, including multiple result sets.

Installation

Check the instructions for downloading and installing a binary package that apply for the environment
where Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on
Ubuntu, add the line:

sudo apt-get install tarantool-dev

Now, for the MySQL driver shared library, there are two ways to install:

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the
instructions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

luarocks install mysql [MYSQL_LIBDIR = path]
[MYSQL_INCDIR = path]
[--1locall

Hampuwmep:

luarocks install mysql MYS(OL_LIBDIR=/usr/local/mysql/lib

With GitHub

Go the site github.com /tarantool /mysql. Follow the instructions there, saying:

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 259


http://tarantool.org/download.html
http://rocks.tarantool.org/
https://github.com/tarantool/mysql

Tarantool, Beinyck 1.7.5

git clone https://github.com/tarantool/mysql.git

cd mysql && cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo
make

make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the mysql driver. We will assume that the name is mysql in further
examples.

mysql = require('mysql')

Now, say:
connection_name = mysql.connect(connection options)
The connection-options parameter is a table. Possible options are:
e host = host-name - string, default value = ,localhost*
e port = port-number - number, default value = 3306
e user = user-name - string, default value is operating-system user name
e password = password - string, default value is blank
e db = database-name - string, default value is blank
e raise = true/false - boolean, default value is false

The option names, except for raise, are similar to the names that MySQL’s mysql client uses, for details see
the MySQL manual at dev.mysgl.com/doc/refman/5.6/en/connecting.html. The raise option should be set
to true if errors should be raised when encountered. To connect with a Unix socket rather than with TCP,
specify host = 'unix/' and port = socket-name.

Example, using a table literal enclosed in {braces}:

conn = mysql.connect ({
host = '127.0.0.1",

port = 3306,
user = 'p',
password = 'p',

db = 'test',
raise = true

b
-- OR
conn = mysql.connect ({
host = 'unix/',
port = '/var/run/mysqld/mysqld.sock’
b

Example, creating a function which sets each option in a separate line:

tarantool> -- Connection function. Usage: conn = mysql_connect()
tarantool> function mysql_connection()
> local p = {}

(continues on next page)

260 Fnasa 6. Cnpasou4Huku



https://dev.mysql.com/doc/refman/5.6/en/connecting.html

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

p-host = 'widgets.com'
p.db = 'test'

conn = mysql.connect (p)
return conn

vV V V V VvV

end

tarantool> conn = mysql_connect ()

We will assume that the name is ,conn* in further examples.

How to ping

To ensure that a connection is working, the request is:
connection-name :ping ()

Example:

tarantool> conn:ping()

- true

Executing a statement

For all MySQL statements, the request is:
connection-name :execute(sql-statement [, parameters])

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks («?»s) in the SQL statement.

Example:

tarantool> conn:execute('select table_name from information_schema.tables')

- - table_name:
- table_name:
- table_name:

ALL_PLUGINS
APPLICABLE_ROLES
CHARACTER_SETS

< o>
- 78

Closing connection

To end a session that began with mysql.connect, the request is:
connection-name :close()

Example:

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 261




Tarantool, Beinyck 1.7.5

tarantool> conn:close()

For further information, including examples of rarely-used requests, see the README.md file at
github.com /tarantool /mysql.

Mpumep

The example was run on an Ubuntu 12.04 («precise») machine where tarantool had been installed in a /usr
subdirectory, and a copy of MySQL had been installed on ~/mysql-5.5. The mysqld server instance is already
running on the local host 127.0.0.1.

$ export TMDIR="/mysql-5.5

$ # Check that the include subdirectory ezists by looking

$ # for .../include/mysql.h. (If this fails, there's a chance
$ # that it's in .../include/mysql/mysql.h instead.)

$ [ -f $TMDIR/include/mysql.h ] && echo "OK" || echo "Error"
0K

$ # Check that the library subdirectory ezists and has the
$ # necessary .so file.
$ [ -f $TMDIR/1lib/libmysqlclient.so ] && echo "OK" || echo "Error"

$ # Check that the mysql client can connect using some factory

$ # defaults: port = 3306, user = 'root', user password = ',

$ # database = 'test'. These can be changed, provided one uses

$ # the changed wvalues in all places.

$ $TMDIR/bin/mysql --port=3306 -h 127.0.0.1 --user=root \
--password= --database=test

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25

Server version: 5.5.35 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear ...

$ # Insert a row in database test, and quit.

mysql> CREATE TABLE IF NOT EXISTS test (sl INT, s2 VARCHAR(50));
Query OK, O rows affected (0.13 sec)

mysql> INSERT INTO test.test VALUES (1,'MySQL row');

Query 0K, 1 row affected (0.02 sec)

mysql> QUIT

Bye

$ # Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting uplalready"
Setting up luarocks (2.0.8-2)

$ # Set up the Tarantool rock list in ~/.luarocks,

$ # following instructions at rocks.tarantool.org

$ mkdir ~/.luarocks

$ echo "rocks_servers = {[[http://rocks.tarantool.org/]J1}" >> \
~/.luarocks/config.lua

$ # Ensure that the next "install" will get files from Tarantool

(continues on next page)

262 Fnasa 6. Cnpasou4Huku



https://github.com/tarantool/mysql

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

$ # master repository. The resultant display is normal for Ubuntu
$ # 12.04 precise

$ cat /etc/apt/sources.list.d/tarantool.list

deb http://tarantool.org/dist/1.7/ubuntu/ precise main

deb-src http://tarantool.org/dist/1.7/ubuntu/ precise main

$ # Install tarantool-dev. The displayed line should show version = 1.6
$ sudo apt-get -y install tarantool-dev | grep -E "Setting uplalready"
Setting up tarantool-dev (1.6.6.222.g48b98bb precise-1)

$

$ # Use luarocks to install locally, that is, relative to $HOME
$ luarocks install mysql MYSOL_LIBDIR=/usr/local/mysql/lib --local
Installing http://rocks.tarantool.org/mysql-scm-1.rockspec. ..

(more info about building the Tarantool/MySQL driver appears here)
mysql scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at

$ find ~/.luarocks -name "driver.so"
~/.luarocks/1lib/lua/5.1/mysql/driver.so

# Change directory to a directory which can be used for

# temporary tests. For this example we assume that the name
# of this directory is /home/pgulutzan/tarantool_sandboz.

# (Change "/home/pgulutzan' to whatever is the user's actual
# home directory for the machine that's used for this test.)

P P P P H &P

cd /home/pgulutzan/tarantool_sandbox
$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool

tarantool: version 1.7.0-222-g48b98bb
type 'help' for interactive help
tarantool>

Configure tarantool and load mysql module. Make sure that tarantool doesn’t reply «errors for the call to
«require()».

tarantool> box.cfg{}

tarantool> mysql = require('mysql')

Create a Lua function that will connect to the MySQL server instance, (using some factory default values for
the port and user and password), retrieve one row, and display the row. For explanations of the statement
types used here, read the Lua tutorial earlier in the Tarantool user manual.

tarantool> function mysql_select ()
>  local conn = mysql.connect({

> host = '127.0.0.1",
> port = 3306,

> user = 'root',

> db = 'test'

> 3

(continues on next page)

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 263




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> local test = conn:execute('SELECT * FROM test WHERE s1 = 1')
> local row = ''

> for i, card in pairs(test) do

> row = row .. card.s2 .. ' '

> end

> conn:close()

>  return row

> end

tarantool> mysql_select()

- 'MySQL row '

Observe the result. It contains «MySQL rows. So this is the row that was inserted into the MySQL database.
And now it’s been selected with the Tarantool client.

PostgreSQL Example

This example assumes that PostgreSQL 8 or PostgreSQL 9 has been installed. More recent versions should
also work. The package that matters most is the PostgreSQL developer package, typically named something
like libpg-dev. On Ubuntu this can be installed with:

sudo apt-get install libpqg-dev

However, because not all platforms are alike, for this example the assumption is that the user must check
that the appropriate PostgreSQL files are present and must explicitly state where they are when building
the Tarantool/PostgreSQL driver. One can use £ind or whereis to see what directories PostgreSQL files are
installed in.

It will be necessary to install Tarantool’s PostgreSQL driver shared library, load it, and use it to connect
to a PostgreSQL server instance. After that, one can pass any PostgreSQL statement to the server instance
and receive results.

Installation

Check the instructions for downloading and installing a binary package that apply for the environment
where Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on
Ubuntu, add the line:

sudo apt-get install tarantool-dev

Now, for the PostgreSQL driver shared library, there are two ways to install:

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the
instructions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

luarocks install pg [POSTGRESQL_LIBDIR
[POSTGRESQL_INCDIR
[--locall

path]
path]

264 Fnasa 6. Cnpasou4Huku



http://tarantool.org/download.html
http://rocks.tarantool.org/

Tarantool, Beinyck 1.7.5

Hampuwmep:

luarocks install pg POSTGRES(OL_LIBDIR=/usr/local/postgresql/lib

With GitHub

Go the site github.com /tarantool /pg. Follow the instructions there, saying:

git clone https://github.com/tarantool/pg.git

cd pg && cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo
make

make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the pg driver. We will assume that the name is pg in further examples.

pg = require('pg')

Now, say:
connection_name = pg.connect(connection options)
The connection-options parameter is a table. Possible options are:

e host = host-name - string, default value = ,localhost*

e port = port-number - number, default value = 5432

e user = user-name - string, default value is operating-system user name

e pass = password or password = password - string, default value is blank
e db = database-name - string, default value is blank

The names are similar to the names that PostgreSQL itself uses.

Example, using a table literal enclosed in {braces}:

conn = pg.connect ({
host = '127.0.0.1",

port = 5432,
user = 'p',
password = 'p',
db = 'test'

b

Example, creating a function which sets each option in a separate line:

tarantool> function pg_connect ()
> local p = {}

> p.host = 'widgets.com'
> p.db = 'test'

> p.user = 'postgres'

> p.password = 'postgres'

(continues on next page)

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 265


https://github.com/tarantool/pg

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> local conn = pg.connect(p)
> return conn
> end

tarantool> conn = pg_connect ()

We will assume that the name is ,,conn® in further examples.

How to ping

To ensure that a connection is working, the request is:
connection-name :ping ()

Example:

tarantool> conn:ping()

- true

Executing a statement

For all PostgreSQL statements, the request is:
connection-name :execute(sql-statement [, parameters])

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks («?»s) in the SQL statement.

Example:

tarantool> conn:execute('select tablename from pg_tables')
- - tablename: pg_statistic

- tablename: pg_type

- tablename: pg_authid

< L

Closing connection

To end a session that began with pg.connect, the request is:
connection-name :close()

Example:

tarantool> conn:close()

266 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

For further information, including examples of rarely-used requests, see the README.md file at

github.com /tarantool /pg.

Mpumep

The example was run on an Ubuntu 12.04 («precise») machine where tarantool had been installed in a
/usr subdirectory, and a copy of PostgreSQL had been installed on /usr. The PostgreSQL server instance is

already running on the local host 127.0.0.1.

$ # Check that the include subdirectory exists

$ # by looking for /usr/include/postgresql/libpg-fe-h.

$ [ -f /usr/include/postgresql/libpq-fe.h ] && echo "OK" || echo "Error"
0K

$ # Check that the library subdirectory ezists and has the necessary .so file.

$ [ -f /usr/1ib/x86_64-1linux-gnu/libpq.so 1 && echo "OK" || echo "Error"
0K

$ # Check that the psql client can connect using some factory defaults:
$ # port = 5432, user = 'postgres’, user password = 'postgres’,

$ # database = 'postgres'. These can be changed, provided one changes

$ # them in all places. Insert a row in database postgres, and quit.

$ psql -h 127.0.0.1 -p 5432 -U postgres -d postgres

Password for user postgres:

psql (9.3.10)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

postgres=# CREATE TABLE test (s1 INT, s2 VARCHAR(50));
CREATE TABLE

postgres=# INSERT INTO test VALUES (1,'PostgreSQL row');
INSERT O 1

postgres=# \q

$

$ # Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting uplalready"
Setting up luarocks (2.0.8-2)

$ # Set up the Tarantool rock list in ~/.luarocks,

$ # following instructions at rocks.tarantool.org

$ mkdir ~/.luarocks

$ echo "rocks_servers = {[[http://rocks.tarantool.org/]J1}" >> \
~/.luarocks/config.lua

$ # Ensure that the next "install" will get files from Tarantool master
$ # repository. The resultant display %is normal for Ubuntu 12.04 precise
$ cat /etc/apt/sources.list.d/tarantool.list

deb http://tarantool.org/dist/1.7/ubuntu/ precise main

deb-src http://tarantool.org/dist/1.7/ubuntu/ precise main

$ # Install tarantool-dev. The displayed line should show version = 1.7
$ sudo apt-get -y install tarantool-dev | grep -E "Setting uplalready"
Setting up tarantool-dev (1.7.0.222.g48b98bb"precise-1)

$

(continues on next page)

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM

267



https://github.com/tarantool/pg

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

$ # Use luarocks to install locally, that is, relative to $HOME
$ luarocks install pg POSTGRESOL_LIBDIR=/usr/lib/x86_64-linux-gnu --local
Installing http://rocks.tarantool.org/pg-scm-1.rockspec...

(more info about building the Tarantool/PostgreSQL driver appears here)
pg scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at

$ find ~/.luarocks -name "driver.so"
~/.luarocks/1ib/lua/5.1/pg/driver.so

$ # Change directory to a directory which can be used for

$ # temporary tests. For this ezample we assume that the

$ # name of this directory is $HOME/tarantool_sandbozx.

$ # (Change "$HOME" to whatever is the user's actual

$ # home directory for the machine that's used for this test.)
cd $HOME/tarantool_sandbox

$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool

tarantool: version 1.7.0-412-g803b15c
type 'help' for interactive help
tarantool>

Configure tarantool and load pg module. Make sure that tarantool doesn’t reply «errors for the call to
«require()».

tarantool> box.cfg{}

tarantool> pg = require('pg')

Create a Lua function that will connect to a PostgreSQL server, (using some factory default values for the
port and user and password), retrieve one row, and display the row. For explanations of the statement types
used here, read the Lua tutorial earlier in the Tarantool user manual.

tarantool> function pg_select ()
> local conn = pg.connect ({
host = '127.0.0.1",
port = 5432,
user = 'postgres',
password = 'postgres',
db = 'postgres'
b
local test = conn:execute('SELECT # FROM test WHERE sl = 1')
local row = "'
for i, card in pairs(test) do
row = row .. card.s2 .. ' '
end
conn:close()
return row

V VVV V VYV VVYVYVVYVYV

end

(continues on next page)

268 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> pg_select()

- 'PostgreSQL row '

Observe the result. It contains «PostgreSQL rows. So this is the row that was inserted into the PostgreSQL
database. And now it’s been selected with the Tarantool client.

6.2.2 Mopynb expirationd

For a commercial-grade example of a Lua rock that works with Tarantool, let us look at expirationd, which
Tarantool supplies on GitHub with an Artistic license. The expirationd.lua program is lengthy (about 500
lines), so here we will only highlight the matters that will be enhanced by studying the full source later.

task.worker_fiber = fiber.create(worker_loop, task)
log.info("expiration: task Jq restarted", task.name)

fiber.sleep(expirationd.constants.check_interval)

Whenever one hears «daemons in Tarantool, one should suspect it’s being done with a fiber. The program
is making a fiber and turning control over to it so it runs occasionally, goes to sleep, then comes back for
more.

for _, tuple in scan_space.index[0]:pairs(nil, {iterator = box.index.ALL}) do

if task.is_tuple_expired(task.args, tuple) then
task.expired_tuples_count = task.expired_tuples_count + 1
task.process_expired_tuple(task.space_id, task.args, tuple)

The «for» instruction can be translated as «iterate through the index of the space that is being scannedy,
and within it, if the tuple is «expired» (for example, if the tuple has a timestamp field which is less than the
current time), process the tuple as an expired tuple.

-- default process_exzpired_tuple function
local function default_tuple_drop(space_id, args, tuple)
local key = fun.map(
function(x) return tuple[x.fieldno] end,
box.space[space_id] .index [0] .parts
) :totable()
box.space[space_id] :delete (key)
end

Ultimately the tuple-expiry process leads to default_tuple_drop() which does a «delete» of a tuple from
its original space. First the fun fun module is used, specifically fun.map. Remembering that index|0] is
always the space’s primary key, and index|0].parts[N].fieldno is always the field number for key part N,
fun.map() is creating a table from the primary-key values of the tuple. The result of fun.map() is passed to
space_ object:delete().

local function expirationd_run_task(name, space_id, is_tuple_expired, options)

At this point, if the above explanation is worthwhile, it’s clear that expirationd.lua starts a background
routine (fiber) which iterates through all the tuples in a space, sleeps cooperatively so that other fibers can

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 269



https://github.com/tarantool/expirationd/blob/master/expirationd.lua
http://rtsisyk.github.io/luafun/transformations.html#fun.map

Tarantool, Beinyck 1.7.5

operate at the same time, and - whenever it finds a tuple that has expired - deletes it from this space. Now
the «expirationd_run_task()» function can be used in a test which creates sample data, lets the daemon
run for a while, and prints results.

For those who like to see things run, here are the exact steps to get expirationd through the test.

1. Get expirationd.lua. There are standard ways - it is after all part of a standard rock - but for this
purpose just copy the contents of expirationd.lua to a default directory.

2. Start the Tarantool server as described before.

3. Execute these requests:

fiber = require('fiber')
expd = require('expirationd')
box.cfg{}
e = box.schema.space.create('expirationd_test')
e:create_index('primary', {type = 'hash', parts = {1, 'unsigned'l}})
e:replace{l, fiber.time() + 3}
e:replace{2, fiber.time() + 30}
function is_tuple_expired(args, tuple)
if (tuple[2] < fiber.time()) then return true end
return false
end
expd.run_task('expirationd_test', e.id, is_tuple_expired)
retval = {}
fiber.sleep(2)
expd.task_stats()
fiber.sleep(2)
expd.task_stats()
expd.kill_task('expirationd_test')
e:drop()
os.exit ()

The database-specific requests (cfg, space.create, create_index) should already be familiar.

The function which will be supplied to expirationd is is_tuple expired, which is saying «if the second field
of the tuple is less than the current time , then return true, otherwise return false».

The key for getting the rock rolling is expd = require('expirationd'). The «requires» function is what
reads in the program; it will appear in many later examples in this manual, when it’s necessary to get a
module that’s not part of the Tarantool kernel. After the Lua variable expd has been assigned the value of
the expirationd module, it’s possible to invoke the module’s run_task() function.

After sleeping for two seconds, when the task has had time to do its iterations through the spaces, expd.
task_stats() will print out a report showing how many tuples have expired — «expired count: 0». After
sleeping for two more seconds, expd.task_stats() will print out a report showing how many tuples have
expired — «expired count: 1». This shows that the is_tuple expired() function eventually returned «true»
for one of the tuples, because its timestamp field was more than three seconds old.

Of course, expirationd can be customized to do different things by passing different parameters, which will
be evident after looking in more detail at the source code.

6.2.3 Mopynb shard

With sharding, the tuples of a tuple set are distributed to multiple nodes, with a Tarantool database server
instance on each node. With this arrangement, each instance is handling only a subset of the total data, so
larger loads can be handled by simply adding more computers to a network.

270 Fnasa 6. Cnpasou4Huku



https://luarocks.org/modules/rtsisyk/expirationd
https://github.com/tarantool/expirationd/blob/master/expirationd.lua

Tarantool, Beinyck 1.7.5

The Tarantool shard module has facilities for creating shards, as well as analogues for the data-manipulation
functions of the box library (select, insert, replace, update, delete).

First some terminology:

Consistent hash The shard module distributes according to a hash algorithm, that is, it applies a hash
function to a tuple’s primary-key value in order to decide which shard the tuple belongs to. The hash
function is consistent so that changing the number of servers will not affect results for many keys. The
specific hash function that the shard module uses is digest.guava in the digest module.

Instance A currently-running in-memory copy of the Tarantool server, sometimes called a «server instances.
Usually each shard is associated with one instance, or, if both sharding and replicating are going on,
each shard is associated with one replica set.

Queue A temporary list of recent update requests. Sometimes called «batchings. Since updates to a sharded
database can be slow, it may speed up throughput to send requests to a queue rather than wait for
the update to finish on every node. The shard module has functions for adding requests to the queue,
which it will process without further intervention. Queuing is optional.

Redundancy The number of replicated data copies in each shard.
Replica An instance which is part of a replica set.

Replica set Often a single shard is associated with a single instance; however, often the shard is replicated.
When a shard is replicated, the multiple instances («replicas»), which handle the shard’s replicated
data, are a «replica set».

Replicated data A complete copy of the data. The shard module handles both sharding and replication.
One shard can contain one or more replicated data copies. When a write occurs, the write is attempted
on every replicated data copy in turn. The shard module does not use the built-in replication feature.

Shard A subset of the tuples in the database partitioned according to the value returned by the consistent
hash function. Usually each shard is on a separate node, or a separate set of nodes (for example if
redundancy = 3 then the shard will be on three nodes).

Zone A physical location where the nodes are closely connected, with the same security and backup and
access points. The simplest example of a zone is a single computer with a single Tarantool-server
instance. A shard’s replicated data copies should be in different zones.

The shard package is distributed separately from the main tarantool package. To acquire it, do a separate
installation:

e with Tarantool 1.7.44, say:

’$ tarantoolctl rocks install shard

e install with yum or apt, for example on Ubuntu say:

’$ sudo apt-get install tarantool-shard

e or download from GitHub tarantool/shard and use the Lua files as described in the README.
Then, before using the module, say shard = require('shard').
The most important function is:
shard.init (shard-configuration)
This must be called for every shard.
The shard configuration is a table with these fields:

e servers (a list of URIs of nodes and the zones the nodes are in)

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 271


https://en.wikipedia.org/wiki/Consistent_hashing
https://github.com/tarantool/shard

Tarantool, Beinyck 1.7.5

Llisten* port specified by boz.cfg)

Possible errors:

e redundancy should not be greater than the number of servers;

e the servers must be alive;

password (the password for the login)

redundancy (a number, minimum 1)

login (the user name which applies for accessing via the shard module)

binary (a port number that this host is listening on, on the current host, (distinguishable from the

e two replicated data copies of the same shard should not be in the same zone.

Example: shard.init syntax for one shard

e The number of replicated data copies per shard (redundancy) is 3.

e The number of instances is 3.

e The shard module will conclude that there is only one shard.

tarantool> cfg = {
servers

>

V V V V V V V V V

{

{

{
1,

uri
uri
uri

login =

redundancy = '3',

=1

= 'localhost:33131', zone =

= 'localhost:33132', zone =

= 'localhost:33133', zone =

'test_user',
password = 'pass',

binary = 33131,

tarantool> shard.init(cfg)

! }’
191 }’
'3 }

Example: shard.init syntax for three shards

This describes three shards. Each shard has two replicated data copies. Since the number of servers is 7, and
the number of replicated data copies per shard is 2, and dividing 7 / 2 leaves a remainder of 1, one of the
servers will not be used. This is not necessarily an error, because perhaps one of the servers in the list is not

alive.

tarantool> cfg = {

>

V V. V V V V V

servers

{

A A A e A

uri
uri
uri
uri
uri
uri
uri

= 'hostl:
= 'host2:
= 'host3:
:33131°',
= 'hostbh:
= 'host6:
= 'host7:

= 'host4

33131"',
33131"',
33131"',

33131°',
33131"',
33131"',

zone =

zone
zone
zone
zone
zone
zone

Ill
1o
13!
I4|
5!
'6!
I?l

R e s e el e o]

(continues on next page)

272

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

},

login

vV V V V V V

'test_user',

password = 'pass',
redundancy = '2',
binary = 33131,

tarantool> shard.init(cfg)

Every data-access function in the box module has an analogue in the shard module:

shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]

.insert{...}

.replace{...}
.delete{...}
.selectd{...}
.update{...}

.auto_increment{...}

For example, to insert in table T in a sharded database you simply say shard.T:insert{...} instead of
box.space.T:insert{...}

A shard.T:select{} request without a primary key will search all shards.

Every queued data-access function has an analogue in the shard module:

shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]
shard[space-name]

.q_insert{...}
.q_replaceq{...}
.q_deleteq{...}
.q_selectq{...}
.q_updateq{...}
.q_auto_increment{...}

The user must add an operation_id. For details of queued data-access functions, and of maintenance-related
functions, see the README.

Example: shard, minimal configuration

There is only one shard, and that shard contains only one replicated data copy. So this isn’t illustrating the
features of either replication or sharding, it’s only illustrating what the syntax is, and what the messages
look like, that anyone could duplicate in a minute or two with the magic of cut-and-paste.

$ mkdir ~/tarantool_sandbox_1

$ cd ~/tarantool_sandbox_1

$ rm -r *.snap

$ rm -r *.xlog

$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3301}

tarantool> box.schema.space.create('tester')

tarantool> box.space.tester:create_index('primary', {})

tarantool> box.schema.user.create('test_user', {password = 'pass'})

tarantool> box.schema.user.grant('test_user', 'read,write,execute', 'universe')
tarantool> cfg = {

(continues on next page)

273

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM



https://github.com/tarantool/shard

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

> servers = {

> { uri = 'localhost:3301', zone = '1' },
> 3},

> login = 'test_user';

> password = 'pass';

>

redundancy = 1;

>  binary = 3301;

>}
tarantool> shard = require('shard')
tarantool> shard.init(cfg)
tarantool> -- Now put something in ...
tarantool> shard.tester:insert{1, 'Tuple #1'}

If you cut and paste the above, then the result, showing only the requests and responses for shard.init and
shard.tester, should look approximately like this:

< o2

tarantool> shard.init(cfg)

2017-09-06 ... I> Sharding initialization started...
2017-09-06 ... I> establishing connection to cluster servers...
2017-09-06 ... I> connected to all servers
2017-09-06 ... I> started

2017-09-06 ... I> redundancy = 1

2017-09-06 ... I> Adding localhost:3301 to shard 1
2017-09-06 ... I> shards =1

2017-09-06 ... I> Done

- true

tarantool> -- Now put something in ...

tarantool> shard.tester:insert{l, 'Tuple #1'}

- - [1, '"Tuple #1']

Example: shard, scaling out

There are two shards, and each shard contains one replicated data copy. This requires two nodes. In real life
the two nodes would be two computers, but for this illustration the requirement is merely: start two shells,
which we’ll call Terminal#1 and Terminal #2.

B nepsom repmunasne (Terminal #1) Beenure:

$ mkdir ~/tarantool_sandbox_1

$ cd ~/tarantool_sandbox_1

$ rm -r *.snap

$ rm -r *.xlog

$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3301}

tarantool> box.schema.space.create('tester')

tarantool> box.space.tester:create_index('primary', {})

tarantool> box.schema.user.create('test_user', {password = 'pass'})

(continues on next page)

274 Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

tarantool> box.schema.user.grant('test_user', 'read,write,execute', 'universe')
tarantool> console = require('console')
tarantool> cfg = {

> servers = {

> { uri = 'localhost:3301', zone = '1' },
> { uri = 'localhost:3302', zone = '2' },
> 3},

> login = 'test_user',

> password = 'pass',

>  redundancy = 1,

> binary = 3301,

>}

tarantool> shard = require('shard')
tarantool> shard.init(cfg)

tarantool> -- Now put something in ...
tarantool> shard.tester:insert{l, 'Tuple #1'}

On Terminal #2, say:

$ mkdir ~/tarantool_sandbox_2

$ cd ~/tarantool_sandbox_2

$ rm -r *.snap

$ rm -r *.xlog

$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3302}

tarantool> box.schema.space.create('tester')

tarantool> box.space.tester:create_index('primary', {3})

tarantool> box.schema.user.create('test_user', {password = 'pass'})

tarantool> box.schema.user.grant('test_user', 'read,write,execute', 'universe')
tarantool> console = require('console')

tarantool> cfg = {

> servers = {

> { uri = 'localhost:3301', zone = '1' };
> { uri = 'localhost:3302', zone = '2' };
> )}

> login = 'test_user';

> password = 'pass';

>  redundancy = 1;

>  binary = 3302;

>}

tarantool> shard = require('shard')
tarantool> shard.init(cfg)

tarantool> -- Now get something out ...
tarantool> shard.tester:select{1}

What will appear on Terminal #1 is: a loop of error messages saying «Connection refused» and «server check
failure». This is normal. It will go on until Terminal #2 process starts.

What will appear on Terminal #2, at the end, should look like this:

tarantool> shard.tester:select{1}

- - - [1, '"Tuple #1']

This shows that what was inserted by Terminal #1 can be selected by Terminal #2, via the shard module.

6.2. CnpaBo4HuK Mo CTOPOHHUM BubBMOTEKaM 275




Tarantool, Beinyck 1.7.5

For details, see the README.

6.2.4 Module tdb

The Tarantool Debugger (abbreviation = tdb) can be used with any Lua program. The operational features
include: setting breakpoints, examining variables, going forward one line at a time, backtracing, and showing
information about fibers. The display features include: using different colors for different situations, including
line numbers, and adding hints.

It is not supplied as part of the Tarantool repository; it must be installed separately. Here is the usual way:

git clone --recursive https://github.com/Sulverus/tdb
cd tdb

make

sudo make install prefix=/usr/share/tarantool/

To initiate tdb within a Lua program and set a breakpoint, edit the program to include these lines:

tdb = require('tdb')
tdb.start ()

To start the debugging session, execute the Lua program. Execution will stop at the breakpoint, and it will
be possible to enter debugging commands.

Debugger Commands

bt Backtrace — show the stack (in red), with program /function names and line numbers of whatever has
been invoked to reach the current line.

¢ Continue till next breakpoint or till program ends.

e Enter evaluation mode. When the program is in evaluation mode, one can execute certain Lua statements
that would be valid in the context. This is particularly useful for displaying the values of the program’s
variables. Other debugger commands will not work until one exits evaluation mode by typing -e.

-e Exit evaluation mode.

f Display the fiber id, the program name, and the percentage of memory used, as a table.

n Go to the next line, skipping over any function calls.

globals Display names of variables or functions which are defined as global.

h Display a list of debugger commands.

locals Display names and values of variables, for example the control variables of a Lua «fors statement.

q Quit immediately.

Example Session

Put the following program in a default directory and call it «example.luas:

tdb = require('tdb')
tdb.start ()

i=1

j=al ..

print ('end of program')

276 Fnasa 6. Cnpasou4Huku



https://github.com/tarantool/shard

Tarantool, Beinyck 1.7.5

Now start Tarantool, using example.lua as the initialization file
$ tarantool example.lua
The screen should now look like this:

$ tarantool example.lua

(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua

(TDB) [example.lua]

(TDB) 3: i =1

(TDB) >

Debugger prompts are blue, debugger hints and information are green, and the current line — line 3 of
example.lua — is the default color. Now enter six debugger commands:

-- go to nexzt line
go to next line
-- enter evaluation mode

o0 BB
I
I

-- display 7
-e -- exit evaluation mode
q -- quit

The screen should now look like this:

$ tarantool example.lua

(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua

(TDB) [example.lua]

(TDB) 3: i =1

(TDB)> n

(TDB) 4: j = 'a' .. 1
(TDB)> n

(TDB) 5

(TDB)> e

(TDB) Eval mode ON
(TDB)> j

J al

(TDB)> -e

(TDB) Eval mode OFF
(TDB)> q

: print('end of program')

Another debugger example can be found here.

6.3 CnpaBo4HUK NO HACTpoiike

This reference covers all options and parameters which can be set for Tarantool on the command line or in
an initialization file.

Tarantool is started by entering the following command:

$ tarantool

# OR

$ tarantool options

# OR

$ tarantool lua-initialization-file [ arguments ]

6.3. CnpaBo4Huk no HacTpoiike 277



https://github.com/sulverus/tdb

Tarantool, Beinyck 1.7.5

6.3.1 Onunn KOMHAHAHOW CTPOKN
-h, --help
Print an annotated list of all available options and exit.

-V, --version
Print product name and version, for example:

$ ./tarantool --version
Tarantool 1.7.0-1216-g73f7154
Target: Linux-x86_64-Debug

In this example:
“Tarantool” is the name of the reusable asynchronous networking programming framework.

The 3-number version follows the standard <major>-<minor>-<patch> scheme, in which <major>
number is changed only rarely, <minor> is incremented for each new milestone and indicates possible
incompatible changes, and <patch> stands for the number of bug fix releases made after the start of
the milestone. For non-released versions only, there may be a commit number and commit SHA1 to
indicate how much this particular build has diverged from the last release.

“Target” is the platform tarantool was built on. Some platform-specific details may follow this line.

IIpumeuanme: Tarantool uses git describe to produce its version id, and this id can be used at any
time to check out the corresponding source from our git repository.

6.3.2 YHusepcasnbHblii kog pecypca (URI)

Some configuration parameters and some functions depend on a URIL, or «Universal Resource Identifiers.
The URI string format is similar to the generic syntax for a URI schema. So it may contain (in order)
a user name for login, a password, a host name or host IP address, and a port number. Only the port
number is always mandatory. The password is mandatory if the user name is specified, unless the user name
is ,guest”. So, formally, the URI syntax is [host:]port or [username:password@lhost:port. If host is
omitted, then ,0.0.0.0“ or ,,[::]“ is assumed, meaning respectively any IPv4 address or any IPv6 address, on
the local machine. If username:password is omitted, then ,guest” is assumed. Some examples:

URI fragment Mpumep

port 3301

host:port, 127.0.0.1:3301
username:password@host:port | notguest:sesame@mail.ru:3301

In certain circumstances a Unix domain socket may be used where a URI is expected, for example
«unix/:/tmp/unix_domain_socket.sock» or simply «/tmp/unix domain_socket.sock».

A method for parsing URIs is illustrated in Module uri.

6.3.3 ®aiin nHnyrnannsauunuun

If the command to start Tarantool includes lua-initialization-file, then Tarantool begins by invoking the Lua
program in the file, which by convention may have the name «script.lua». The Lua program may get
further arguments from the command line or may use operating-system functions, such as getenv(). The

278 Fnasa 6. Cnpasou4Huku


http://www.kernel.org/pub/software/scm/git/docs/git-describe.html
http://github.com/tarantool/tarantool.git
http://en.wikipedia.org/wiki/URI_scheme#Generic_syntax

Tarantool, Beinyck 1.7.5

Lua program almost always begins by invoking box.cfg(), if the database server will be used or if ports
need to be opened. For example, suppose script.lua contains the lines

#!/usr/bin/env tarantool

box.cfg{
listen = os.getenv("LISTEN_URI"),
memtx_memory = 100000,
pid_file = "tarantool.pid",
rows_per_wal = 50

}

print('Starting ', arg[i])

and suppose the environment variable LISTEN _URI contains 3301, and suppose the command line is ~/
tarantool/src/tarantool script.lua ARG. Then the screen might look like this:

$ export LISTEN_URI=3301
$ ~/tarantool/src/tarantool script.lua ARG
. main/101/script.lua C> version 1.7.0-1216-g73£7154
. main/101/script.lua C> log level 5
. main/101/script.lua I> mapping 107374184 bytes for a shared arena...
.. main/101/script.lua I> recovery start
.. main/101/script.lua I> recovering from './00000000000000000000.snap’
. main/101/script.lua I> primary: bound to 0.0.0.0:3301
... main/102/leave_local_hot_standby I> ready to accept requests
Starting ARG
. main C> entering the event loop

If you wish to start an interactive session on the same terminal after initialization is complete, you can use
console.start().

6.3.4 TapameTpbl KOHcUrypayum

Configuration parameters have the form:
box.cfg{[key = value [, key = value ...]]1}

Since box.cfg may contain many configuration parameters and since some of the parameters (such as
directory addresses) are semi-permanent, it’s best to keep box.cfg in a Lua file. Typically this Lua file is
the initialization file which is specified on the tarantool command line.

Most configuration parameters are for allocating resources, opening ports, and specifying database behavior.
All parameters are optional. A few parameters are dynamic, that is, they can be changed at runtime by
calling box.cfg{} a second time.

To see all the non-null parameters, say box.cfg (no parentheses). To see a particular parameter, for example
the listen address, say box.cfg.listen.

The following sections describe all parameters for basic operation, for storage, for binary logging and
snapshots, for replication, for networking, and for logging.

Basic parameters

e background
o custom_ proc_ title

e listen

6.3. CnpaBo4Huk no HacTpoiike 279




Tarantool, Beinyck 1.7.5

memtx_ dir
pid_ file

read_ only
vinyl_ dir
vinyl_ timeout
username
wal__dir
work_ dir

worker__pool_threads

background

Run the server as a background task. The log and pid_ file parameters must be non-null for this to
work.

Type: boolean
Default: false
Dynamic: no

custom_proc_title

Add the given string to the server’s process title (what’s shown in the COMMAND column for ps -ef
and top -c commands).

For example, ordinarily ps -ef shows the Tarantool server process thus:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:13 tarantool <running>

But if the configuration parameters include custom_proc_title='sessions' then the output looks
like:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:16 tarantool <running>: sessions

Type: string
Default: null
Dynamic: yes

listen

The read/write data port number or URI (Universal Resource Identifier) string. Has no default value,
so must be specified if connections will occur from remote clients that do not use the “admin port”.
Connections made with 1isten = URI are called «binary port» or «binary protocol» connections.

A typical value is 3301.

IIpumeuanune: A replica also binds to this port, and accepts connections, but these connections can
only serve reads until the replica becomes a master.

280

Fnasa 6. Cnpasou4Huku




Tarantool, Beinyck 1.7.5

Type: integer or string
Default: null
Dynamic: yes

memtx_dir
A directory where memtx stores snapshot (.snap) files. Can be relative to work_ dir. If not specified,
defaults to work_dir. See also wal dir.

Type: string
Default: «.»
Dynamic: no

pid_file
Store the process id in this file. Can be relative to work_ dir. A typical value is “tarantool.pid”.

Type: string
Default: null
Dynamic: no

read_only
Say box.cfg{read_only=true...} to put the server instance in read-only mode. After this, any
requests that try to change persistent data will fail with error ER_READONLY. Read-only mode should
be used for master-replica replication. Read-only mode does not affect data-change requests for spaces
defined as temporary. Although read-only mode prevents the server from writing to the WAL, it does
not prevent writing diagnostics with the log module.

Type: boolean
Default: false
Dynamic: yes

vinyl_dir
A directory where vinyl files or subdirectories will be stored. Can be relative to work _dir. If not
specified, defaults to work_dir.

Type: string
Default: «.»
Dynamic: no

vinyl_timeout
The vinyl storage engine has a scheduler which does compaction. When vinyl is low on available
memory, the compaction scheduler may be unable to keep up with incoming update requests. In that
situation, queries may time out after vinyl_timeout seconds. This should rarely occur, since normally
vinyl would throttle inserts when it is running low on compaction bandwidth.

6.3. CnpaBo4Huk no HacTpoiike 281



Tarantool, Beinyck 1.7.5

Type: float
Default: 60
Dynamic: yes

username
UNIX user name to switch to after start.

Type: string
Default: null
Dynamic: no

wal_dir
A directory where write-ahead log (.xlog) files are stored. Can be relative to work_ dir. Sometimes
wal_dir and memtz_ dir are specified with different values, so that write-ahead log files and snapshot
files can be stored on different disks. If not specified, defaults to work_dir.

Type: string
Default: «.»
Dynamic: no

work_dir
A directory where database working files will be stored. The server instance switches to work_dir with
chdir(2) after start. Can be relative to the current directory. If not specified, defaults to the current
directory. Other directory parameters may be relative to work_dir, for example:

box.cfg{
work_dir = '/home/user/A',
wal_dir = 'B',
memtx_dir = 'C'

}

will put xlog files in /home/user/A/B, snapshot files in /home/user/A/C, and all other files or
subdirectories in /home/user/A.

Type: string
Default: null
Dynamic: no

worker_pool_threads
The maximum number of threads to use during execution of certain internal processes (currently
socket.getaddrinfo() and coio_ call()).

Type: integer
Default: 4
Dynamic: yes

282 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

Configuring the storage

memis_memory
memtx_max_tuple_size
memtz_min_ tuple size
vinyl_ bloom_ fpr

vinyl_ cache
vinyl_max_tuple_size
vinyl_memory
vinyl_page _ size
vinyl_range_ size
vinyl_run_ count_per_level
vinyl_run_ size_ ratio
vinyl_read_ threads

vinyl_write_ threads

memtx_memory

How much memory Tarantool allocates to actually store tuples, in bytes. When the limit is reached,
INSERT or UPDATE requests begin failing with error ER_MEMORY_ISSUE. The server does not go
beyond the memtx_memory limit to allocate tuples, but there is additional memory used to store indexes
and connection information. Depending on actual configuration and workload, Tarantool can consume
up to 20% more than the memtx_memory limit.

Type: float
Default: 256 * 1024 * 1024 = 268435456
Dynamic: no

memtx_max_tuple_size

Size of the largest allocation unit, in bytes, for the memtx storage engine. It can be increased if it is
necessary to store large tuples. See also: vinyl maz_tuple_ size.

Type: integer
Default: 1024 * 1024 = 1048576
Dynamic: no

memtx_min_tuple_size

Size of the smallest allocation unit, in bytes. It can be decreased if most of the tuples are very small.
The value must be between 8 and 1048280 inclusive.

Type: integer
Default: 16
Dynamic: no

6.3.

CnpaBo4HuK no Hacrpoiike 283



Tarantool, Beinyck 1.7.5

vinyl_bloom_fpr
Bloom filter false positive rate — the suitable probability of the bloom filter to give a wrong result. The
vinyl_bloom_£fpr setting can be overridden by a create_index option.

Type: float
Default = 0.05
Dynamic: no

vinyl_cache
The maximal cache size for the vinyl storage engine, in bytes.

Type: integer
Default = 128 * 1024 * 1024 = 134217728
Dynamic: no

vinyl_max_tuple_size
Size of the largest allocation unit, in bytes, for the vinyl storage engine. It can be increased if it is
necessary to store large tuples. See also: memtx_maz_tuple size.

Type: integer
Default: 1024 * 1024 = 1048576
Dynamic: no

vinyl_memory
The maximum number of in-memory bytes that vinyl uses.

Type: integer
Default = 128 * 1024 * 1024 = 134217728
Dynamic: no

vinyl_page_size
Page size, in bytes. Page is a read/write unit for vinyl disk operations. The vinyl_page_size setting
can be overridden by a create index option.

Type: integer
Default = 8 * 1024 = 8192
Dynamic: no

vinyl_range_size
The maximal range size for vinyl, in bytes. The vinyl_range_size setting can be overridden by a
create_indez option.

284 Fnasa 6. Cnpasou4Huku


https://en.wikipedia.org/wiki/Bloom_filter

Tarantool, Beinyck 1.7.5

Type: integer
Default = 1024 * 1024 * 1024 = 1073741824
Dynamic: no

vinyl_run_count_per_level
The maximal number of runs per level in vinyl LSM tree. If this number is exceeded, a new level is
created. This can be overridden by a create_ index option.

Type: integer
Default = 2
Dynamic: no

vinyl_run_size_ratio
Ratio between the sizes of different levels in the LSM tree. The vinyl_run_size_ratio setting can be
overridden by a create_ index option.

Type: float
Default = 3.5
Dynamic: no

vinyl_read_threads
The maximum number of read threads that vinyl can use for some concurrent operations, such as I/O
and compression.

Type: integer
Default =1
Dynamic: no

vinyl_write_threads
The maximum number of write threads that vinyl can use for some concurrent operations, such as I/O
and compression.

Type: integer
Default = 2
Dynamic: no

Checkpoint daemon

o checkpoint_ count
e checkpoint_interval

The checkpoint daemon is a fiber which is constantly running. At intervals, it may make new snapshot (.snap)
files and then may delete old snapshot files. If the checkpoint daemon deletes an old snapshot file, then it

6.3. CnpaBo4Huk no HacTpoiike 285



Tarantool, Beinyck 1.7.5

will also delete any write-ahead log (.zlog) files which are older than the snapshot file and which contain
information that is present in the snapshot file. It will also delete obsolete vinyl .run files.

Exceptions: the checkpoint daemon will not delete a file if a backup is ongoing and the file has not been
backed up (see «Hot backup»), or if replication is ongoing and the file has not been relayed to a replica (see
«Replication architectures), or if a replica is connecting.

The checkpoint_interval and checkpoint_count configuration settings determine how long the intervals are,
and how many snapshots should exist before deletions occur.

checkpoint_interval
The interval between actions by the checkpoint daemon, in seconds. If checkpoint_interval is set to
a value greater than zero, and there is activity which causes change to a database, then the checkpoint
daemon will call boz.snapshot every checkpoint_interval seconds, creating a new snapshot file each
time. If checkpoint_interval is set to zero, then the checkpoint daemon is disabled.

Hanpumep:

box.cfg{checkpoint_interval=60}

will cause the checkpoint daemon to create a new database snapshot once per minute, if there is activity.

Type: integer
Default: 3600 (one hour)
Dynamic: yes

checkpoint_count
The maximum number of snapshots that may exist on the memtz_ dir directory before the checkpoint
daemon will delete old snapshots. If checkpoint_count equals zero, then the checkpoint daemon does
not delete old snapshots. For example:

box.cfg{
checkpoint_interval = 3600,
checkpoint_count = 10

}

will cause the checkpoint daemon to create a new snapshot each hour until it has created ten snapshots.
After that, it will delete the oldest snapshot (and any associated write-ahead-log files) after creating a
new one.

Type: integer
Default: 2
Dynamic: yes

Binary logging and snapshots

o force recovery,
e rows_per wal,
e snap_to_rate_ limit,

e wal_mode,

286 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

o wal dir_rescan_ delay

force_recovery
If force_recovery equals true, Tarantool tries to continue if there is an error while reading a snapshot
file (at server instance start) or a write-ahead log file (at server instance start or when applying an
update at a replica): skips invalid records, reads as much data as possible and re-builds the file.

Otherwise, Tarantool aborts recovery on read errors.

Type: boolean
Default: true
Dynamic: no

rows_per_wal
How many log records to store in a single write-ahead log file. When this limit is reached, Tarantool
creates another WAL file named <first-lsn-in-wal>.xlog. This can be useful for simple rsync-based
backups.

Type: integer
Default: 500000
Dynamic: no

snap_io_rate_limit
Reduce the throttling effect of boz.snapshot on INSERT /UPDATE/DELETE performance by setting
a limit on how many megabytes per second it can write to disk. The same can be achieved by splitting
wal_ dir and memtx_ dir locations and moving snapshots to a separate disk.

Type: float
Default: null
Dynamic: yes

wal_mode
Specify fiber-WAL-disk synchronization mode as:

e none: write-ahead log is not maintained;
e write: fibers wait for their data to be written to the write-ahead log (no fsync(2));

e fsync: fibers wait for their data, fsync(2) follows each write(2);

Type: string
Default: «write»
Dynamic: yes

wal_dir_rescan_delay
Number of seconds between periodic scans of the write-ahead-log file directory, when checking for
changes to write-ahead-log files for the sake of replication or hot standby.

6.3. CnpaBo4Huk no HacTpoiike 287



Tarantool, Beinyck 1.7.5

Type: float
Default: 2
Dynamic: no

Hot standby

hot_standby

Whether to start the server in hot standby mode.
Hot standby is a feature which provides a simple form of failover without replication.

The expectation is that there will be two instances of the server using the same configuration. The first
one to start will be the «primarys instance. The second one to start will be the «standby» instance.

To initiate the standby instance, start a second instance of the Tarantool server on the same computer
with the same boz.cfg configuration settings — including the same directories and same non-null URIs —
and with the additional configuration setting hot_standby = true. Expect to see a notification ending
with the words I> Entering hot standby mode. This is fine. It means that the standby instance is
ready to take over if the primary instance goes down.

The standby instance will initialize and will try to take a lock on wal_ dir, but will fail because the
primary instance has made a lock on wal_dir. So the standby instance goes into a loop, reading the
write ahead log which the primary instance is writing (so the two instances are always in synch), and
trying to take the lock. If the primary instance goes down for any reason, the lock will be released. in
this case, the standby instance will succeed in taking the lock, will connect on the listen address and
will become the primary instance. Expect to see a notification ending with the words I> ready to
accept requests.

Thus there is no noticeable downtime if the primary instance goes down.
Hot standby feature has no effect:

e if wal dir rescan_delay = a large number (on Mac OS and FreeBSD); on these platforms, it is
designed so that the loop repeats every wal_dir_rescan_delay seconds.

o if wal mode = ,none”; it is designed to work with wal_mode = 'write' or wal_mode = 'fsync'.

o for spaces created with engine = ,winyl it is designed to work for spaces created with engine =
'memtx’'.

Type: boolean
Default: false
Dynamic: no

Pennukauyus

e replication

replication

If replication is not an empty string, the instance is considered to be a Tarantool replica. The replica
will try to connect to the master specified in replication with a URI (Universal Resource Identifier),
for example:

konstantin :secret_password@tarantool.org:3301

288

Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

If there is more than one replication source in a replica set, specify an array of URIs, for example:
(replace ,uri and ,uri2“ in this example with valid URIs):

box.cfg{ replication = { ,urti®, ,uri2“ } }

If one of the URIs is «selfs — that is, if one of the URISs is for the instance where box.cfg{} is being
executed on — then it is ignored. Thus it is possible to use the same replication specification on
multiple server instances.

The default user name is ‘guest’. A replica does not accept data-change requests on the listen port.
The replication parameter is dynamic, that is, to enter master mode, simply set replication to an
empty string and issue:

box.cfg{ replication = new-value }

Type: string
Default: null
Dynamic: yes

Networking

e i0_collect interval,
o readahead

io_collect_interval
The instance will sleep for io collect interval seconds between iterations of the event loop. Can be
used to reduce CPU load in deployments in which the number of client connections is large, but requests
are not so frequent (for example, each connection issues just a handful of requests per second).

Type: float
Default: null
Dynamic: yes

readahead
The size of the read-ahead buffer associated with a client connection. The larger the buffer, the more
memory an active connection consumes and the more requests can be read from the operating system
buffer in a single system call. The rule of thumb is to make sure the buffer can contain at least a few
dozen requests. Therefore, if a typical tuple in a request is large, e.g. a few kilobytes or even megabytes,
the read-ahead buffer size should be increased. If batched request processing is not used, it’s prudent
to leave this setting at its default.

Type: integer
Default: 16320
Dynamic: yes

Logging

o log level

6.3. CnpaBo4Huk no HacTpoiike 289



Tarantool, Beinyck 1.7.5

e log

e log mnonblock

e too_long threshold

log_level

log

What level of detail the log will have. There are seven levels:
e 1 — SYSERROR
e 2 — ERROR
e 3 — CRITICAL
e 4 — WARNING

e 5 — INFO
e 6 — VERBOSE
e 7 — DEBUG

By setting log_level, one can enable logging of all classes below or equal to the given level. Tarantool
prints its logs to the standard error stream by default, but this can be changed with the log configuration
parameter.

Type: integer
Default: 5
Dynamic: yes

Warning: prior to Tarantool 1.7.5 there were only six levels and DEBUG was level 6. Starting with
Tarantool 1.7.5 VERBOSE is level 6 and DEBUG is level 7. VERBOSE is a new level for monitoring repetitive
events which would cause too much log writing if INFO were used instead.

By default, Tarantool sends the log to the standard error stream (stderr). If log is specified, Tarantool
sends the log to a file, or to a pipe, or to the system logger.

Example setting:

box.cfg{log = 'tarantool.log'}
-- or
box.cfg{log = 'file: tarantool.log'}

This will open the file tarantool.log for output on the server’s default directory. If the log string
has no prefix or has the prefix «file:», then the string is interpreted as a file path.

Example setting:

box.cfg{log = '| cronolog tarantool.log'}
-- or
box.cfg{log = 'pipe: cronolog tarantool.log'}'

This will start the program cronolog when the server starts, and will send all log messages to the
standard input (stdin) of cronolog. If the log string begins with ,,| or has the prefix «pipe:», then the
string is interpreted as a Unix pipeline.

Example setting:

290

Fnasa 6. Cnpasou4Huku



https://linux.die.net/man/1/cronolog
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29

Tarantool, Beinyck 1.7.5

box.cfg{log = 'syslog:identity=tarantool'}
-- or

box.cfg{log = 'syslog:facility=user'}
-- or

box.cfg{log = 'syslog:identity=tarantool,facility=user'}

If the log string has the prefix «syslog:», then the string is interpreted as a message for the syslogd
program which normally is running in the background of any Unix-like platform. One can optionally
specify an identity, a facility, or both. The identity is an arbitrary string, default value =
tarantool, which will be placed at the beginning of all messages. The facility is an abbreviation for
the name of one of the syslog facilities, default value = user, which tell syslogd where the message
should go.

Possible values for facility are: auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, security,
syslog, user, uucp, local0, locall, local2, local3, local4, local5, local6, local7.

The facility setting is currently ignored but will be used in the future.

When logging to a file, Tarantool reopens the log on SIGHUP. When log is a program, its pid is saved
in the log.logger pid variable. You need to send it a signal to rotate logs.

Type: string
Default: null
Dynamic: no

log_nonblock
If log_nonblock equals true, Tarantool does not block on the log file descriptor when it’s not ready for
write, and drops the message instead. If log_level is high, and many messages go to the log file, setting
log_nonblock to true may improve logging performance at the cost of some log messages getting lost.

Type: boolean
Default: true
Dynamic: no

too_long_threshold
If processing a request takes longer than the given value (in seconds), warn about it in the log. Has
effect only if log level is more than or equal to 4 (WARNING).

Type: float
Default: 0.5
Dynamic: yes

Logging example

This will illustrate how «rotations works, that is, what happens when the server instance is writing to a log
and signals are used when archiving it.

Start with two terminal shells, Terminal #1 and Terminal #2.

6.3. CnpaBo4Huk no HacTpoiike 2901


http://www.rfc-base.org/txt/rfc-5424.txt
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/SIGHUP

Tarantool, Beinyck 1.7.5

On Terminal #1: start an interactive Tarantool session, then say the logging will go to Log_file, then put a
message «Log Line #1» in the log file:

box.cfg{log="'Log_file'}
log = require('log')
log.info('Log Line #1')

On Terminal #2: use mv so the log file is now named Log file.bak. The result of this is: the next log message
will go to Log _file.bak.

’mv Log_file Log_file.bak

On Terminal #1: put a message «Log Line #2» in the log file.

llog.info('Log Line #2')

On Terminal #2: use ps to find the process ID of the Tarantool instance.

’ps -A | grep tarantool

On Terminal #2: use kill -HUP to send a SIGHUP signal to the Tarantool instance. The result of this is:
Tarantool will open Log _file again, and the next log message will go to Log _file. (The same effect could be
accomplished by executing log.rotate() on the instance.)

kill -HUP process_id

On Terminal #1: put a message «Log Line #3» in the log file.

log.info('Log Line #3')

On Terminal #2: use less to examine files. Log file.bak will have these lines, except that the date and time
will depend on when the example is done:

2015-11-30 15:13:06.373 [27469] main/101/interactive I> Log Line #1°
2015-11-30 15:14:25.973 [27469] main/101/interactive I> Log Line #2°

and Log_ file will have

log file has been reopened
2015-11-30 15:15:32.629 [27469] main/101/interactive I> Log Line #3

Deprecated parameters

These parameters are deprecated since Tarantool version 1.7.4:
e coredump
e logger
e logger mnonblock
® panic_on_snap_error,
e panic_on_ wal_ error
o replication_ source
e slab_alloc_arena

o slab_alloc_ factor

292 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

o slab_alloc_mazimal
o slab_alloc_ minimal
e snap_ dir

e snapshot_ count

e snapshot_ period

coredump
Deprecated, do not use.

Type: boolean
Default: false
Dynamic: no

logger
Deprecated in favor of log. The parameter was only renamed, while the type, values and semantics
remained intact.

logger_nonblock
Deprecated in favor of log nonblock. The parameter was only renamed, while the type, values and
semantics remained intact.

panic_on_snap_error
Deprecated in favor of force_recovery.

If there is an error while reading a snapshot file (at server instance start), abort.

Type: boolean
Default: true
Dynamic: no

panic_on_wal_error
Deprecated in favor of force_recovery.

Type: boolean
Default: true
Dynamic: yes

replication_source
Deprecated in favor of replication. The parameter was only renamed, while the type, values and
semantics remained intact.

slab_alloc_arena
Deprecated in favor of memtx_memory.

How much memory Tarantool allocates to actually store tuples, in gigabytes. When the limit is
reached, INSERT or UPDATE requests begin failing with error ER_MEMORY_ISSUE. While the server
does not go beyond the defined limit to allocate tuples, there is additional memory used to store indexes

6.3. CnpaBo4Huk no HacTpoiike 293



Tarantool, Beinyck 1.7.5

and connection information. Depending on actual configuration and workload, Tarantool can consume
up to 20% more than the limit set here.

Type: float
Default: 1.0
Dynamic: no

slab_alloc_factor
Deprecated, do not use.

The multiplier for computing the sizes of memory chunks that tuples are stored in. A lower value may
result in less wasted memory depending on the total amount of memory available and the distribution
of item sizes.

Type: float
Default: 1.1
Dynamic: no

slab_alloc_maximal
Deprecated in favor of memtz max_tuple_size. The parameter was only renamed, while the type,
values and semantics remained intact.

slab_alloc_minimal
Deprecated in favor of memtxr_min_tuple size. The parameter was only renamed, while the type,
values and semantics remained intact.

snap_dir
Deprecated in favor of memitx_dir. The parameter was only renamed, while the type, values and
semantics remained intact.

snapshot_period
Deprecated in favor of checkpoint interval. The parameter was only renamed, while the type, values
and semantics remained intact.

snapshot_count
Deprecated in favor of checkpoint count. The parameter was only renamed, while the type, values
and semantics remained intact.

6.4 Utility tarantoolctl!

tarantoolctl is a utility for administering Tarantool instances, checkpoint files and modules. Tt is shipped
and installed as part of Tarantool distribution.

See also tarantoolctl usage examples in Server administration section.

6.4.1 Command format

tarantoolctl COMMAND NAME [URI] [FILE] [OPTIONS..]

where:

294 Fnasa 6. Cnpasou4Huku



Tarantool, Beinyck 1.7.5

e COMMAND is one of the following: start, stop, status, restart, logrotate, check, enter, eval,
connect, cat, play, rocks.

e NAME is the name of an instance file or a module.
e FILE is the path to some file (.lua, .xlog or .snap).
e URI is the URI of some Tarantool instance.

e OPTIONS are options taken by some tarantoolctl commands.

6.4.2 Commands for managing Tarantool instances

tarantoolctl start NAME Start a Tarantool instance (if not started; fail otherwise).
tarantoolctl stop NAME Stop a Tarantool instance (if not stopped; fail otherwise).

tarantoolctl status NAME Show an instance’s status (started/stopped). If pid file exists and an alive
control socket exists, the return code is 0. Otherwise, the return code is not 0.

Reports typical problems to stderr (e.g. pid file exists and control socket doesn’t).
tarantoolctl restart NAME Stop and start a Tarantool instance (if started; fail otherwise).

tarantoolctl logrotate NAME Rotate logs of a started Tarantool instance. Works only if logging-into-file
is enabled in the instance file. Pipe/syslog make no effect.

tarantoolctl check NAME Check an instance file for syntax errors.
tarantoolctl enter NAME Enter an instance’s interactive Lua console.
tarantoolctl eval NAME FILE Evaluate a local Lua file on a Tarantool instance (if started; fail otherwise).

tarantoolctl connect URI Connect to a Tarantool instance on an admin-console port. Supports both
TCP /Unix sockets.

6.4.3 Commands for managing checkpoint files
tarantoolctl cat FILE.. [--space=space_no ..] [--show-system] [--from=from_lsn] [--to=to_lsn] [--replic
Print into stdout the contents of .snap/.xlog files.

tarantoolctl play URI FILE.. [--space=space_no ..] [--show-system] [--from=from_lsn] [--to=to_lsn] [--r
Play the contents of .snap/.xlog files to another Tarantool instance.

Supported options:
e --space=space_no to filter the output by space number. May be passed more than once.
e --show-system to show the contents of system spaces.
e ——from=from_lsn to show operations starting from the given Isn.
e —-to=to_lsn to show operations ending with the given lsn.

e --replica=replica_id to filter the output by replica id. May be passed more than once.

6.4.4 Commands for managing Tarantool modules

tarantoolctl rocks install NAME Install a module in the current directory.

tarantoolctl rocks remove NAME Remove a module.

6.4. Utility tarantoolctl 295



Tarantool, Beinyck 1.7.5

tarantoolctl rocks show NAME Show information about an installed module.
tarantoolctl rocks search NAME Search the repository for modules.

tarantoolctl rocks list List all installed modules.

6.5 Tips on Lua syntax

The Lua syntax for data-manipulation functions can vary. Here are examples of the variations with select ()
requests. The same rules exist for the other data-manipulation functions.

Every one of the examples does the same thing: select a tuple set from a space named ,tester where the
primary-key field value equals 1. For these examples, we assume that the numeric id of ,tester” is 512, which
happens to be the case in our sandbox example only.

First, there are three object reference variations:

-- #1 module . submodule . name

tarantool> box.space.tester:select{1}

-- #2 replace name with a literal in square brackets
tarantool> box.space['tester']:select{1}

-- #3 use a variable for the entire object reference
tarantool> s = box.space.tester

tarantool> s:select{1}

Examples in this manual usually have the «box.space. tester:» form (#1). However, this is a matter of
user preference and all the variations exist in the wild.

Also, descriptions in this manual use the syntax «space_object:» for references to objects which are spaces,
and «index_object:» for references to objects which are indexes (for example box.space. tester.index.
primary ).

Then, there are seven parameter variations:

-- #1

tarantool> box.space.tester:select{1}

-- #2

tarantool> box.space.tester:select({1})

-- #3

tarantool> box.space.tester:select (1)

-- #4

tarantool> box.space.tester.select(box.space.tester,1)
-- #5

tarantool> box.space.tester:select({1},{iterator="'EQ'})
-- #6

tarantool> variable = 1

tarantool> box.space.tester:select{variable}

- #7

tarantool> variable = {1}

tarantool> box.space.tester:select(variable)

Lua allows to omit parentheses () when invoking a function if its only argument is a Lua table, and we use
it sometimes in our examples. This is why select{1} is equivalent to select ({1}). Literal values such as 1
(a scalar value) or {1} (a Lua table value) may be replaced by variable names, as in examples #6 and #7.
Although there are special cases where braces can be omitted, they are preferable because they signal «Lua
tables. Examples and descriptions in this manual have the {1} form. However, this too is a matter of user
preference and all the variations exist in the wild.

296 Fnasa 6. Cnpasou4Huku




rNABA [

[MpakTukKym

7.1 TpakTuyeckue 3agaHunsa Ha Lua

Here are three tutorials on using Lua stored procedures with Tarantool:
o Insert one million tuples with a Lua stored procedure,
o Sum a JSON field for all tuples,

e Indezxed pattern search.

7.1.1 BcTtaBka 1 MaH KoOpTexeil C NOMOLbIO XpaHUMOI npoueaypbl Ha s3bike Lua

This is an exercise assignment: “Insert one million tuples. Each tuple should have a constantly-increasing
numeric primary-key field and a random alphabetic 10-character string field.”

The purpose of the exercise is to show what Lua functions look like inside Tarantool. It will be necessary
to employ the Lua math library, the Lua string library, the Tarantool box library, the Tarantool box.tuple
library, loops, and concatenations. It should be easy to follow even for a person who has not used either Lua
or Tarantool before. The only requirement is a knowledge of how other programming languages work and a
memory of the first two chapters of this manual. But for better understanding, follow the comments and the
links, which point to the Lua manual or to elsewhere in this Tarantool manual. To further enhance learning,
type the statements in with the tarantool client while reading along.

Configure

We are going to use the Tarantool sandbox that was created for our «Getting starteds exercises. So there is
a single space, and a numeric primary key, and a running Tarantool server instance which also serves as a
client.

297



Tarantool, Beinyck 1.7.5

Delimiter
In earlier versions of Tarantool, multi-line functions had to be enclosed within «delimiters». They are no
longer necessary, and so they will not be used in this tutorial. However, they are still supported. Users

who wish to use delimiters, or users of older versions of Tarantool, should check the syntax description for
declaring a delimiter before proceeding.

Create a function that returns a string

We will start by making a function that returns a fixed string, “Hello world”.

function string_function()
return "hello world"
end

The word «functions is a Lua keyword — we’re about to go into Lua. The function name is string function.
The function has one executable statement, return "hello world". The string «hello world» is enclosed in
double quotes here, although Lua doesn’t care — one could use single quotes instead. The word «end» means
“this is the end of the Lua function declaration.” To confirm that the function works, we can say

string_function()

Sending function-name() means “invoke the Lua function.” The effect is that the string which the function
returns will end up on the screen.

For more about Lua strings see Lua manual chapter 2.4 «Strings» . For more about functions see Lua manual
chapter 5 «Functions».

Tenepn BbIBOJ, HA IKPAHE BLIIVISIUT CJIELYIONMM 00pa30M:

tarantool> function string_funciton()
> return "hello world"
> end

tarantool> string_function()

- hello world

tarantool>

Create a function that calls another function and sets a variable

Now that string_function exists, we can invoke it from another function.

function main_function()
local string_value
string_value = string_function()
return string_value

end

We begin by declaring a variable «string_value». The word «local» means that string value appears
only in main_function. If we didn’t use «local» then string_value would be visible everywhere - even by
other users using other clients connected to this server instance! Sometimes that’s a very desirable feature
for inter-client communication, but not this time.

208 naea 7. MpakTukym



http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/5.html

Tarantool, Beinyck 1.7.5

Then we assign a value to string_value, namely, the result of string_function(). Soon we will invoke
main_function() to check that it got the value.

For more about Lua variables see Lua manual chapter 4.2 «Local Variables and Blocks» .

Teneps BbIBOJ, HA SKPAHE BLITJISAUT CJIEIYIONIM 00pa30M:

tarantool> function main_function()
> local string_value
>  string_value = string_function()
> return string_value
> end

tarantool> main_function()

- hello world

tarantool>

Modify the function so it returns a one-letter random string

Now that it’s a bit clearer how to make a variable, we can change string_function() so that, instead of
returning a fixed literal «Hello worlds, it returns a random letter between ,,A“ and ,,Z*.

function string_function()
local random_number
local random_string
random_number = math.random(65, 90)
random_string = string.char(random_number)
return random_string

end

It is not necessary to destroy the old string_function() contents, they’re simply overwritten. The first
assignment invokes a random-number function in Lua’s math library; the parameters mean “the number
must be an integer between 65 and 90.” The second assignment invokes an integer-to-character function in
Lua’s string library; the parameter is the code point of the character. Luckily the ASCII value of ,A“ is 65
and the ASCII value of ,Z* is 90 so the result will always be a letter between A and Z.

For more about Lua math-library functions see Lua users «Math Library Tutorials. For more about Lua
string-library functions see Lua users «String Library Tutorials .

Once again the string_function() can be invoked from main function() which can be invoked with
main_function().

Tenepsb BBIBOM, HA SKPAHE BBITVISAUT CJIEIYIONIM 00pa30M:

tarantool> function string_function()
> local random_number
> local random_string
> random_number = math.random(65, 90)
> random_string = string.char(random_number)
> return random_string
> end

tarantool> main_function()

(continues on next page)

7.1. Tpaktnyeckume 3agaHus Ha Lua 299



http://www.lua.org/pil/4.2.html
http://lua-users.org/wiki/MathLibraryTutorial
http://lua-users.org/wiki/StringLibraryTutorial

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

-C

tarantool>

... Well, actually it won’t always look like this because math.random() produces random numbers. But for
the illustration purposes it won’t matter what the random string values are.

Modify the function so it returns a ten-letter random string

Now that it’s clear how to produce one-letter random strings, we can reach our goal of producing a ten-letter
string by concatenating ten one-letter strings, in a loop.

function string_function()
local random_number
local random_string
random_string = ""
for x = 1,10,1 do
random_number = math.random(65, 90)

random_string = random_string .. string.char(random_number)
end
return random_string

end

The words «for x = 1,10,1» mean “start with x equals 1, loop until x equals 10, increment x by 1 for each
iteration.” The symbol «..» means «concatenates, that is, add the string on the right of the «..» sign to the
string on the left of the «..» sign. Since we start by saying that random string is «» (a blank string), the
end result is that random _string has 10 random letters. Once again the string_function() can be invoked
from main_function() which can be invoked with main_function().

For more about Lua loops see Lua manual chapter 4.3.4 «Numeric fors.

Teneps BBIBOJ, HA SKPAHE BHITVISAUT CJIEIYIONIM 00pa30M:

tarantool> function string_function()
> local random_number

> local random_string

> random_string = ""

> for x = 1,10,1 do

> random_number = math.random(65, 90)

> random_string = random_string .. string.char(random_number)
> end

> return random_string

> end

tarantool> main_function()

- 'ZUDJBHKEFM'

tarantool>

300 naea 7. MpakTukym



http://www.lua.org/pil/4.3.4.html

Tarantool, Beinyck 1.7.5

Make a tuple out of a number and a string

Now that it’s clear how to make a 10-letter random string, it’s possible to make a tuple that contains a
number and a 10-letter random string, by invoking a function in Tarantool’s library of Lua functions.

function main_function()
local string_value, t
string_value = string_function()
t = box.tuple.new({1, string_value})
return t
end

Once this is done, t will be the value of a new tuple which has two fields. The first field is numeric: 1. The
second field is a random string. Once again the string_function() can be invoked from main_function()
which can be invoked with main_function().

For more about Tarantool tuples see Tarantool manual section Submodule boz.tuple.

Teneps BBIBOJ, HA SKPAHE BBITVISAUT CJIEIYIONIM 00pa30M:

tarantool> function main_function()
> local string_value, t

> string_value = string_function()

> t = box.tuple.new({l, string_value})
> return t

> end

tarantool> main_function()

- [1, 'PNPZPCOOKA']

tarantool>

Modify main_function to insert a tuple into the database

Now that it’s clear how to make a tuple that contains a number and a 10-letter random string, the only trick
remaining is putting that tuple into tester. Remember that tester is the first space that was defined in the
sandbox, so it’s like a database table.

function main_function()
local string_value, t
string_value = string_function()
t = box.tuple.new({l,string_value})
box.space.tester:replace(t)
end

The new line here is box.space.tester:replace(t). The name contains ,tester because the insertion is
going to be to tester. The second parameter is the tuple value. To be perfectly correct we could have said box.
space.tester:insert(t) here, rather than box.space.tester:replace(t), but «replace» means “insert
even if there is already a tuple whose primary-key value is a duplicate”, and that makes it easier to re-
run the exercise even if the sandbox database isn’t empty. Once this is done, tester will contain a tuple
with two fields. The first field will be 1. The second field will be a random 10-letter string. Once again the
string_function() can be invoked from main_function() which can be invoked with main_function().
But main_function() won’t tell the whole story, because it does not return t, it only puts t into the database.
To confirm that something got inserted, we’ll use a SELECT request.

7.1. Tpaktnyeckume 3agaHus Ha Lua 301




Tarantool, Beinyck 1.7.5

main_function()
box.space.tester:select{1}

For more about Tarantool insert and replace calls, see Tarantool manual section Submodule boz.space,
space_ object:insert(), and space object:replace().

Tenepsb BBIBOJ, HA SKPAHE BBITVISAUT CJIEIYIONIM 00pa30M:

tarantool> function main_function()
> local string_value, t
>  string_value = string_function()
> t = box.tuple.new({l,string_value})
>  box.space.tester:replace(t)
> end

tarantool> main_function()

tarantool> box.space.tester:select{l}

- - [1, '"EUJYVEECIL']

tarantool>

Modify main_function to insert a million tuples into the database

Now that it’s clear how to insert one tuple into the database, it’s no big deal to figure out how to scale up:
instead of inserting with a literal value = 1 for the primary key, insert with a variable value = between 1
and 1 million, in a loop. Since we already saw how to loop, that’s a simple thing. The only extra wrinkle
that we add here is a timing function.

function main_function()
local string_value, t
for i = 1,1000000,1 do
string_value = string_function()
t = box.tuple.new({i,string_value})
box.space.tester:replace(t)
end
end
start_time = os.clock()
main_function()
end_time = os.clock()
'insert done in ' .. end_time - start_time .. ' seconds'

The standard Lua function os.clock() will return the number of CPU seconds since the start. Therefore, by
getting start _time = number of seconds just before the inserting, and then getting end time = number of
seconds just after the inserting, we can calculate (end time - start time) = elapsed time in seconds. We
will display that value by putting it in a request without any assignments, which causes Tarantool to send
the value to the client, which prints it. (Lua’s answer to the C printf () function, which is print (), will

also work.)

For more on Lua os.clock() see Lua manual chapter 22.1 «Date and Time». For more on Lua print() see
Lua manual chapter 5 «Functionss.

Since this is the grand finale, we will redo the final versions of all the necessary requests: the request
that created string_function(), the request that created main_function(), and the request that invokes

302 naea 7. MpakTukym



http://www.lua.org/manual/5.1/manual.html#pdf-os.clock
http://www.lua.org/pil/22.1.html
http://www.lua.org/pil/5.html

Tarantool, Beinyck 1.7.5

main_function().

function string_function()
local random_number
local random_string
random_string = ""
for x = 1,10,1 do
random_number = math.random(65, 90)
random_string = random_string .. string.char(random_number)
end
return random_string
end

function main_function()
local string_value, t
for i = 1,1000000,1 do
string_value = string_function()
t = box.tuple.new({i,string_value})
box.space.tester:replace(t)
end
end
start_time = os.clock()
main_function()
end_time = os.clock()
'‘insert done in ' .. end_time - start_time .. ' seconds'

Teneps BbIBOJ, HA SKPAHE BHITVISAUT CJIEIYIONMM 00pa30M:

tarantool> function string_function()
> local random_number

> local random_string

>  random_string = ""

> for x = 1,10,1 do

> random_number = math.random(65, 90)

> random_string = random_string .. string.char(random_number)
> end

> return random_string

> end

tarantool> function main_function()

> local string_value, t

> for i = 1,1000000,1 do

> string_value = string_function()

> t = box.tuple.new({i,string_value})
> box.space.tester:replace(t)

> end

> end

tarantool> start_time = os.clock()

tarantool> main_function()

tarantool> end_time = os.clock()

(continues on next page)

7.1. Mpaktu4eckme 3aganus Ha Lua

303




© » N o W oA W N e

= e
N o= O

-
w

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

1 1

tarantool> 'insert done in . end_time - start_time .. seconds'

- insert done in 37.62 seconds

tarantool>

What has been shown is that Lua functions are quite expressive (in fact one can do more with Tarantool’s Lua
stored procedures than one can do with stored procedures in some SQL DBMSs), and that it’s straightforward
to combine Lua-library functions and Tarantool-library functions.

What has also been shown is that inserting a million tuples took 37 seconds. The host computer was a
Linux laptop. By changing wal mode to ,none before running the test, one can reduce the elapsed time to
4 seconds.

7.1.2 MNopacyetr cymmbl no JSON-nonsam Bo Bcex kopTexkax

This is an exercise assignment: “Assume that inside every tuple there is a string formatted as JSON. Inside
that string there is a JSON numeric field. For each tuple, find the numeric field’s value and add it to a ,,sum*
variable. At end, return the ,sum® variable.” The purpose of the exercise is to get experience in one way to
read and process tuples.

json = require('json')
function sum_json_field(field_name)
local v, t, sum, field_value, is_valid_json, lua_table
sum = O
for v, t in box.space.tester:pairs() do
is_valid_json, lua_table = pcall(json.decode, t[2])
if is_valid_json then
field_value = lua_table[field_name]
if type(field_value) == '"number'" then sum = sum + field_value end
end
end
return sum
end

LINE 3: WHY «LOCALp». This line declares all the variables that will be used in the function. Actually
it’s not necessary to declare all variables at the start, and in a long function it would be better to declare
variables just before using them. In fact it’s not even necessary to declare variables at all, but an undeclared
variable is «globals. That’s not desirable for any of the variables that are declared in line 1, because all of
them are for use only within the function.

LINE 5: WHY <«PAIRS()». Our job is to go through all the rows and there are two ways to do
it: with boz.space.space_object:pairs() or with variable = select(...) followed by for i, n, 1 do
some-function (variable[i]) end. We preferred pairs() for this example.

LINE 5: START THE MAIN LOOP. Everything inside this «fors loop will be repeated as long as
there is another index key. A tuple is fetched and can be referenced with variable t.

LINE 6: WHY «PCALLy». If we simply said lua_table = json.decode(t[2])), then the function would
abort with an error if it encountered something wrong with the JSON string - a missing colon, for example.
By putting the function inside «pcall» (protected call), we’re saying: we want to intercept that sort of error,
so if there’s a problem just set is_valid_json = false and we will know what to do about it later.

LINE 6: MEANING. The function is json.decode which means decode a JSON string, and the parameter
is t[2] which is a reference to a JSON string. There’s a bit of hard coding here, we’re assuming that the

304 naea 7. MpakTukym



http://www.lua.org/pil/8.4.html

Tarantool, Beinyck 1.7.5

second field in the tuple is where the JSON string was inserted. For example, we’re assuming a tuple looks
like

field[1]: 444
field[2]: '{"Hello": "world", "Quantity": 15}'

meaning that the tuple’s first field, the primary key field, is a number while the tuple’s second field, the
JSON string, is a string. Thus the entire statement means «decode t[2] (the tuple’s second field) as a JSON
string; if there’s an error set is_valid_json = false; if there’s no error set is_valid_json = true and
set lua_table = a Lua table which has the decoded strings.

LINE 8. At last we are ready to get the JSON field value from the Lua table that came from
the JSON string. The value in field name, which is the parameter for the whole function, must be
a name of a JSON field. For example, inside the JSON string '{"Hello": "world", "Quantity":
15}', there are two JSON fields: «Hello» and «Quantity». If the whole function is invoked with
sum_json_field("Quantity"), then field_value = lua_table[field_name] is effectively the same as
field_value = lua_table["Quantity"] or even field_value = lua_table.Quantity. Those are just
three different ways of saying: for the Quantity field in the Lua table, get the value and put it in variable
field_value.

LINE 9: WHY «IF». Suppose that the JSON string is well formed but the JSON field is not a number,
or is missing. In that case, the function would be aborted when there was an attempt to add it to the sum.
By first checking type(field_value) == "number", we avoid that abortion. Anyone who knows that the
database is in perfect shape can skip this kind of thing.

And the function is complete. Time to test it. Starting with an empty database, defined the same way as
the sandbox database in our «Getting starteds ezercises,

-- if tester is left over from some previous test, destroy tt
box.space.tester:drop()

box.schema.space.create('tester')
box.space.tester:create_index('primary', {parts = {1, 'unsigned'}})

then add some tuples where the first field is a number and the second field is a string.

box.space.tester:insert{444, '{"Item": "widget", "Quantity": 15}'}
box.space.tester:insert{445, '{"Item": "widget", "Quantity": 7}'}
box.space.tester:insert{446, '{"Item": "golf club", "Quantity": "sunshine"}'}
box.space.tester:insert{447, '{"Item": "waffle iron", "Quantit": 3}'}

Since this is a test, there are deliberate errors. The «golf club» and the «waffle irons do not have numeric
Quantity fields, so must be ignored. Therefore the real sum of the Quantity field in the JSON strings should
be: 15 + 7 — 22.

Invoke the function with sum_json_field("Quantity").

tarantool> sum_json_field("Quantity")

- 22

It works. We’ll just leave, as exercises for future improvement, the possibility that the <«hard coding»
assumptions could be removed, that there might have to be an overflow check if some field values are
huge, and that the function should contain a yield instruction if the count of tuples is huge.

7.1. Tpaktnyeckume 3agaHus Ha Lua 305




Tarantool, Beinyck 1.7.5

7.1.3 NHgekcnpoBaHHbIi NOUCK Mo wabsoHam

Here is a generic function which takes a field identifier and a search pattern, and returns all tuples that
match. * The field must be the first field of a TREE index. * The function will use Lua pattern matching,
which allows «magic characters» in regular expressions. * The initial characters in the pattern, as far as
the first magic character, will be used as an index search key. For each tuple that is found via the index,
there will be a match of the whole pattern. * To be cooperative, the function should yield after every 10
tuples, unless there is a reason to delay yielding. With this function, we can take advantage of Tarantool’s
indexes for speed, and take advantage of Lua’s pattern matching for flexibility. It does everything that an

SQL «LIKE» search can do, and far more.

Read the following Lua code to see how it works. The comments that begin with «SEE NOTE ...» refer to

long explanations that follow the code.

function indexed_pattern_search(space_name, field_no, pattern)
-- SEE NOTE #1 "FIND AN APPROPRIATE INDEX"
if (box.space[space_name] == nil) then
print ("Error: Failed to find the specified space")
return nil

end
local index_no = -1
for i=0,box.schema.INDEX_MAX,1 do
if (box.spacel[space_name].index[i] == nil) then break end
if (box.spacel[space_name].index[i].type == "TREE"
and box.space[space_name].index[i] .parts[1].fieldno ==
and (box.space[space_name].index[i].parts[1].type == "
or box.space[space_name].index[i].parts[1].type == "string")) then
index_no = i
break
end
end
if (index_no == -1) then

print ("Error: Failed to find an appropriate index")
return nil
end
-- SEE NOTE #2 "DERIVE INDEX SEARCH KEY FROM PATTERN"
local index_search_key = ""
local index_search_key_length = 0
local last_character = ""
local ¢ = ""
local c2 = ""
for i=1,string.len(pattern),l do
c = string.sub(pattern, i, i)

if (last_character “= "J") then
if (c == '"' or ¢ == "$" or ¢ == "(" or ¢ == ")" or ¢ == "."
or ¢ == n[n or ¢ == n]n or ¢ == "¥" or ¢ == "4"
or ¢ == "-" or ¢ == "?") then
break
end
if (c == "%") then

c2 = string.sub(pattern, i + 1, i + 1)
if (string.match(c2, "%p") == nil) then break end

index_search_key = index_search_key .. c2
else
index_search_key = index_search_key .. c
end
end

(continues on next page)

306

Mnaea 7. [lMpakTukym



http://www.lua.org/manual/5.2/manual.html#6.4.1

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

last_character = c
end
index_search_key_length = string.len(index_search_key)
if (index_search_key_length < 3) then
print ("Error: index search key " .. index_search_key .. " is too short")
return nil
end
-- SEE NOTE #3 "OUTER LOOP: INITIATE"
local result_set = {}
local number_of_tuples_in_result_set = 0
local previous_tuple_field = ""
while true do
local number_of_tuples_since_last_yield = 0
local is_time_for_a_yield = false
-- SEE NOTE #4 "INNER LOOP: ITERATOR"
for _,tuple in box.space[space_name].index[index_no]:
pairs(index_search_key,{iterator = box.index.GE}) do
-- SEE NOTE #5 "INNER LOOP: BREAK IF INDEX KEY IS TOO GREAT"
if (string.sub(tuple[field_no], 1, index_search_key_length)
> index_search_key) then
break
end
-- SEE NOTE #6 "INNER LOOP: BREAK AFTER EVERY 10 TUPLES -- MAYBE"
number_of_tuples_since_last_yield = number_of_tuples_since_last_yield + 1
if (number_of_tuples_since_last_yield >= 10
and tuple[field_no] ~= previous_tuple_field) then
index_search_key = tuple[field_no]
is_time_for_a_yield = true
break
end
previous_tuple_field = tuple[field_no]
-- SEE NOTE #7 "INNER LOOP: ADD TO RESULT SET IF PATTERN MATCHES"
if (string.match(tuple[field_no], pattern) ~= nil) then
number_of_tuples_in_result_set = number_of_tuples_in_result_set + 1
result_set [number_of_tuples_in_result_set] = tuple

end
end
-- SEE NOTE #8 "OUTER LOOP: BREAK, OR YIELD AND CONTINUE"
if (is_time_for_a_yield ~= true) then
break
end

require('fiber').yield()
end
return result_set
end

NOTE #1 «<FIND AN APPROPRIATE INDEX» The caller has passed space_name (a string) and field no
(a number). The requirements are: (a) index type must be «TREE» because for other index types (HASH,
BITSET, RTREE) a search with iterator=GE <box_indez-iterator-types> will not return strings in order
by string value; (b) field no must be the first index part; (c) the field must contain strings, because for other
data types (such as «unsigned») pattern searches are not possible; If these requirements are not met by any
index, then print an error message and return nil.

NOTE #2 «DERIVE INDEX SEARCH KEY FROM PATTERN» The caller has passed pattern (a string).
The index search key will be the characters in the pattern as far as the first magic character. Lua’s magic
characters are % ~ $ () . [ ] * + - 7. For example, if the pattern is «<ABC.E», the period is a magic character
and therefore the index search key will be «<ABC». But there is a complication ... If we see «%» followed

7.1. Tpaktnyeckume 3agaHus Ha Lua 307




Tarantool, Beinyck 1.7.5

by a punctuation character, that punctuation character is «escaped» so remove the «%» when making the
index search key. For example, if the pattern is «<AB%$E», the dollar sign is escaped and therefore the index
search key will be «AB$E». Finally there is a check that the index search key length must be at least three
— this is an arbitrary number, and in fact zero would be okay, but short index search keys will cause long
search times.

NOTE #3 - «OUTER LOOP: INITIATE» The function’s job is to return a result set, just as
boz.space. . . select <box_space-select>> would. We will fill it within an outer loop that contains an inner
loop. The outer loop’s job is to execute the inner loop, and possibly yield, until the search ends. The inner
loop’s job is to find tuples via the index, and put them in the result set if they match the pattern.

NOTE #4 «INNER LOOP: ITERATOR» The for loop here is using pairs(), see the explanation of what
indezx iterators are. Within the inner loop, there will be a local variable named «tuple» which contains the
latest tuple found via the index search key.

NOTE #5 «INNER LOOP: BREAK IF INDEX KEY IS TOO GREAT» The iterator is GE (Greater or
Equal), and we must be more specific: if the search index key has N characters, then the leftmost N characters
of the result’s index field must not be greater than the search index key. For example, if the search index key
is ,ABC*, then ,ABCDE* is a potential match, but ,ABD* is a signal that no more matches are possible.

NOTE #6 «INNER LOOP: BREAK AFTER EVERY 10 TUPLES — MAYBE» This chunk of code is for
cooperative multitasking. The number 10 is arbitrary, and usually a larger number would be okay. The simple
rule would be «after checking 10 tuples, yield, and then resume the search (that is, do the inner loop again)
starting after the last value that was found». However, if the index is non-unique or if there is more than
one field in the index, then we might have duplicates — for example {«ABC»,1}, {«ABC», 2}, {<ABC», 3}»
— and it would be difficult to decide which «ABC» tuple to resume with. Therefore, if the result’s index field
is the same as the previous result’s index field, there is no break.

NOTE #7 «INNER LOOP: ADD TO RESULT SET IF PATTERN MATCHES» Compare the result’s
index field to the entire pattern. For example, suppose that the caller passed pattern «ABC.E» and there is
an indexed field containing «ABCDE». Therefore the initial index search key is «ABC». Therefore a tuple
containing an indexed field with «<ABCDE» will be found by the iterator, because «<ABCDE» > «ABC». In
that case string.match will return a value which is not nil. Therefore this tuple can be added to the result
set.

NOTE #8 «OUTER LOOP: BREAK, OR YIELD AND CONTINUE» There are three conditions which
will cause a break from the inner loop: (1) the for loop ends naturally because there are no more index keys
which are greater than or equal to the index search key, (2) the index key is too great as described in NOTE
#5, (3) it is time for a yield as described in NOTE #6. If condition (1) or condition (2) is true, then there
is nothing more to do, the outer loop ends too. If and only if condition (3) is true, the outer loop must yield
and then continue. If it does continue, then the inner loop — the iterator search — will happen again with a
new value for the index search key.

EXAMPLE:

Start Tarantool, cut and paste the code for function indexed_pattern_search, and try the following:

box.space.t:drop()

box.schema.space.create('t"')

box.space.t:create_index('primary',{})
box.space.t:create_index('secondary',{unique=false,parts={2, 'string',3, 'string'}})
box.space.t:insert{l,'A','a'}
box.space.t:insert{2,'AB',"' '}
box.space.t:insert{3, 'ABC','a'}
box.space.t:insert{4, 'ABCD',"''}
box.space.t:insert{5, 'ABCDE','a'}
box.space.t:insert{6, 'ABCDE',"''}
box.space.t:insert{7, 'ABCDEF','a'}

(continues on next page)

308 naea 7. MpakTukym




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

box.space.t:insert{8, 'ABCDF',"''}
indexed_pattern_search("t", 2, "ABC.E.")

MsI Oy IuM CJIEeIYIONTNil pe3yIbTaT:

tarantool> indexed_pattern_search("t", 2, "ABC.E.")

- - [7, 'ABCDEF', 'a'l

7.2 lNpakTunyeckoe 3agaHme Ha C

Here is one C tutorial: C stored procedures.

7.2.1 XpaHumble npouenypbl Ha a3blke C

Tarantool can call C code with modules, or with ffi, or with C stored procedures. This tutorial only is about
the third option, C stored procedures. In fact the routines are always «C functions» but the phrase «stored
procedures is commonly used for historical reasons.

In this tutorial, which can be followed by anyone with a Tarantool development package and a C compiler,
there are four tasks. The first — easy.c — prints «hello world». The second — harder.c — decodes a passed
parameter value. The third — hardest.c — uses the C API to do a DBMS insert. The fourth — read.c — uses
the C API to do a DBMS select.

After following the instructions, and seeing that the results are what is described here, users should feel
confident about writing their own stored procedures.

Preparation

Check that these items exist on the computer: * Tarantool 1.7 * A gcc compiler, any modern version should
work * «module.h» and files #included in it * «msgpuck.hs * «libmsgpuck.a» (only for some recent msgpuck
versions)

The «module.h» file will exist if Tarantool 1.7 was installed from source. Otherwise Tarantool’s «developer»
package must be installed. For example on Ubuntu say sudo apt-get install tarantool-dev or on Fedora
say dnf -y install tarantool-devel

The «msgpuck.h» file will exist if Tarantool 1.7 was installed from source. Otherwise the «msgpucks» package
must be installed from https://github.com/rtsisyk/msgpuck.

Both module.h and msgpuck.h must be on the include path for the C compiler to see them.
For example, if module.h address is /usr/local/include/tarantool/module.h, and msgpuck.h address is
/usr/local /include/msgpuck /msgpuck.h, and they are not currently on the include path, say export CPATH=/
usr/local/include/tarantool:/usr/local/include/msgpuck

The libmsgpuck.a static library is necessary with msgpuck versions produced after February 2017. If and only
if you encounter linking problems when using the gcce statements in the examples for this tutorial, you should
put libmsgpuck.a on the path (libmsgpuck.a is produced from both msgpuck and Tarantool source downloads
50 it should be easy to find). For example, instead of «gcc -shared -o harder.so -fPIC harder.c» for the
second example below, you will need to say «gcc -shared -o harder.so -fPIC harder.c libmsgpuck.
ar.

Requests will be done using Tarantool as a client. Start Tarantool, and enter these requests.

7.2. Tlpaktnyeckoe 3agavue Ha C 309



https://github.com/rtsisyk/msgpuck

Tarantool, Beinyck 1.7.5

box.cfg{listen=3306}
box.schema.space.create('capi_test')
box.space.capi_test:create_index('primary')
net_box = require('net.box')
capi_connection = net_box:new(3306)

In plainer language: create a space named capi_test, and make a connection to self named capi_ connection.
Leave the client running. It will be necessary to enter more requests later.
easy.c

Start another shell. Change directory (cd) so that it is the same as the directory that the client is running
on.

Create a file. Name it easy.c. Put these six lines in it.

#include "module.h"
int easy(box_function_ctx_t *ctx, const char *args, const char *args_end)
{

printf("hello world\n");

return 0;

}

Compile the program, producing a library file named easy.so: gcc -shared -o easy.so -fPIC easy.c

Now go back to the client and execute these requests:

box.schema.func.create('easy', {language = 'C'})
box.schema.user.grant('guest', 'execute', 'function', 'easy')
capi_connection:call('easy')

If these requests appear unfamiliar, re-read the descriptions of box.schema.func.create and
box.schema.user.grant and conn:call.

The function that matters is capi_ connection:call(,easy").

Its first job is to find the ,easy* function, which should be easy because by default Tarantool looks on the
current directory for a file named easy.so.

Its second job is to call the ,easy” function. Since the easy() function in easy.c begins with printf ("hello
world\n"), the words <«hello world» will appear on the screen.

Its third job is to check that the call was successful. Since the easy() function in easy.c ends with return 0,
there is no error message to display and the request is over.

The result should look like this:

tarantool> capi_connection:call('easy')
hello world

-0

Conclusion: calling a C function is easy.
harder.c
Go back to the shell where the easy.c program was created.

Create a file. Name it harder.c. Put these 17 lines in it:

310 naea 7. MpakTukym




Tarantool, Beinyck 1.7.5

#include "module.h"
#include "msgpuck.h"
int harder (box_function_ctx_t *ctx, const char *args, const char *args_end)
{
uint32_t arg_count = mp_decode_array(&args);
printf("arg_count = %d\n", arg_count);
uint32_t field_count = mp_decode_array(&args);
printf("field_count = %d\n", field_count);
uint32_t val;
int i;
for (i = 0; i < field_count; ++i)
{
val = mp_decode_uint (&args) ;
printf ("val=yd.\n", val);
}

return O;

Compile the program, producing a library file named harder.so: gcc -shared -o harder.so -fPIC
harder.c

Now go back to the client and execute these requests:

box.schema.func.create('harder', {language = 'C'})
box.schema.user.grant('guest', 'execute', 'function', 'harder')
passable_table = {}

table.insert (passable_table, 1)

table.insert (passable_table, 2)

table.insert (passable_table, 3)

capi_connection:call('harder', passable_table)

This time the call is passing a Lua table (passable table) to the harder() function. The harder() function
will see it, it’s in the char *args parameter.

At this point the harder() function will start using functions defined in msgpuck.h, which are documented
in http://rtsisyk.github.io/msgpuck. The routines that begin with «mp» are msgpuck functions that
handle data formatted according to the MsgPack specification. Passes and returns are always done with this
format so one must become acquainted with msgpuck to become proficient with the C API.

For now, though, it’s enough to know that mp decode array() returns the number of elements in an array,
and mp _decode_uint returns an unsigned integer, from args. And there’s a side effect: when the decoding
finishes, args has changed and is now pointing to the next element.

Therefore the first displayed line will be «arg count = 1s» because there was only one item passed:
passable table. The second displayed line will be «field count = 3» because there are three items in the
table. The next three lines will be «1» and «2» and «3» because those are the values in the items in the
table.

And now the screen looks like this:

tarantool> capi_connection:call('harder', passable_table)
arg_count = 1

field_count = 3

val=1.

val=2.

val=3.

-0

7.2. Tlpaktnyeckoe 3agavue Ha C 311



http://rtsisyk.github.io/msgpuck
http://msgpack.org/

Tarantool, Beinyck 1.7.5

Conclusion: decoding parameter values passed to a C function is not easy at first, but there are routines to
do the job, and they’re documented, and there aren’t very many of them.

hardest.c
Go back to the shell where the easy.c and the harder.c programs were created.

Create a file. Name it hardest.c. Put these 13 lines in it:

#include "module.h"
#include "msgpuck.h"
int hardest(box_function_ctx_t *ctx, const char *args, const char *args_end)
{
uint32_t space_id = box_space_id_by_name("capi_test", strlen("capi_test"));
char tuple[1024];
char *tuple_pointer = tuple;
tuple_pointer = mp_encode_array (tuple_pointer, 2);
tuple_pointer = mp_encode_uint (tuple_pointer, 10000);
tuple_pointer = mp_encode_str(tuple_pointer, "String 2", 8);
int n = box_insert(space_id, tuple, tuple_pointer, NULL);
return n;

Compile the program, producing a library file named hardest.so: gcc -shared -o hardest.so -fPIC
hardest.c

Now go back to the client and execute these requests:

box.schema.func.create('hardest', {language = "C"1})
box.schema.user.grant('guest', 'execute', 'function', 'hardest')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')

capi_connection:call('hardest')

This time the C function is doing three things: (1) finding the numeric identifier of the «capi test» space
by calling box_space id by name(); (2) formatting a tuple using more msgpuck.h functions; (3) inserting
a tuple using box__insert.

Now, still on the client, execute this request: box.space.capi_test:select()

The result should look like this:

tarantool> box.space.capi_test:select()

- - [10000, 'String 2']

This proves that the hardest() function succeeded, but where did box space id by name() and
box_insert() come from? Answer: the C API. The whole C API is documented here. The function
box space id by name() is documented here. The function box_insert() is documented here.

read.c
Go back to the shell where the easy.c and the harder.c and the hardest.c programs were created.

Create a file. Name it read.c. Put these 43 lines in it:

#include "module.h"
#include <msgpuck.h>
int read(box_function_ctx_t *ctx, const char *args, const char *args_end)

{

(continues on next page)

312 Fnasa 7. [Mpaktukym




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

char tuple_buf[1024]; /* where the raw MsgPack tuple will be stored */
uint32_t space_id = box_space_id_by_name("capi_test", strlen("capi_test"));
uint32_t index_id = 0; /* The number of the space's first index */
uint32_t key = 10000; /* The key value that box_insert() used */

mp_encode_array (tuple_buf, 0); /* clear */

box_tuple_format_t *fmt = box_tuple_format_default();

box_tuple_t *tuple = box_tuple_new(fmt, tuple_buf, tuple_buf+512);
assert(tuple != NULL);

char key_buf[16]; /* Pass key_buf = encoded key = 1000 */
char *key_end = key_buf;

key_end = mp_encode_array(key_end, 1);

key_end = mp_encode_uint (key_end, key);

assert(key_end < key_buf + sizeof (key_buf));

/* Get the tuple. There's no box_select() but there's this. */

int r = box_index_get(space_id, index_id, key_buf, key_end, &tuple);
assert(r == 0);

assert(tuple !'= NULL);

/* Get each field of the tuple + display what you get. */

int field_no; /* The first field number is 0. */
for (field_no = 0; field_no < 2; ++field_no)
{

const char *field = box_tuple_field(tuple, field_no);
assert(field !'= NULL);
assert (mp_typeof (¥field) == MP_STR || mp_typeof (¥xfield) == MP_UINT);
if (mp_typeof (*field) == MP_UINT)
{
uint32_t uint_value = mp_decode_uint(&field);
printf ("uint value=ju.\n", uint_value);
}
else /* if (mp_typeof (*field) == MP_STR) */
{
const char *str_value;
uint32_t str_value_length;
str_value = mp_decode_str(&field, &str_value_length);
printf ("string value=%.*s.\n", str_value_length, str_value);
}
}
return 0;

}

Compile the program, producing a library file named read.so: gcc -shared -o read.so -fPIC read.c

Now go back to the client and execute these requests:

box.schema.func.create('read', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'read')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')

capi_connection:call('read')

This time the C function is doing four things: (1) once again, finding the numeric identifier of the «capi _test»
space by calling box space id by name(); (2) formatting a search key = 10000 using more msgpuck.h
functions; (3) getting a tuple using box _index get* (4) going through the tuple’s fields with box tuple get()
and then decoding each field depending on its type. In this case, since what we are getting is the tuple that
we inserted with hardest.c, we know in advance that the type is either MP _UINT or MP _STR; however,
it’s very common to have a case statement here with one option for each possible type.

The result of capi_connection:call(,read”) should look like this:

7.2. Tlpaktnyeckoe 3agavue Ha C 313




Tarantool, Beinyck 1.7.5

tarantool> capi_connection:call('read')
uint value=10000.
string value=String 2.

-0

This proves that the read() function succeeded. Once again the important functions that start with box
came from the C APIL. The function box_index get() is documented here. The function box tuple field()
is documented here.

Conclusion: the long description of the whole C API is there for a good reason. All of the functions in it
can be called from C functions which are called from Lua. So C «stored procedures» have full access to the
database.

Cleaning up

Get rid of each of the function tuples with box.schema.func.drop, and get rid of the capi_test space with
bozx.schema.capi_ test:drop(), and remove the .c and .so files that were created for this tutorial.

An example in the test suite

Download the source code of Tarantool. Look in a subdirectory test/box. Notice that there is a file named
tuple_bench.test.lua and another file named tuple_bench.c. Examine the Lua file and observe that it
is calling a function in the C file, using the same techniques that this tutorial has shown.

Conclusion: parts of the standard test suite use C stored procedures, and they must work, because releases
don’t happen if Tarantool doesn’t pass the tests.

7.3 libslave tutorial

libslave is a C++ library for reading data changes done by MysQL and, optionally, writing them to
a Tarantool database. It works by acting as a replication slave. The MySQL server writes data-change
information to a «binary log», and transfers the information to any client that says «I want to see the
information starting with this file and this record, continuouslys». So, 1ibslave is primarily good for making
a Tarantool database replica (much faster than using a conventional MySQL slave server), and for keeping
track of data changes so they can be searched.

We will not go into the many details here — the API documentation has them. We will only show an exercise:
a minimal program that uses the library.

Ilpumeuanue: Use a test machine. Do not use a production machine.

STEP 1: Make sure you have:
e a recent version of Linux (versions such as Ubuntu 14.04 will not do),
e a recent version of MySQL 5.6 or MySQL 5.7 server (MariaDB will not do),

e MySQL client development package. For example, on Ubuntu you can download it with this command:

sudo apt-get install mysql-client-core-5.7

STEP 2: Download libslave.

The recommended source is https://github.com/tarantool/libslave/. Downloads include the source
code only.

314 Fnasa 7. [Mpaktukym


https://github.com/vozbu/libslave/wiki/API
https://github.com/tarantool/libslave/

Tarantool, Beinyck 1.7.5

cd ~

cd tarantool-libslave
git submodule init
git submodule update
cmake

make

sudo apt-get install libboost-all-dev

git clone https://github.com/tarantool/libslave.git tarantool-libslave

If you see an error message mentioning the word «vectors, edit field.h and add this line:

’#include <vector>

STEP 3: Start the MySQL server. On the command line, add appropriate switches for doing replication. For

example:

’mysqld --log-bin=mysql-bin --server-id=1

STEP 4: For purposes of this exercise, we are assuming you have:

e a «root» user with password «root» with privileges,

e a «test» database with a table named «test»,

e 3 server with server id = 1.

a binary log named «mysql-bin»,

The values are hard-coded in the program, though of course you can change the program — it’s easy to see

their settings.

STEP 5: Look at the program:

#include <unistd.h>
#include <iostream>
#include <sstream>
#1include "Slave.h"
#include '"DefaultEztState.h'

slave: :Slave* sl = NULL;

void callback(const slave::RecordSet& event) {

slave: :Slave: :binlog_pos_t sBinlogPos = sl->getLastBinlog();

switch (event.type_event) {

case slave::RecordSet::Update: std::cout << "UPDATE" << "\n'"; break;
case slave::RecordSet::Delete: std::cout << "DELETE" << "\n"; break;

case slave::RecordSet: :Write:
default: break;

}
}
bool isStopping()
{
return O;
}

int main(int argc, charx* argv)
{

slave: :MasterInfo masterinfo;

std::cout << "INSERT'" << "\n'"; break;

(continues on next page)

7.3. libslave tutorial

315




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

masterinfo.conn_options.mysql_host = "127.0.0.1";
masterinfo.conn_options.mysql_port = 3306;
masterinfo.conn_options.mysql_user = "root";
masterinfo.conn_options.mysql_pass = "root";

bool error = false;

try {

slave: :DefaultExtState sDefExtState;
slave::Slave slave(masterinfo, sDefExtState);
sl = &slave;
sDefExtState.setMasterLogNamePos ("mysql-bin", 0);
slave.setCallback('"test", "test", callback);
slave.init();
slave.createDatabaseStructure();
try {
slave.get_remote_binlog(isStopping);
} catch (std::exception& ex) {
std: :cout << "Error reading: " << ex.what() << std::endl;
error = true;

}

} catch (std::exception& ex) {
std::cout << "Error initializing: " << ex.what() << std::endl;
error = true;

}

return O;

Everything unnecessary has been stripped so that you can see quickly how it works. At the start of main(),
there are some settings used for connecting — host, port, user, password. Then there is an initialization call
with the binary log file name = «mysql-bin». Pay particular attention to the setCallback statement, which
passes database name = «test», table name = «test», and callback function address = callback. The program
will be looping and invoking this callback function. See how, earlier in the program, the callback function
prints «<UPDATE» or «DELETE» or «<INSERT» depending on what is passed to it.

STEP 5: Put the program in the tarantool-libslave directory and name it example.cpp.

Step 6: Compile and build:

g++ -I/tarantool-libslave/include example.cpp -o example libslave_a.a -1d1 -lpthread

ITpumeuanme: Replace tarantool-libslave/include with the full directory name.

Notice that the name of the static library is 1ibslave_a.a, not libslave.a.

Step 7: Run:

./example

The result will be nothing — the program is looping, waiting for the MySQL server to write to the replication
binary log.

Step 8: Start a MySQL client program — any client program will do. Enter these statements:

USE test

INSERT INTO test VALUES ('A');
INSERT INTO test VALUES ('B');
DELETE FROM test;

316 naea 7. MpakTukym




Tarantool, Beinyck 1.7.5

Watch what happens in example.cpp output — it displays:

INSERT
INSERT
DELETE
DELETE

This is row-based replication, so you see two DELETESs, because there are two rows.

What the exercise has shown is:

the library can be built, and

programs that use the library can access everything that the MySQL server dumps.

For the many details and examples of usage in the field, see:

Our downloadable 1ibslave version:
https://github.com/tarantool/libslave

The version it was forked from (with a different README):
https://github.com/vozbu/libslave/wiki/API

How to speed up your MySQL with replication to in-memory database article
Replicating data from MySQL to Tarantool article (in Russian)

Asynchronous replication uncensored article (in Russian)

7.3.

libslave tutorial

317



https://github.com/tarantool/libslave
https://github.com/vozbu/libslave/wiki/API
http://highscalability.com/blog/2017/3/29/how-to-speed-up-your-mysql-with-replication-to-in-memory-dat.html
https://habrahabr.ru/company/mailru/blog/323870/
https://habrahabr.ru/company/oleg-bunin/blog/313594/

FABA 8

Contributor’s Guide

8.1 CnpasoyHuk no C API

8.1.1 Mopaynb box
box_function_ctx_t
Opaque structure passed to the stored C procedure

int box_return_tuple(box_function ctx_t *ctz, box_tuple t *tuple)
Return a tuple from stored C procedure.

Returned tuple is automatically reference counted by Tarantool.
ITapameTrpsbr

e ctx (boz_funtion_ctz_t+*) — an opaque structure passed to the stored C procedure
by Tarantool

e tuple (box_tuple_t*) — a tuple to return
Pesyabrat -1 on error (perhaps, out of memory; check boz_error last())
PesyasraTr 0 otherwise

uint32 t box_space_id_by_name(const char *name, uint32 t len)
Find space id by name.

This function performs SELECT request to _vspace system space.
ITapameTrpsbl
e char* name (const) — space name
e len (uint32_t) — length of name
Pesyabrar BOX_ID_NIL on error or if not found (check box_error last())

PesyabraT space_id otherwise

318



Tarantool, Beinyck 1.7.5

See also: boz_indez_td_by_name

uint32 t box_index_id_by_name(uint32 t space_id, const char *name, uint32_t len)
Find index id by name.

ITapameTrpsl
e space_id (uint32_t) — space identifier
e char* name (const) — index name
e len (uint32_t) — length of name
Pesyaprar BOX_ID_NIL on error or if not found (check box_error last())
PesyabsraT space_id otherwise
This function performs SELECT request to _vindex system space.
See also: boz_space_id_by_name

int box_insert (uint32 _t space_id, const char *tuple, const char *tuple end, box_tuple t **result)
Execute an INSERT /REPLACE request.

ITapameTrpsbl
e space_id (uint32_t) — space identifier
e char* tuple (const) — encoded tuple in MsgPack Array format (| fieldl, field2,

)

e char* tuple_end (const) — end of a tuple

e result (box_tuple_t**) — output argument. Resulted tuple. Can be set to NULL
to discard result

Pesyabrat -1 on error (check box_error last())
Pesyaprar 0 otherwise
See also space_ object.insert()

int box_replace(uint32 t space_id, const char *tuple, const char *tuple end, box tuple t **result)
Execute an REPLACE request.

ITapameTrpsI
e space_id (uint32_t) — space identifier
e char* tuple (const) — encoded tuple in MsgPack Array format (| field1, field2,

)

e char* tuple_end (const) —end of a tuple

e result (box_tuple_t**) — output argument. Resulted tuple. Can be set to NULL
to discard result

Pesyabrat -1 on error (check box_error last())
PesyabraT 0 otherwise
See also space_ object.replace()

int box_delete(uint32 t space_id, uint32 t index id, const char *key, const char *key end,

box_tuple t **result)
Execute a DELETE request.

ITapameTrpsbl

8.1. Cnpasounuk no C API 319



Tarantool, Beinyck 1.7.5

e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e char* key (const) — encoded key in MsgPack Array format ([ fieldl, field2, ...])
e char* key_end (const) —end of a key

e result (box_tuple_t**) — output argument. Result an old tuple. Can be set to
NULL to discard result

Pesyabrat -1 on error (check box_error_last())
PesyapraTr 0 otherwise
See also space_ object.delete()

int box_update (uint32 t space_id, uint32 t index_id, const char *key, const char *key end, const

char *ops, const char *ops_end, int index_ base, box_tuple_t **result)
Execute an UPDATE request.

ITapameTpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e char* key (const) — encoded key in MsgPack Array format ([ fieldl, field2, ...])
e char* key_end (const) —end of a key

e char* ops (const) — encoded operations in MsgPack Arrat format, e.g. [[ '=',
field_id, value 1, ['!', 2, 'xxx']]

e char* ops_end (const) — end of a ops

e index_base (¢nt) — 0 if field_ids in update operation are zero-based indexed (like
C) or 1 if for one-based indexed field ids (like Lua).

e result (box_tuple_t**) — output argument. Result an old tuple. Can be set to
NULL to discard result

Pesyabrat -1 on error (check boz_error_last())
PesyabraT 0 otherwise
See also space_ object.update()

int box_upsert (uint32 _t space_id, uint32 _t index_id, const char *tuple, const char *tuple_ end, const

char *ops, const char *ops_end, int index_ base, box_tuple_t **result)
Execute an UPSERT request.

ITapameTpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier

e char* tuple (const) — encoded tuple in MsgPack Array format (| fieldl, field2,

e char* tuple_end (const) — end of a tuple

(
e char* ops (const) — encoded operations in MsgPack Arrat format, e.g. [[ '=',
field_id, value 1, ['!', 2, 'xxx']]

e char* ops_end (const) — end of a ops

320 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

e index_base (¢nt) — 0 if field_ids in update operation are zero-based indexed (like
C) or 1 if for one-based indexed field ids (like Lua).

e result (box_tuple_t**) — output argument. Result an old tuple. Can be set to
NULL to discard result

Pesyaprat -1 on error (check :boz_error_last())
PesyabraTr 0 otherwise
See also space_object.upsert()

int box_truncate(uint32 t space id)
Truncate space.

ITapameTpsbl

e space_id (uint32_t) — space identifier

8.1.2 Mopaynb clock

double clock_realtime (void)
double clock_monotonic (void)
double clock_process(void)
double clock_thread(void)

uint64 t clock_realtime64(void)
uint64 t clock_monotonicé4 (void)
uint64 t clock_process64(void)
uint64 t clock_thread64(void)

8.1.3 Mopaynb coio

enum COIO_EVENT

enumerator COIO_READ
READ event

enumerator COIO_WRITE
WRITE event

int coio_wait(int fd, int event, double timeout)
Wait until READ or WRITE event on socket (£d). Yields.

ITapameTpsI
e fd (4nt) — non-blocking socket file description

e event (int) — requested events to wait. Combination of COIO_READ | COIO_WRITE
bit flags.

e timeout (double) — timeout in seconds.
PesyabraT 0 - timeout
Pesyabsrar >0 - returned events. Combination of TNT_IO_READ | TNT_IO_WRITE bit flags.

ssize_t coio_call(ssize t (*func)(va_list), ...)
Create new eio task with specified function and arguments. Yield and wait until the task is complete
or a timeout occurs. This function may use the worker_pool_threads configuration parameter.

8.1. Cnpasounuk no C API 321



Tarantool, Beinyck 1.7.5

To avoid double error checking, this function does not throw exceptions. In most cases it is also necessary
to check the return value of the called function and perform necessary actions. If func sets errno, the
errno is preserved across the call.

PesyabraT -1 and errno = ENOMEM if failed to create a task
Pesyaprar the function return (errno is preserved).

Example:

static ssize_t openfile_cb(va_list ap)

{
const char* filename = va_arg(ap);
int flags = va_arg(ap);
return open(filename, flags);
}
if (coio_call(openfile_cb, 0.10, "/tmp/file", 0) == -1)

// handle errors.

int coio_getaddrinfo(const char *host, const char *port, const struct addrinfo *hints, struct

addrinfo **res, double timeout)
Fiber-friendly version of getaddrinfo(3).

int coio_close(int fd)

Close the fd and wake any fiber blocked in coio_ wait() call on this £d.
ITapameTrpsbl
e fd (int) — non-blocking socket file description

PesyabraT the result of close(fd), see close(2)

8.1.4 Mopynb error

enum box_error_code

enumerator ER_UNKNOWN
enumerator ER_ILLEGAL_PARAMS
enumerator ER_MEMORY_ISSUE
enumerator ER_TUPLE_FOUND
enumerator ER_TUPLE_NOT_FOUND
enumerator ER_UNSUPPORTED
enumerator ER_NONMASTER
enumerator ER_READONLY
enumerator ER_INJECTION
enumerator ER_CREATE_SPACE
enumerator ER_SPACE_EXISTS
enumerator ER_DROP_SPACE
enumerator ER_ALTER_SPACE

322

Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

ER_INDEX_TYPE
ER_MODIFY_INDEX
ER_LAST_DROP
ER_TUPLE_FORMAT_LIMIT
ER_DROP_PRIMARY_KEY
ER_KEY_PART_TYPE
ER_EXACT_MATCH
ER_INVALID_MSGPACK
ER_PROC_RET
ER_TUPLE_NOT_ARRAY
ER_FIELD_TYPE
ER_FIELD_TYPE_MISMATCH
ER_SPLICE
ER_UPDATE_ARG_TYPE
ER_TUPLE_IS_TOO_LONG
ER_UNKNOWN_UPDATE_OP
ER_UPDATE_FIELD
ER_FIBER_STACK
ER_KEY_PART_COUNT
ER_PROC_LUA
ER_NO_SUCH_PROC
ER_NO_SUCH_TRIGGER
ER_NO_SUCH_INDEX
ER_NO_SUCH_SPACE
ER_NO_SUCH_FIELD
ER_EXACT_FIELD_COUNT
ER_INDEX_FIELD_COUNT
ER_WAL_IO
ER_MORE_THAN_ONE_TUPLE
ER_ACCESS_DENIED
ER_CREATE_USER
ER_DROP_USER
ER_NO_SUCH_USER
ER_USER_EXISTS
ER_PASSWORD_MISMATCH
ER_UNKNOWN_REQUEST_TYPE

8.1.

Cnpasounuk no C API

323



Tarantool, Beinyck 1.7.5

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

ER_UNKNOWN_SCHEMA_0OBJECT
ER_CREATE_FUNCTION
ER_NO_SUCH_FUNCTION
ER_FUNCTION_EXISTS
ER_FUNCTION_ACCESS_DENIED
ER_FUNCTION_MAX
ER_SPACE_ACCESS_DENIED
ER_USER_MAX
ER_NO_SUCH_ENGINE
ER_RELOAD_CFG

ER_CFG

ER_UNUSED60

ER_UNUSED61
ER_UNKNOWN_REPLICA
ER_REPLICASET_UUID_MISMATCH
ER_INVALID_UUID
ER_REPLICASET_UUID_IS_RO
ER_INSTANCE_UUID_MISMATCH
ER_REPLICA_ID_IS_RESERVED
ER_INVALID_ORDER
ER_MISSING_REQUEST_FIELD
ER_IDENTIFIER
ER_DROP_FUNCTION
ER_ITERATOR_TYPE
ER_REPLICA_MAX
ER_INVALID_XLOG
ER_INVALID_XLOG_NAME
ER_INVALID_XLOG_ORDER
ER_NO_CONNECTION
ER_TIMEQUT
ER_ACTIVE_TRANSACTION
ER_NO_ACTIVE_TRANSACTION
ER_CROSS_ENGINE_TRANSACTION
ER_NO_SUCH_ROLE
ER_ROLE_EXISTS
ER_CREATE_ROLE

324

Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

ER_INDEX_EXISTS
ER_TUPLE_REF_OVERFLOW
ER_ROLE_LOOP

ER_GRANT

ER_PRIV_GRANTED
ER_ROLE_GRANTED
ER_PRIV_NOT_GRANTED
ER_ROLE_NOT_GRANTED
ER_MISSING_SNAPSHOT
ER_CANT_UPDATE_PRIMARY_KEY
ER_UPDATE_INTEGER_OVERFLOW
ER_GUEST_USER_PASSWORD
ER_TRANSACTION_CONFLICT
ER_UNSUPPORTED_ROLE_PRIV
ER_LOAD_FUNCTION
ER_FUNCTION_LANGUAGE
ER_RTREE_RECT

ER_PROC_C

ER_UNKNOWN_RTREE_INDEX_DISTANCE_TYPE

ER_PROTOCOL

ER_UPSERT_UNIQUE_SECONDARY_KEY
ER_WRONG_INDEX_RECORD
ER_WRONG_INDEX_PARTS
ER_WRONG_INDEX_OPTIONS
ER_WRONG_SCHEMA_VERSION
ER_MEMTX_MAX_TUPLE_SIZE
ER_WRONG_SPACE_OPTIONS
ER_UNSUPPORTED_INDEX_FEATURE
ER_VIEW_IS_RO

ER_UNUSED114

ER_SYSTEM
ER_LOADING

ER_CONNECTION_TO_SELF
ER_KEY_PART_IS_TOO_LONG
ER_COMPRESSION
ER_CHECKPOINT_IN_PROGRESS

8.1.

Cnpasounuk no C API

325



Tarantool, Beinyck 1.7.5

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

enumerator

ER_SUB_STMT_MAX
ER_COMMIT_IN_SUB_STMT
ER_ROLLBACK_IN_SUB_STMT
ER_DECOMPRESSION
ER_INVALID_XLOG_TYPE
ER_ALREADY_RUNNING
ER_INDEX_FIELD_COUNT_LIMIT
ER_LOCAL_INSTANCE_ID_IS_READ_ONLY
ER_BACKUP_IN_PROGRESS
ER_READ_VIEW_ABORTED
ER_INVALID_INDEX_FILE
ER_INVALID_RUN_FILE
ER_INVALID_VYLOG_FILE
ER_CHECKPOINT_ROLLBACK
ER_VY_QUOTA_TIMEOUT
ER_PARTIAL_KEY
ER_TRUNCATE_SYSTEM_SPACE

box_error_code_MAX

box_error_t
Error - contains information about error.

const char * box_error_type(const boz_ error_t *error)

Return the error type, e.g. «ClientError», «SocketErrors, etc.

ITapameTrpsl
e error (box_error_t*) — error
PesyapraTr not-null string

uint32 t box_error_code(const box_error_t *error)
Return IPROTO error code

ITapameTrpsbl
e error (box_error_t*) — error
PesyabpraT enum bozx_error_code

const char * box_error_message(const box_error_t *error)
Return the error message

ITapameTpst
e error (box_error_t*) — error
PesyabsraTt not-null string

box_error_t * box_error_last (void)
Get the information about the last API call error.

326

Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

The Tarantool error handling works most like libc’s errno. All API calls return -1 or NULL in the
event of error. An internal pointer to box_error_t type is set by API functions to indicate what went
wrong. This value is only significant if AP call failed (returned -1 or NULL).

Successful function can also touch the last error in some cases. You don’t have to clear the last error
before calling API functions. The returned object is valid only until next call to any API function.

You must set the last error using box error_set() in your stored C procedures if you want to return a
custom error message. You can re-throw the last API error to IPROTO client by keeping the current
value and returning -1 to Tarantool from your stored procedure.

Pesyabtat last error

void box_error_clear (void)
Clear the last error.

int box_error_set (const char *file, unsigned line, uint32_t code, const char *format, ...)
Set the last error.

ITapameTpsl
e char* file (const) —
e line (unsigned) —
e code (uint32_t) — IPROTO error code
e char* format (const) —
e ... — format arguments
See also: IPROTO error code

box_error_raise(code, format, ...)
A backward-compatible API define.

8.1.5 Mopayns fiber

struct fiber
Fiber - contains information about a fiber.

typedef int (¥*fiber_func) (va_list)
Function to run inside a fiber.

struct fiber *fiber_new(const char *name, fiber func f)
Create a new fiber.

Takes a fiber from the fiber cache, if it’s not empty. Can fail only if there is not enough memory for
the fiber structure or fiber stack.

The created fiber automatically returns itself to the fiber cache when its «main» function completes.
ITapameTrpsl
e char* name (const) — string with fiber name
e f (fiber_func) — func for run inside fiber
See also: fiber start()

struct fiber *fiber_new_ex (const char *name, const struct fiber attr *fiber attr, fiber _func f)
Create a new fiber with defined attributes.

Can fail only if there is not enough memory for the fiber structure or fiber stack.

8.1. Cnpasounuk no C API 327



Tarantool, Beinyck 1.7.5

The created fiber automatically returns itself to the fiber cache if has a default stack size when its
«mainy function completes.

ITapameTrpsbl
e char* name (const) — string with fiber name
e struct fiber_attr* fiber_attr (const) — fiber attributes container
e f (fiber_func) — function to run inside the fiber
See also: fiber_ start()

void fiber_start (struct fiber *callee, ...)
Start execution of created fiber.

ITapameTrpsbl
e fiber* callee (struct) — fiber to start
e ... —arguments to start the fiber with

void fiber_yield (void)
Return control to another fiber and wait until it’ll be woken.

See also: fiber wakeup()

void fiber_wakeup (struct fiber *f)
Interrupt a synchronous wait of a fiber

ITapameTpsbl
e fiber* f (struct) — fiber to be woken up

void fiber_cancel (struct fiber *f)
Cancel the subject fiber (set FIBER_IS_CANCELLED flag)

If target fiber’s flag FIBER_IS_CANCELLABLE set, then it would be woken up (maybe prematurely).
Then current fiber yields until the target fiber is dead (or is woken up by fiber wakeup()).

ITapameTpsl
e fiber* f (struct) — fiber to be cancelled

bool fiber_set_cancellable(bool yesno)
Make it possible or not possible to wakeup the current fiber immediately when it’s cancelled.

ITapameTrpsl
e fiberx f (struct) — fiber
e yesno (bool) — status to set
PesyabTaT previous state

void fiber_set_joinable(struct fiber *fiber, bool yesno)
Set fiber to be joinable (false by default).

ITapameTrpsbl
e fiber* f (struct) — fiber
e yesno (bool) — status to set

void fiber_join(struct fiber *f)
Wait until the fiber is dead and then move its execution status to the caller. The fiber must not be
detached.

328 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

ITapameTpsl
e fiberx f (struct) — fiber to be woken up
Before: FIBER_IS_JOINABLE flag is set.
See also: fiber_set_joinable()

void fiber_sleep(double s)
Put the current fiber to sleep for at least ,;s* seconds.

ITapameTpsl
e s (double) — time to sleep
Note: this is a cancellation point.
See also: fiber is_cancelled()

bool fiber_is_cancelled(void)
Check current fiber for cancellation (it must be checked manually).

double fiber_time (void)
Report loop begin time as double (cheap).

uint64 t fiber_time64(void)
Report loop begin time as 64-bit int.

void fiber_reschedule (void)
Reschedule fiber to end of event loop cycle.

struct slab_cache

struct slab_cache *cord_slab_cache(void)

Return slab_cache suitable to use with tarantool/small library

struct fiber *fiber_self (void)
Return the current fiber.

struct fiber_attr

void fiber_attr_new(void)
Create a new fiber attributes container and initialize it with default parameters.

Can be used for creating many fibers: corresponding fibers will not take ownership.

void fiber_attr_delete(struct fiber_ attr *fiber atir)
Delete the fiber_attr and free all allocated resources. This is safe when fibers created with this
attribute still exist.

ITapameTrpsbl
e fiber_attr* fiber_attribute (struct) — fiber attributes container

int fiber_attr_setstacksize(struct fiber attr *fiber attr, size _t stack _size)
Set the fiber’s stack size in the fiber attributes container.

ITapameTrpsbl
e fiber_attr* fiber_attr (struct) — fiber attributes container
e stack_size (size_t) — stack size for new fibers (in bytes)
PesyabraTt 0 on success

Pesyabrat -1 on failure (if stack_size is smaller than the minimum allowable fiber stack
size)

8.1. Cnpasounuk no C API 329



Tarantool, Beinyck 1.7.5

size_t fiber_attr_getstacksize(struct fiber_attr *fiber attr)
Get the fiber’s stack size from the fiber attributes container.

ITapameTrpsbl

e fiber_attr* fiber_attr (struct) — fiber attributes container, or NULL for
default

PesyabraT stack size (in bytes)

struct fiber_cond
A conditional variable: a synchronization primitive that allow fibers in Tarantool’s cooperative
multitasking environment to yield until some predicate is satisfied.

Fiber conditions have two basic operations — «wait> and «signaly, — where «wait»> suspends the
execution of a fiber (i.e. yields) until «signal» is called.

Unlike pthread_cond, fiber_cond doesn’t require mutex/latch wrapping.

struct fiber cond *fiber_cond_new(void)
Create a new conditional variable.

void fiber_cond_delete(struct fiber cond *cond)
Delete the conditional variable.

Note: behavior is undefined if there are fibers waiting for the conditional variable.
ITapameTrpsbr
e fiber_cond* cond (struct) — conditional variable to delete

void fiber_cond_signal(struct fiber_cond *cond);
Wake up one (any) of the fibers waiting for the conditional variable.

Does nothing if no one is waiting.
ITapameTrpsbl
e fiber_cond* cond (struct) — conditional variable

void fiber_cond_broadcast(struct fiber_cond *cond);
Wake up all fibers waiting for the conditional variable.

Does nothing if no one is waiting.
ITapameTpsl
e fiber_cond* cond (struct) — conditional variable

int fiber_cond_wait_timeout (struct fiber cond *cond, double timeout)
Suspend the execution of the current fiber (i.e. yield) until fiber cond_ signal() is called.

Like pthread_cond, fiber_cond can issue spurious wake ups caused by explicit fiber wakeup() or
fiber _cancel() calls. It is highly recommended to wrap calls to this function into a loop and check the
actual predicate and fiber is_cancelled() on every iteration.

ITapameTrpsbl

e fiber_cond* cond (struct) — conditional variable

e double timeout (struct) — timeout in seconds
Pesyabrar 0 on fiber cond_ signal() call or a spurious wake up

PesyabraT -1 on timeout, and the error code is set to ,,TimedOut*

330 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

int fiber_cond_wait (struct fiber cond *cond)
Shortcut for fiber cond_wait_timeout().

8.1.6 Mopaynb index

box_iterator_t
A space iterator

enum iterator_type
Controls how to iterate over tuples in an index. Different index types support different iterator types.
For example, one can start iteration from a particular value (request key) and then retrieve all tuples
where keys are greater or equal (— GE) to this key.

If iterator type is not supported by the selected index type, iterator constructor must fail with
ER_UNSUPPORTED. To be selectable for primary key, an index must support at least ITER_EQ
and ITER_GE types.

NULL value of request key corresponds to the first or last key in the index, depending on iteration
direction. (first key for GE and GT types, and last key for LE and LT). Therefore, to iterate over all
tuples in an index, one can use ITER _GE or ITER _LE iteration types with start key equal to NULL.
For ITER _EQ, the key must not be NULL.

enumerator ITER_EQ
key == x ASC order

enumerator ITER_REQ
key == x DESC order

enumerator ITER_ALL
all tuples

enumerator ITER_LT
key < x

enumerator ITER_LE
key <—=x

enumerator ITER_GE
key >=x

enumerator ITER_GT
key > x

enumerator ITER_BITS_ALL_SET
all bits from x are set in key

enumerator ITER_BITS_ANY_SET
at least one x’s bit is set

enumerator ITER_BITS_ALL_NOT_SET
all bits are not set

enumerator ITER_OVERLAPS
key overlaps x

enumerator ITER_NEIGHBOR
tuples in distance ascending order from specified point

bozx_iterator t *box_index_iterator (uint32 t space id, uint32 t index id, int {type, const
char *key, const char *key end)
Allocate and initialize iterator for space id, index _id.

8.1. Cnpasounuk no C API 331



Tarantool, Beinyck 1.7.5

The returned iterator must be destroyed by box_iterator _free.
ITapameTrpsbl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e type (int) — iterator_type
e char* key (const) — encode key in MsgPack Array format ([partl, part2, ...])
e char* key_end (const) — the end of encoded key
Pesysnbrar NULL on error (check boz_ error_last)
Pesyaprar iterator otherwise
See also box_iterator mnext, box_iterator free

int box_iterator_next (box_iterator_t *iterator, box_tuple t **result)
Retrieve the next item from the iterator.

ITapameTrpsbl
e iterator (box_iterator_t*) — an iterator returned by boz_index_iterator

e result (box_tuple_t**) — output argument. result a tuple or NULL if there is no
more data.

Pesyabrar -1 on error (check box_error_last)
PesyabsraT 0 on success. The end of data is not an error.

void box_iterator_free(boz_iterator t *iterator)
Destroy and deallocate iterator.

ITapameTrpsbl
e iterator (box_iterator_t*) — an iterator returned by boz_index_iterator

int iterator_direction(enum iterator type type)
Determine a direction of the given iterator type: -1 for REQ, LT, LE, and +1 for all others.

ssize t box_index_len(uint32 t space_id, uint32 t index id)
Return the number of element in the index.

ITapameTpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
Pesyabrat -1 on error (check box_error_last)
PesyapraTr >= 0 otherwise

ssize t box_index_bsize(uint32 t space_id, uint32_t index id)
Return the number of bytes used in memory by the index.

ITapameTpsI
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
Pesyabrat -1 on error (check box_error_last)

PesyabpraTr >= 0 otherwise

332 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

int box_index_random(uint32_t space_id, uint32 t index id, uint32 t rnd, box_ tuple t **result)
Return a random tuple from the index (useful for statistical analysis).

ITapameTrpsbl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e rnd (uint32_t) — random seed

e result (box_tuple_t#**) — output argument. result a tuple or NULL if there is no
tuples in space

See also: index_object.random

int box_index_get (uint32 _t space_id, uint32 t index id, const char *key, const char *key end,

box_tuple t **result)
Get a tuple from index by the key.

Please note that this function works much more faster than index_object.select or box_index_iterator
+ box__iterator _meuxt.

ITapameTpsI
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e char* key (const) — encode key in MsgPack Array format ([partl, part2, ...])
e char* key_end (const) — the end of encoded key

e result (box_tuple_t#**) — output argument. result a tuple or NULL if there is no
tuples in space

Pesyabrar -1 on error (check box error_last)
PesysibraT 0 on success
See also: index_object.get ()

int box_index_min(uint32 t space id, uint32 t index id, const char *key, const char *key end,
box_tuple t **result)
Return a first (minimal) tuple matched the provided key.

ITapameTrpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e char* key (const) — encode key in MsgPack Array format ([partl, part2, ...])
e char* key_end (const) — the end of encoded key

e result (box_tuple_t#**) — output argument. result a tuple or NULL if there is no
tuples in space

Pesyabrat -1 on error (check box_error_last())
PesyasTaT 0 on success
See also: index_ object.min()

int box_index_max (uint32_t space_ id, uint32 t index_id, const char *key, const char *key end,

box_tuple t **result)
Return a last (maximal) tuple matched the provided key.

8.1. Cnpasounuk no C API 333



Tarantool, Beinyck 1.7.5

ITapameTpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e char* key (const) — encode key in MsgPack Array format ([partl, part2, ...])
e char* key_end (const) — the end of encoded key

e result (box_tuple_t#**) — output argument. result a tuple or NULL if there is no
tuples in space

Pesyabrat -1 on error (check boz_error_last())
PesyabTaT 0 on success
See also: index_ object.max()

ssize_t box_index_count (uint32 t space id, uint32 t index id, int type, const char *key, const
char *key end)
Count the number of tuple matched the provided key.

ITapameTrpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
e type (int) — iterator_type
e char* key (const) — encode key in MsgPack Array format ([partl, part2, ...])
e char* key_end (const) — the end of encoded key

Pesyabrat -1 on error (check box_error last())

PesyabraT 0 on success

See also: indez_ object.count()

const box_key def t *box_index_key_def (uint32 t space id, uint32 t index_id)
Return key definition for an index

Returned object is valid until the next yield.
ITapameTpsl
e space_id (uint32_t) — space identifier
e index_id (uint32_t) — index identifier
PesyabraT key definition on success

Pezyaprar NULL on error

See also: box tuple compare(), box_tuple_format_new()

8.1.7 Mopayns latch
box_latch_t
A lock for cooperative multitasking environment

box_latch_t *box_latch_new(void)
Allocate and initialize the new latch.

Pesyabtat allocated latch object

334 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Tun pesyabprara box latch t *

void box_latch_delete(box_latch t *latch)
Destroy and free the latch.

ITapameTrpsl
e latch (box_latch_t*) — latch to destroy

void box_latch_lock(box_latch_t *latch)
Lock a latch. Waits indefinitely until the current fiber can gain access to the latch.

param box latch t* latch latch to lock

int box_latch_trylock(box latch t *latch)
Try to lock a latch. Return immediately if the latch is locked.

ITapameTpsI

e latch (box_latch_t*) — latch to lock
PesyawraT status of operation. 0 - success, 1 - latch is locked
Twun pesyabraTta int

void box_latch_unlock (box_latch_t *latch)
Unlock a latch. The fiber calling this function must own the latch.

ITapameTrpsbr

e latch (box_latch_t*) — latch to unlock

8.1.8 Moaynb lua/utils
void *1lual_pushcdata (struct lua_State *L, uint32 t ctypeid)
Push cdata of given ctypeid onto the stack.

CTypelD must be used from FFI at least once. Allocated memory returned uninitialized. Only numbers
and pointers are supported.

ITapameTrpsl
e L (lua_Statex) — Lua State
e ctypeid (uint32_t) — FFI's CTypelD of this cdata
PesyabpTaT memory associated with this cdata
See also: luaL_ checkcdata()

void *1ual_checkcdata(struct lua_State *L, int idz, uint32_t *ctypeid)
Check whether the function argument idx is a cdata.

ITapameTrpsl

e L (lua_Statex) — Lua State

e idx (2nt) — stack index

e ctypeid (uint32_t*) — output argument. FFI’s CTypelD of returned cdata
PesyapTaT memory associated with this cdata

See also: luaL_pushcdata()

8.1. Cnpasounuk no C API 335



Tarantool, Beinyck 1.7.5

void lual_setcdatagc (struct lua_State *L, int idz)
Set finalizer function on a cdata object.

Equivalent to call ffi.gc(obj, function). Finalizer function must be on the top of the stack.
ITapameTpsl
e L (lua_Statex) — Lua State
e idx (<nt) — stack index

uint32 t lual_ctypeid(struct lua_State *L, const char *ctypename)
Return CTypelD (FFI) of given CDATA type.

ITapameTrpsbr
e L (lua_Statex) — Lua State

e char* ctypename (const) — C type name as string (e.g. «struct request» or
«uint32_t»)

Pesyawsrar CTypelD
See also: luaL_pushcdata(), luaL__ checkedata()

int lual_cdef (struct lua_ State *L, const char *ctypename)
Declare symbols for FFI.

ITapameTrpsbr
e L (lua_Statex) — Lua State
e char* ctypename (const) — C definitions (e.g. «struct stat»)
PesyapraTr 0 on success
Pesyaprar LUA_ERRRUN, LUA_ERRMEM™ or ~ LUA_ERRERR otherwise.
See also: £fi.cdef (def)

void lual_pushuint64 (struct lua_State *L, uint64 t val)
Push uint64 t onto the stack.

ITapameTrpsbl
e L (lua_Statex*) — Lua State
e val (uint64_t) — value to push

void lual._pushint64 (struct lua_State *L, int64 t val)
Push int64 t onto the stack.

ITapameTrpsl
e L (lua_Statex) — Lua State
e val (int64_t) — value to push

uint64 t lual_checkuint64(struct lua_State *L, int idz)
Check whether the argument idx is a uint64 or a convertable string and returns this number.

Throws error if the argument can’t be converted

uint64 t lual_checkint64(struct lua_State *L, int idx)
Check whether the argument idx is a int64 or a convertable string and returns this number.

Throws error if the argument can’t be converted

336 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

uint64 t lual_touint64 (struct lua_State *L, int idz)

Check whether the argument idx is a uint64 or a convertable string and returns this number.

Pesyaprar the converted number or 0 of argument can’t be converted

int64 t lual_toint64 (struct lua_State *L, int idz)
Check whether the argument idx is a int64 or a convertable string and returns this number.

PesyabraTr the converted number or 0 of argument can’t be converted

void luaT_pushtuple(struct lua_State *L, box_tuple t *tuple)
Push a tuple onto the stack.

ITapameTpsl
e L (lua_Statex) — Lua State
Throws error on OOM
See also: luaT istuple

box_tuple t *luaT_istuple(struct lua_State *L, int idz)
Check whether idx is a tuple.

ITapameTrpsI

e L (lua_Statex) — Lua State

e idx (<nt) — the stack index
Pesyaprar non-NULL if idx is a tuple
Pesyasrar NULL if idx is not a tuple

int luaT_error (lua_State *L)
Re-throw the last Tarantool error as a Lua object.

See also: lua error(), boz_error_last().

int luaT_cpcall(lua_State *L, lua_CFunction func, void *ud)
Similar to lua_cpcall(), but with the proper support of Tarantool errors.

lua_ State *1uaT_state (void)
Get the global Lua state used by Tarantool.

8.1.9 Moaynb say (normposaHue)

enum say_level

enumerator S_FATAL
do not use this value directly

enumerator S_SYSERROR
enumerator S_ERROR
enumerator S_CRIT
enumerator S_WARN
enumerator S_INFO
enumerator S_VERBOSE

enumerator S_DEBUG

8.1. Cnpasounuk no C API

337


https://www.lua.org/manual/5.1/manual.html#lua_error
https://www.lua.org/manual/5.1/manual.html#lua_cpcall

Tarantool, Beinyck 1.7.5

say (level, format, ...)
Format and print a message to Tarantool log file.

ITapameTrpsbl
e level (int) — log level
e charx format (const) — printf ()-like format string
e ... — format arguments
See also printf(3), say_level

say_error (format, ...)
say_crit(format, ...)
say_warn (format, ...)
say_info(format, ...)
say_verbose (format, ...)
say_debug (format, ...)
say_syserror (format, ...)
Format and print a message to Tarantool log file.

ITapameTpsbl
e char* format (const) — printf ()-like format string
e ... — format arguments
See also printf(3), say level

Example:

say_info("Some useful information: %s", status);

8.1.10 Mopgynb schema

enum SCHEMA

enumerator BOX_SYSTEM_ID_MIN
Start of the reserved range of system spaces.

enumerator BOX_SCHEMA_ID
Space id of _schema.

enumerator BOX_SPACE_ID
Space id of _space.

enumerator BOX_VSPACE_ID
Space id of _vspace view.

enumerator BOX_INDEX_ID
Space id of _index.

enumerator BOX_VINDEX_ID
Space id of _ vindex view.

enumerator BOX_FUNC_ID
Space id of _func.

enumerator BOX_VFUNC_ID
Space id of _vfunc view.

338

Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

enumerator BOX_USER_ID
Space id of _user.

enumerator BOX_VUSER_ID
Space id of _vuser view.

enumerator BOX_PRIV_ID
Space id of _ priv.

enumerator BOX_VPRIV_ID
Space id of _vpriv view.

enumerator BOX_CLUSTER_ID
Space id of _ cluster.

enumerator BOX_TRUNCATE_ID
Space id of _truncate.

enumerator BOX_SYSTEM_ID_MAX
End of reserved range of system spaces.

enumerator BOX_ID_NIL
NULL value, returned on error.

8.1.11 Mopynes trivia/config

API_EXPORT
Extern modifier for all public functions.

PACKAGE_VERSION_MAJOR
Package major version - 1 for 1.7.0.

PACKAGE_VERSION_MINOR
Package minor version - 7 for 1.7.0.

PACKAGE_VERSION_PATCH
Package patch version - 0 for 1.7.0.

PACKAGE_VERSION
A string with major-minor-patch-commit-id identifier of the release, e.g. 1.7.0-1216-g73{7154.

SYSCONF_DIR
System configuration dir (e.g /etc)

INSTALL_PREFIX
Install prefix (e.g. /usr)

BUILD_TYPE
Build type, e.g. Debug or Release

BUILD_INFO
CMake build type signature, e.g. Linux-x86_64-Debug

BUILD_OPTIONS
Command line used to run CMake.

COMPILER_INFO
Pathes to C and CXX compilers.

TARANTOOL_C_FLAGS
C compile flags used to build Tarantool.

8.1. Cnpasounuk no C API 339



Tarantool, Beinyck 1.7.5

TARANTOOL_CXX_FLAGS
CXX compile flags used to build Tarantool.

MODULE_LIBDIR
A path to install *.1lua module files.

MODULE_LUADIR
A path to install *.so/*.dylib module files.

MODULE_INCLUDEDIR
A path to Lua includes (the same directory where this file is contained)

MODULE_LUAPATH
A constant added to package.path in Lua to find *.1lua module files.

MODULE_LIBPATH
A constant added to package.cpath in Lua to find *.so module files.

8.1.12 Mopaynsb tuple

box_tuple_format_t

boz_tuple format_t *box_tuple_format_default (void)
Tuple format.

Each Tuple has associated format (class). Default format is used to create tuples which are not attach
to any particular space.

box_tuple_t
Tuple

box_tuple t *box_tuple_new(bozx_tuple_format_t *format,  const  char *tuple, const

char *tuple end)
Allocate and initialize a new tuple from a raw MsgPack Array data.

ITapameTpsbl

e format (box_tuple_format_t*) — tuple format. Use boz_tuple_format_ default()
to create space-independent tuple.

e char* tuple (const) — tuple data in MsgPack Array format ([field1, field2, ...])
e char* tuple_end (const) — the end of data
Pesyasrar NULL on out of memory
PesyabptaTt tuple otherwise
See also: boz.tuple.new()

int box_tuple_ref (box_tuple t *tuple)
Increase the reference counter of tuple.

Tuples are reference counted. All functions that return tuples guarantee that the last returned tuple is
refcounted internally until the next call to API function that yields or returns another tuple.

You should increase the reference counter before taking tuples for long processing in your code. Such
tuples will not be garbage collected even if another fiber remove they from space. After processing
please decrement the reference counter using boz_tuple unref(), otherwise the tuple will leak.

ITapameTrpsbl

e tuple (box_tuple_t*) — a tuple

340 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Pesysbrar -1 on error
PesyapraTr 0 otherwise
See also: boz_ tuple_unref()

void box_tuple_unref (boz_tuple_t *tuple)
Decrease the reference counter of tuple.

ITapameTpsbl

e tuple (box_tuple_t*) — a tuple
Pesyaprar -1 on error

PesyasraT 0 otherwise

See also: box_tuple_ref()
uint32_ t box_tuple_field_count(const box tuple ¢ *tuple)
Return the number of fields in tuple (the size of MsgPack Array).
ITapameTrpsbl

e tuple (box_tuple_t*) — a tuple

size_t box_tuple_bsize(const box_tuple t *tuple)
Return the number of bytes used to store internal tuple data (MsgPack Array).
ITapameTrpsbl
e tuple (box_tuple_t*) — a tuple
ssize_t box_tuple_to_buf (const boz_tuple t *tuple, char *buf, size t size)

Dump raw MsgPack data to the memory buffer buf of size size.

Store tuple fields in the memory buffer.
Upon successful return, the function returns the number of bytes written. If buffer size is not enough
then the return value is the number of bytes which would have been written if enough space had been
available.
PesyasTat -1 on error
Pesyabprar number of bytes written on success.
box_tuple format_t *box_tuple_format (const box_tuple t *tuple)
Return the associated format.
ITapameTrpsbl

e tuple (box_tuple_t*) — a tuple

PesyabraT tuple format

const char *box_tuple_field(const box_tuple t *tuple, uint32 t field id)
Return the raw tuple field in MsgPack format. The result is a pointer to raw MessagePack data which

can be decoded with mp decode functions, for an example see the tutorial program read.c.
The buffer is valid until next call to box _tuple * functions.

ITapameTpsl
e tuple (box_tuple_t*) — a tuple
e field_id (uint32_t) — zero-based index in MsgPack array.

Pesyaprar NULL if i >= boz_tuple field count()

8.1. Cnpasounuk no C API 341



Tarantool, Beinyck 1.7.5

PesyapraTr msgpack otherwise

enum field_type

enumerator FIELD_TYPE_ANY
enumerator FIELD_TYPE_UNSIGNED
enumerator FIELD_TYPE_STRING
enumerator FIELD_TYPE_ARRAY
enumerator FIELD_TYPE_NUMBER
enumerator FIELD_TYPE_INTEGER
enumerator FIELD_TYPE_SCALAR
enumerator field_type_MAX
Possible data types for tuple fields.

Can’t use STRS/ENUM macros for them, since there is a mismatch between enum name (STRING)
and type name literal («<STR»). STR is already used as Objective C type.

typedef struct key def box_key_def_t
Key definition

box_key def t *box_key_def_new(uint32 t *fields, uint32_t *types, uint32_t part_count)
Create key definition with the key fields with passed typed on passed positions.

May be used for tuple format creation and/or tuple comparison.
ITapameTpsl
e fields (uint32_t*) — array with key field identifiers
e types (uint32_t) — array with key field types
e part_count (uint32_t) — the number of key fields
PesynbsraT key definition on success
Pesyaprar NULL on error

void box_key_def_delete(box_key def t *key def)
Delete key definition

ITapameTrpsbr
e key_def (box_key_def_t*) — key definition to delete

box_tuple format t *box_tuple_format_new(struct key def *keys, uintl6 t key count)
Return new in-memory tuple format based on passed key definitions

ITapameTrpsbl
e keys (key_def) — array of keys defined for the format
e key_count (uint16_t) — count of keys

PesyabraT new tuple format on success

Pesyabprar NULL on error

void box_tuple_format_ref (box_tuple_format_t *format)
Increment tuple format ref count

342 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

ITapameTpsl
e tuple_format (box_tuple_format_t) — tuple format to ref

void box_tuple_format_unref (boz_tuple_format_t *format)
Decrement tuple format ref count

ITapameTrpsbr
e tuple_format (box_tuple_format_t) — tuple format to unref

int box_tuple_compare(const box_tuple_t *tuple_a, const box_tuple_t *tuple b, const
box_key def t *key def)
Compare tuples using key definition

ITapameTrpsbl

e box_tuple_t* tuple_a (const) — the first tuple

e box_tuple_t* tuple_b (const) — the second tuple

e box_key_def_t* key_def (const) — key definition
Pesyabrar 0 if key_fields(tuple_a) == key_fields(tuple_b)
Pesyabrar <0 if key_fields(tuple_a) < key_fields(tuple_b)
Pesynbrar >0 if key_fields(tuple_a) > key_fields(tuple_b)

See also: enum field type

int box_tuple_compare_with_key(const box_tuple_t *tuple, const char *key, const box_key_def_t *key_def)
Compare a tuple with a key using key definition

ITapameTrpsbl
e box_tuple_t* tuple (const) — tuple
e char* key (const) — key with MessagePack array header
e box_key_def_t* key_def (const) — key definition
Pesyabrar 0 if key_fields(tuple) == parts(key)
Pesyabrat <0 if key_fields(tuple) < parts(key)
Pesyabrat >0 if key_fields(tuple) > parts(key)
See also: enum field type

box_tuple_iterator_t
Tuple iterator

box_tuple iterator t *box_tuple_iterator (box_tuple t *tuple)
Allocate and initialize a new tuple iterator. The tuple iterator allow to iterate over fields at root level
of MsgPack array.

Example:

box_tuple_iterator_t* it = box_tuple_iterator (tuple);
if (it == NULL) {
// error handling using boz_error_last()
}
const char* field;
while (field = box_tuple_next(it)) {
// process raw MsgPack data

(continues on next page)

8.1. Cnpasounuk no C API 343



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

}

// rewind iterator to first position
box_tuple_rewind (it)
assert (box_tuple_position(it) == 0);

// rewind three fields
field = box_tuple_seek(it, 3);

assert (box_tuple_position(it) == 4);

box_iterator_free(it);

void box_tuple_iterator_free(box_tuple iterator t *it)
Destroy and free tuple iterator

uint32 t box_tuple_position(box tuple iterator t *it)
Return zero-based next position in iterator. That is, this function return the field id of field that will
be returned by the next call to boz_tuple next(). Returned value is zero after initialization or rewind
and box_tuple_field_count() after the end of iteration.

ITapameTrpsl
e it (box_tuple_iterator_t*) — a tuple iterator
PesyabTaT position

void box_tuple_rewind (box_tuple iterator t *it)
Rewind iterator to the initial position.

ITapameTpsl
e it (box_tuple_iterator_t*) — a tuple iterator
After: box_tuple_position(it) ==

const char *box_tuple_seek (boz_tuple iterator t *it, uint32 t field mno)
Seek the tuple iterator.

The result is a pointer to raw MessagePack data which can be decoded with mp decode functions, for
an example see the tutorial program read.c. The returned buffer is valid until next call to box tuple *
API. Requested field no returned by next call to box _tuple next(it).

ITapameTrpsl
e it (box_tuple_iterator_t*) — a tuple iterator
e field_no (uint32_t) — field number - zero-based position in MsgPack array
After:
e box_tuple_position(it) == field_not if returned value is not NULL.
e box_tuple_position(it) == box_tuple_field_count(tuple) if returned value is NULL.

const char *box_tuple_next (box_tuple_iterator t *it)
Return the next tuple field from tuple iterator.

The result is a pointer to raw MessagePack data which can be decoded with mp _decode functions, for
an example see the tutorial program read.c. The returned buffer is valid until next call to box _tuple *
API

ITapameTrpsl

344 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

e it (box_tuple_iterator_t*) — a tuple iterator
Pesyaprar NULL if there are no more fields
PesyabpraT MsgPack otherwise
Before: box_tuple_position() is zero-based ID of returned field.
After: box_tuple_position(it) == box_tuple_field_count(tuple) if returned value is NULL.
box_tuple t *box_tuple_update(const box tuple t *tuple, const char *expr, const char *expr end)

box_tuple t *box_tuple_upsert (const boxr_tuple_t *tuple, const char *expr, const char *expr end)

8.1.13 Mopaynb txn
bool box_txn (void)
Return true if there is an active transaction.

int box_txn_begin (void)
Begin a transaction in the current fiber.

A transaction is attached to caller fiber, therefore one fiber can have only one active transaction.
PesyabtaT 0 on success
Pesyabtat -1 on error. Perhaps a transaction has already been started

int box_txn_commit (void)
Commit the current transaction.

PesyabtaTt 0 on success
PesyabraT -1 on error. Perhaps a disk write failure

void box_txn_rollback (void)
Roll back the current transaction.

box txn savepoint t * savepoint(void)
Return a descriptor of a savepoint.

void box_txn_rollback_to_savepoint (box txn savepoint t *savepoint)
Roll back the current transaction as far as the specified savepoint.

void *box_txn_alloc(size t size)
Allocate memory on txn memory pool.

The memory is automatically deallocated when the transaction is committed or rolled back.

Pesyasrar NULL on out of memory

8.2 Internals

8.2.1 Tarantool's binary protocol

Tarantool’s binary protocol is a binary request/response protocol.

8.2. Internals 345



Tarantool, Beinyck 1.7.5

Notation in diagrams

0 X
oot
I | - X bytes
oot

TYPE - type of MsgPack value (if it is a MsgPack object)

+====+
| | - Variable size MsgPack object
+====+

TYPE - type of MsgPack value

+7TTT

| | - Variable size MsgPack Array/Map
+T

TYPE - type of MsgPack value

MsgPack data types:
e MP INT - Integer
e MP_ MAP - Map
e MP_ ARR - Array
e MP STRING - String
MP _FIXSTR - Fixed size string
MP _OBJECT - Any MsgPack object
MP _BIN - MsgPack binary format

Greeting packet

TARANTOOL'S GREETING:

I 64 bytes

o o +
| | |
| BASE64 encoded SALT | NULL |
I 44 bytes I I
gy Ty +
64 107 127

The server instance begins the dialogue by sending a fixed-size (128-byte) text greeting to the client. The
greeting always contains two 64-byte lines of ASCII text, each line ending with a newline character (,,\n*).
The first line contains the instance version and protocol type. The second line contains up to 44 bytes of
base64-encoded random string, to use in the authentication packet, and ends with up to 23 spaces.

346 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

Unified packet structure
Once a greeting is read, the protocol becomes pure request/response and features a complete access to
Tarantool functionality, including:
e request multiplexing, e.g. ability to asynchronously issue multiple requests via the same connection
e response format that supports zero-copy writes
For data structuring and encoding, the protocol uses msgpack data format, see http://msgpack.org

The Tarantool protocol mandates use of a few integer constants serving as keys in maps used in the protocol.
These constants are defined in src/box/iproto constants.h

We list them here too:

-- user keys

<code> ::= 0x00
<sync> ::= 0x01
<schema_id> ::= 0x05
<space_id> 1= 0x10
<index_id> = 0Ox11
<limit> r:= 0x12
<offset> p:= 0x13
<iterator> 1= 0x14
<key> ::= 0x20
<tuple> 1= 0x21
<function_name> ::= 0x22
<username> 1= 0x23
<expression> 1= 0x27
<ops> ::= 0x28
<data> 1= 0x30
<error> p:= 0x31

-- -- Value for <code> key in request can be:
-- User command codes

<select> ::= 0x01
<insert> ::= 0x02
<replace> ::= 0x03
<update> ::= 0x04
<delete> ::= 0x05
<call_16> ::= 0x06
<auth> c:= 0x07
<eval> ::= 0x08
<upsert> ::= 0x09
<call> ::= 0x0a
-- Admin command codes
<ping> 1= 0x40

-- -- Value for <code> key in response can be:
<0K> ::= 0x00
<ERROR> 1:= 0x8XXX

Both <header> and <body> are msgpack maps:

Request/Response:
0 5
e +

(continues on next page)

8.2. Internals 347



http://msgpack.org
https://github.com/tarantool/tarantool/blob/1.7/src/box/iproto_constants.h

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

| BODY + | | |1 I

| HEADER | | HEADER | | BODY I

| SIZE | | [ I

o + 4 + o+ +
MP_INT MP_MAP MP_MAP

UNIFIED HEADER:

I | I

| 0x00: CODE | 0x01: SYNC | 0x05: SCHEMA_ID
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_INT

I | I

MP_MAP

They only differ in the allowed set of keys and values. The key defines the type of value that follows. If a
body has no keys, the entire msgpack map for the body may be missing. Such is the case, for example, for
a <ping> request. schema_id may be absent in the request’s header, meaning that there will be no version
checking, but it must be present in the response. If schema_id is sent in the header, then it will be checked.

Authentication

When a client connects to the server instance, the instance responds with a 128-byte text greeting message.
Part of the greeting is base-64 encoded session salt - a random string which can be used for authentication.
The length of decoded salt (44 bytes) exceeds the amount necessary to sign the authentication message (first
20 bytes). An excess is reserved for future authentication schemas.

PREPARE SCRAMBLE:

LEN (ENCODED_SALT)
LEN (SCRAMBLE)

44,
20;

prepare 'chap-shal' scramble:

salt = base64_decode(encoded_salt);
step_1 = shal(password) ;

step_2 = shal(step_1);

step_3 shal(salt, step_2);
scramble = xor(step_1, step_3);
return scramble;

AUTHORIZATION BODY: CODE = 0x07

| | Fom e Fommm e + |

| (KEY) | (TUPLE)| 1len == | len == 20 | |

| 0x23:USERNAME | 0x21:| "chap-shal" | SCRAMBLE | |

| MP_INT:MP_STRING | MP_INT:| MP_STRING | MP_BIN | |

| | P o + |

I I MP_ARRAY [
MP_MAP

<key> holds the user name. <tuple> must be an array of 2 fields: authentication mechanism («chap-shal»

348 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

is the only supported mechanism right now) and password, encrypted according to the specified mechanism.
Authentication in Tarantool is optional, if no authentication is performed, session user is ,,guest®. The instance
responds to authentication packet with a standard response with 0 tuples.

3anpocsbi

e SELECT: CODE - 0x01 Find tuples matching the search pattern

SELECT BODY:

0x12: LIMIT
MP_INT: MP_INT

0x10: SPACE_ID
MP_INT: MP_INT

Ox11: INDEX_ID
MP_INT: MP_INT

0x14: ITERATOR
MP_INT: MP_INT

0x20: KEY

MP_INT: MP_ARRAY

|

I 0x13: OFFSET
| MP_INT: MP_INT
|

._____,____

F —m — — — 4 — — — — 4

MP_MAP

e INSERT: CODE - 0x02 Inserts tuple into the space, if no tuple with same unique keys exists. Otherwise
throw duplicate key error.

e REPLACE: CODE - 0x03 Insert a tuple into the space or replace an existing one.

INSERT/REPLACE BODY:

0x21: TUPLE

MP_INT: MP_ARRAY

|
I 0x10: SPACE_ID
| MP_INT: MP_INT

|

:
t
.

t t t

MP_MAP

e UPDATE: CODE - 0x04 Update a tuple

UPDATE BODY:

| |
0x10: SPACE_ID | 0x11: INDEX_ID |
MP_INT: MP_INT | MP_INT: MP_INT |

| |

I | St + |

| | | |

I | (TUPLE) | oP | 1

| 0x20: KEY | 0x21: | |1

| MP_INT: MP_ARRAY | MP_INT: +~~~~~~~~~~ + |

| | MP_ARRAY |
MP_MAP

8.2. Internals 349




Tarantool, Beinyck 1.7.5

0P:
Works only for integer fields:
* Addition OP = '+' . spacelkey] [field_no] += argument
* Subtraction OP = '-' . spacel[key] [field_no] -= argument
* Bitwise AND OP = '&' . spacel[keyl][field_no]l &= argument
* Bitwise XOR OP = '~' . spacel[key] [field_no] ~= argument
* Bitwise OR OP = '|' . spacel[key][field_no] |= argument
Works on any fields:
* Delete 0p = '#!'
delete <argument> fields starting
from <field_no> in the space[<key>]
0 2
T : t t
I I I I
I opP | FIELD_NO | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_INT |
I I I I
oo t t t
MP_ARRAY
* Insert gp = 't
insert <argument> before <field_no>
* Assign op = '='
assign <argument> to field <field_no>.
will extend the tuple if <field_no> == <max_field_no> + 1
0 2
o f t f
I I I I
I opP | FIELD_NO | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_OBJECT |
I I I I
S t+ + t
MP_ARRAY
Works on string fields:
* Splice op = ':'
take the string from space[key] [field_no] and
substitute <offset> bytes from <position> with <argument>
0 2
o - ' :

| | | |

| vt | FIELD_NO | POSITION | OFFSET | ARGUMENT |

| MP_FIXSTR | MP_INT | MP_INT | MP_INT | MP_STR |

| | | | | |

Fom - + + + + +
MP_ARRAY

It is an error to specify an argument of a type that differs from the expected type.

e DELETE: CODE - 0x05 Delete a tuple

DELETE BODY:

(continues on next page)

350 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

| | | |
| 0x10: SPACE_ID | 0x11: INDEX_ID | 0x20: KEY I
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_ARRAY |
| | | |

t t t t

MP_MAP

e CALL_ 16: CODE - 0x06 Call a stored function, returning an array of tuples. This is deprecated; CALL
(0x0a) is recommended instead.

CALL_16 BODY:

+ + 4

0x22: FUNCTION_NAME
MP_INT: MP_STRING

0x21: TUPLE

[
[
| MP_INT: MP_ARRAY
[

t t t

MP_MAP

e EVAL: CODE - 0x08 Evaulate Lua expression

EVAL BODY:

| | |
I 0x27: EXPRESSION | 0x21: TUPLE I
| MP_INT: MP_STRING | MP_INT: MP_ARRAY |
| | |

MP_MAP

e UPSERT: CODE - 0x09 Update tuple if it would be found elsewhere try to insert tuple. Always use
primary index for key.

UPSERT BODY:

0x10: SPACE_ID

MP_INT: MP_INT

|

|
0x21: TUPLE | (ops) | 1) |

MP_INT: MP_ARRAY |

|

|

MP_ARRAY

F —_— — — — — —
+ —_— — — — — —
(@]
e
N
]
Fo— — — — — — 4

MP_MAP

Operations structure same as for UPDATE operation.

| MP_FIXSTR | MP_INT MP_INT

|

| opP | FIELD_NO | ARGUMENT
|
|

MP_ARRAY

(continues on next page)

8.2. Internals 351




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

Supported operations:

'+' - add a value to a numeric field. If the filed is not numeric, it's
changed to 0 first. If the field does not exist, the operation is
skipped. There is no error in case of overflow either, the value
simply wraps around in C style. The range of the integer is MsgPack:
from -2763 to 2764-1

- same as the previous, but subtract a value

'=' - assign a field to a value. The field must exist, if it does not exist,
the operation is skipped.

- insert a field. It's only possible to insert a field if this create no
nil "gaps" between fields. E.g. it's possible to add a field between
existing fields or as the last field of the tuple.

'#' - delete a field. If the field does not exist, the operation is skipped.

It's not possible to change with update operations a part of the primary
key (this is validated before performing upsert).

e CALL: CODE - 0x0a Similar to CALL 16, but —like EVAL, CALL returns a list of values, unconverted

CALL BODY:

0x22: FUNCTION_NAME
MP_INT: MP_STRING

0x21: TUPLE
MP_INT: MP_ARRAY

MP_MAP

Response packet structure

We will show whole packets here:

OK: LEN + HEADER + BODY

0 5 OPTIONAL
tommmm - ++ t ++ t
| I | I |
| BODY || 0x00: 0x00 | 0x01: SYNC I 0x30: DATA |
|HEADER| | MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_OBJECT |
| SIZE |1 | I I
Fo_ ++ t ++ +
MP_INT MP_MAP MP_MAP

Set of tuples in the response <data> expects a msgpack array of tuples as value EVAL command returns
arbitrary MP_ARRAY with arbitrary MsgPack values.

ERROR: LEN + HEADER + BODY

| I | I |
| BODY || 0x00: Ox8XXX | 0x01: SYNC I 0x31: ERROR |
|HEADER| | MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_STRING |

(continues on next page)

352 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

| SIZE || I [ |
oo 4 } - :

MP_INT MP_MAP MP_MAP

Where OxXXX is ERRCODE.

An error message is present in the response only if there is an error; <error> expects as value a msgpack
string.

Convenience macros which define hexadecimal constants for return codes can be found in src/box/errcode.h

Replication packet structure

-- replication keys

<server_id> ::= 0x02
<lsn> ::= 0x03
<timestamp> 1= 0x04
<server_uuid> 1= 0x24
<cluster_uuid> ::= 0x25
<vclock> ::= 0x26

-- replication codes

<join> 1= 0x41
<subscribe> ::= 0x42
JOIN:

In the beginning you must send initial JOIN
HEADER BODY

| Il SERVER_UUID [
0x00: 0x41 | 0x01: SYNC [ 0x24: UUID |
|
I

MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_STRING
[ I

" i
t

MP_MAP MP_MAP

Then instance, which we connect to, will send last SNAP file by, simply,
creating a number of INSERTs (with additional LSN and ServerID)
(don't reply). Then it'll send a vclock's MP_MAP and close a socket.

| | |
| | | ||
|  0x00: 0x00 | 0x01: SYNC ||  0x26:| SRV_ID: SRV_LSN | |
| MP_INT: MP_INT | MP_INT: MP_INT || MP_INT:| MP_INT: MP_INT | |
| | I ettt + |
I I I MP_MAP [
MP_MAP MP_MAP
SUBSCRIBE:

Then you must send SUBSCRIBE:

(continues on next page)

8.2. Internals 353



https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

HEADER

I

0x00: 0x41 | 0x01: SYNC

MP_INT: MP_INT | MP_INT: MP_INT
I

SERVER_UUID | CLUSTER_UUID
0x24: UUID | 0x25: UUID
MP_INT: MP_STRING | MP_INT: MP_STRING

|

MP_MAP

BODY

[ I
|  0x26: VCLOCK |
| MP_INT: MP_INT |
[ I

MP_MAP

Then you must process every query that'll came through other masters.
Every request between masters will have Additional LSN and SERVER_ID.

XLOG / SNAP

XLOG and SNAP files have nearly the same format. The header looks like:

<type>\n SNAP\n or XL0OG\n

<version>\n currently 0.13\n

Server: <server_uuid>\n where UUID is a 36-byte string
VClock: <vclock_map>\n e.g. {1: 0}\n

\n

After the file header come the data tuples. Tuples begin with a row marker 0xd5baObab and the last tuple
may be followed by an EOF marker 0xd510aded. Thus, between the file header and the EOF marker, there
may be data tuples that have this form:

0 34 17

| | | | | |
| 0xd5baObab | LENGTH | CRC32 PREV | CRC32 CUR | PADDING |
| | | | | |

[ . + + + + t

MP_FIXEXT2 MP_INT MP_INT MP_INT .

| |1 |

| HEADER | | BODY |

I |1 |
MP_MAP MP_MAP

354 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

See the example in the following section.

8.2.2 Data persistence and the WAL file format

To maintain data persistence, Tarantool writes each data change request (insert, update, delete, replace,
upsert) into a write-ahead log (WAL) file in the wal_ dir directory. A new WAL file is created for every
rows_per wal records. Each data change request gets assigned a continuously growing 64-bit log sequence
number. The name of the WAL file is based on the log sequence number of the first record in the file, plus
an extension .xlog.

Apart from a log sequence number and the data change request (formatted as in Tarantool’s binary protocol),
each WAL record contains a header, some metadata, and then the data formatted according to msgpack
rules. For example, this is what the WAL file looks like after the first INSERT request («s:insert({1})») for
the sandbox database created in our «Getting starteds exercises. On the left are the hexadecimal bytes that
you would see with:

$ hexdump 00000000000000000000.x1og

and on the right are comments.

Hex dump of WAL file Comment

58 4c 4f 47 Oa "XLOG\n"

30 2e 31 33 Oa "0.13\n" = version

53 65 72 76 65 72 3a 20 "Server: "

38 62 66 32 32 33 65 30 2d [Server UUID]\n

36 39 31 34 2d 34 62 35 35

2d 39 34 64 32 2d 64 32 62

36 64 30 39 62 30 31 39 36

Oa

56 43 6¢c 6f 63 6b 3a 20 "Vclock: "

b 7d "{}" = vclock value, initially blank

. (not shown = tuples for system spaces)

d5 ba Ob ab Magic row marker always = OxabObbadb

19 Length, not including length of header, = 25 bytes

00 Record header: previous crc32

ce 8c 3e d6 70 Record header: current crc32

a7 cc 73 7f 00 00 66 39 Record header: padding

84 msgpack code meaning "Map of 4 elements" follows

00 02 element#1: tag=request type, value=0x02=IPROTO_INSERT
02 01 element#2: tag=server id, value=0x01

03 04 element#3: tag=lsn, value=0x04

04 cb 41 d4 e2 2f 62 fd d5 d4 element#4: tag=timestamp, value=an 8-byte "Float64"
82 msgpack code meaning "map of 2 elements" follows

10 cd 02 00 element#1: tag=space id, value=512, big byte first
21 91 01 element#2: tag=tuple, value=1-element fixed array={1}

A tool for reading .xlog files is Tarantool’s zlog module.

Tarantool processes requests atomically: a change is either accepted and recorded in the WAL, or discarded
completely. Let’s clarify how this happens, using the REPLACE request as an example:

1.

The server instance attempts to locate the original tuple by primary key. If found, a reference to the
tuple is retained for later use.

The new tuple is validated. If for example it does not contain an indexed field, or it has an indexed
field whose type does not match the type according to the index definition, the change is aborted.

8.2.

Internals 355



https://en.wikipedia.org/wiki/MessagePack

Tarantool, Beinyck 1.7.5

3. The new tuple replaces the old tuple in all existing indexes.

4. A message is sent to the writer process running in the WAL thread, requesting that the change be
recorded in the WAL. The instance switches to work on the next request until the write is acknowledged.

5. On success, a confirmation is sent to the client. On failure, a rollback procedure is begun. During the
rollback procedure, the transaction processor rolls back all changes to the database which occurred
after the first failed change, from latest to oldest, up to the first failed change. All rolled back requests
are aborted with ER_WAL_IO error. No new change is applied while rollback is in progress. When the
rollback procedure is finished, the server restarts the processing pipeline.

One advantage of the described algorithm is that complete request pipelining is achieved, even for requests
on the same value of the primary key. As a result, database performance doesn’t degrade even if all requests
refer to the same key in the same space.

The transaction processor thread communicates with the WAL writer thread using asynchronous (yet
reliable) messaging; the transaction processor thread, not being blocked on WAL tasks, continues to handle
requests quickly even at high volumes of disk I/O. A response to a request is sent as soon as it is ready, even
if there were earlier incomplete requests on the same connection. In particular, SELECT performance, even
for SELECTS running on a connection packed with UPDATEs and DELETES, remains unaffected by disk
load.

The WAL writer employs a number of durability modes, as defined in configuration variable wal_mode.
It is possible to turn the write-ahead log completely off, by setting wal mode to none. Even without the
write-ahead log it’s still possible to take a persistent copy of the entire data set with the box.snapshot()
request.

An .xlog file always contains changes based on the primary key. Even if the client requested an update or
delete using a secondary key, the record in the .xlog file will contain the primary key.

8.2.3 The snapshot file format

The format of a snapshot .snap file is nearly the same as the format of a WAL .xlog file. However, the
snapshot header differs: it contains the instance’s global unique identifier and the snapshot file’s position in
history, relative to earlier snapshot files. Also, the content differs: an .xlog file may contain records for any
data-change requests (inserts, updates, upserts, and deletes), a .snap file may only contain records of inserts
to memtx spaces.

Primarily, the .snap file’s records are ordered by space id. Therefore the records of system spaces — such as
_schema, _space, _index, _func, _priv and _cluster — will be at the start of the .snap file, before the
records of any spaces that were created by users.

Secondarily, the .snap file’s records are ordered by primary key within space id.

8.2.4 The recovery process

The recovery process begins when box.cfg{} happens for the first time after the Tarantool server instance
starts.

The recovery process must recover the databases as of the moment when the instance was last shut down.
For this it may use the latest snapshot file and any WAL files that were written after the snapshot. One
complicating factor is that Tarantool has two engines — the memtx data must be reconstructed entirely from
the snapshot and the WAL files, while the vinyl data will be on disk but might require updating around the
time of a checkpoint. (When a snapshot happens, Tarantool tells the vinyl engine to make a checkpoint, and
the snapshot operation is rolled back if anything goes wrong, so vinyl’s checkpoint is at least as fresh as the
snapshot file.)

356 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Step 1 Read the configuration parameters in the box.cfg{} request. Parameters which affect recovery may
include work__ dir, wal_ dir, memtx_ dir, vinyl_ dir and force_ recovery.

Step 2 Find the latest snapshot file. Use its data to reconstruct the in-memory databases. Instruct the vinyl
engine to recover to the latest checkpoint.

There are actually two variations of the reconstruction procedure for memtx databases, depending on
whether the recovery process is «defaults.

If the recovery process is default (force_recovery is false), memtx can read data in the snapshot
with all indexes disabled. First, all tuples are read into memory. Then, primary keys are built in bulk,
taking advantage of the fact that the data is already sorted by primary key within each space.

If the recovery process is non-default (force_recovery is true), Tarantool performs additional
checking. Indexes are enabled at the start, and tuples are added one by one. This means that any
unique-key constraint violations will be caught, and any duplicates will be skipped. Normally there
will be no constraint violations or duplicates, so these checks are only made if an error has occurred.

Step 3 Find the WAL file that was made at the time of, or after, the snapshot file. Read its log entries
until the log-entry LSN is greater than the LSN of the snapshot, or greater than the LSN of the vinyl
checkpoint. This is the recovery process’s «start positions; it matches the current state of the engines.

Step 4 Redo the log entries, from the start position to the end of the WAL. The engine skips a redo
instruction if it is older than the engine’s checkpoint.

Step 5 For the memtx engine, re-create all secondary indexes.

8.2.5 Server startup with replication

In addition to the recovery process described above, the server must take additional steps and precautions
if replication is enabled.

Once again the startup procedure is initiated by the box.cfg{} request. One of the box.cfg parameters
may be replication that specifies replication source(-s). We will refer to this replica, which is starting up due
to box.cfg, as the «local» replica to distinguish it from the other replicas in a replica set, which we will
refer to as «distant» replicas.

If there is mo snapshot .snap file and the ‘‘replication‘’ parameter is empty: then the local replica assumes
it is an unreplicated «standalones instance, or is the first replica of a new replica set. It will generate new
UUIDs for itself and for the replica set. The replica UUID is stored in the _cluster space; the replica set
UUID is stored in the _schema space. Since a snapshot contains all the data in all the spaces, that means
the local replica’s snapshot will contain the replica UUID and the replica set UUID. Therefore, when the
local replica restarts on later occasions, it will be able to recover these UUIDs when it reads the .snap file.

43

If there is mo snapshot .snap file and the ‘‘replication‘‘ parameter is not empty and the cluster‘ space
contains no other replica UUIDs: then the local replica assumes it is not a standalone instance, but is not yet
part of a replica set. It must now join the replica set. It will send its replica UUID to the first distant replica
which is listed in replication and which will act as a master. This is called the «join request>. When a
distant replica receives a join request, it will send back:

(1) the distant replica’s replica set UUID,

(2) the contents of the distant replica’s .snap file. When the local replica receives this information, it puts
the replica set UUID in its _schema space, puts the distant replica’s UUID and connection information
in its _cluster space, and makes a snapshot containing all the data sent by the distant replica. Then,
if the local replica has data in its WAL .xlog files, it sends that data to the distant replica. The distant
replica will receive this and update its own copy of the data, and add the local replica’s UUID to its
_cluster space.

8.2. Internals 357



Tarantool, Beinyck 1.7.5

43

If there is no snapshot .snap file and the ‘‘replication‘‘ parameter is not empty and the “_ cluster‘’ space
contains other replica UUIDs: then the local replica assumes it is not a standalone instance, and is already
part of a replica set. It will send its replica UUID and replica set UUID to all the distant replicas which
are listed in replication. This is called the «on-connect handshake». When a distant replica receives an
on-connect handshake:

(1) the distant replica compares its own copy of the replica set UUID to the one in the on-connect
handshake. If there is no match, then the handshake fails and the local replica will display an error.

(2) the distant replica looks for a record of the connecting instance in its _cluster space. If there is none,
then the handshake fails. Otherwise the handshake is successful. The distant replica will read any new
information from its own .snap and .xlog files, and send the new requests to the local replica.

In the end ... the local replica knows what replica set it belongs to, the distant replica knows that the local
replica is a member of the replica set, and both replicas have the same database contents.

If there is a snapshot file and replication source is not empty: first the local replica goes through the recovery
process described in the previous section, using its own .snap and .xlog files. Then it sends a «subscribe»
request to all the other replicas of the replica set. The subscribe request contains the server vector clock.
The vector clock has a collection of pairs ,server id, lsn“ for every replica in the _cluster system space.
Each distant replica, upon receiving a subscribe request, will read its .xlog files* requests and send them to
the local replica if (Isn of .xlog file request) is greater than (Isn of the vector clock in the subscribe request).
After all the other replicas of the replica set have responded to the local replica’s subscribe request, the
replica startup is complete.

The following temporary limitations apply for version 1.7:

e The URIs in the replication parameter should all be in the same order on all replicas. This is not
mandatory but is an aid to consistency.

e The replicas of a replica set should be started up at slightly different times. This is not mandatory but
prevents a situation where each replica is waiting for the other replica to be ready.

e The maximum number of entries in the _cluster space is 32. Tuples for out-of-date replicas are not
automatically re-used, so if this 32-replica limit is reached, users may have to reorganize the _cluster
space manually.

8.3 Build and contribute

8.3.1 Building from source
For downloading Tarantool source and building it, the platforms can differ and the preferences can differ.
But strategically the steps are always the same.
1. Get tools and libraries that will be necessary for building and testing.
The absolutely necessary ones are:

e A program for downloading source repositories. For all platforms, this is git. It allows downloading
the latest complete set of source files from the Tarantool repository on GitHub.

A C/C++ compiler. Ordinarily, this is gcc and g++ version 4.6 or later. On Mac OS X, this is
Clang version 3.2+.

e A program for managing the build process. For all platforms, this is CMake version 2.8+.

e ReadLine library, any version

ncurses library, any version

358 Fnasa 8. Contributor’s Guide


http://www.gnu.org/software/readline/
https://www.gnu.org/software/ncurses/

Tarantool, Beinyck 1.7.5

e OpenSSL library, version 1.0.1+
e cURL library, version 0.725+
e LibYAML library, version 0.1.4+

e Python and modules. Python interpreter is not necessary for building Tarantool itself, unless you
intend to use the «Run the test suite» option in step 5. For all platforms, this is python version
2.7+ (but not 3.x). You need the following Python modules:

— pyyaml version 3.10
— argparse version 1.1
— msgpack-python version 0.4.6
— gevent version 1.1.2
— six version 1.8.0
To install all required dependencies, follow the instructions for your OS:

e For Debian/Ubuntu, say:

$ apt install -y build-essential cmake coreutils sed \
libreadline-dev libncursesb5-dev libyaml-dev libssl-dev \
libcurl4-openssl-dev libunwind-dev \
python python-pip python-setuptools python-dev \
python-msgpack python-yaml python-argparse python-six python-gevent

For RHEL/CentOS /Fedora, say:

$ yum install -y gcc gcc-c++ cmake coreutils sed \
readline-devel ncurses-devel libyaml-devel openssl-devel \
libcurl-devel libunwind-devel \
python python-pip python-setuptools python-devel \
python-msgpack python-yaml python-argparse python-six python-gevent

e For Mac OS X (instructions below are for OS X El Capitan):

If you’re using Homebrew as your package manager, say:

$ brew install cmake autoconf binutils zlib \
readline ncurses libyaml openssl curl libunwind-headers \
&% pip install python-daemon \
msgpack-python pyyaml configargparse six gevent

Alternatively, download Apple’s default Xcode toolset:

$ xcode-select --install
$ xcode-select -switch /Applications/Xcode.app/Contents/Developer

For FreeBSD (instructions below are for FreeBSD 10.1 release), say:

$ pkg install -y sudo git cmake gmake gcc coreutils \
readline ncurses libyaml openssl curl libunwind \
python27 py27-pip py27-setuptools py27-daemon \
py27-msgpack-python py27-yaml py27-argparse py27-six py27-gevent

If some Python modules are not available in a repository, it is best to set up the modules by getting a
tarball and doing the setup with python setup.py like this:

8.3. Build and contribute 359


https://www.openssl.org
https://curl.haxx.se/
http://pyyaml.org/wiki/LibYAML
https://pypi.python.org/pypi/PyYAML
https://pypi.python.org/pypi/argparse
https://pypi.python.org/pypi/msgpack-python
https://pypi.python.org/pypi/gevent
https://pypi.python.org/pypi/six

Tarantool, Beinyck 1.7.5

3.

# On some machines, this initial command may be mecessary:
wget https://bootstrap.pypa.io/ez_setup.py -0 - | sudo python

©“

Python module for parsing YAML (pyYAML), for test suite:
(If wget fails, check at http://pyyaml.org/wiki/PyYAML
what the current version %s.)

cd ~

wget http://pyyaml.org/download/pyyaml/PyYAML-3.10.tar.gz
tar -xzf PyYAML-3.10.tar.gz

cd PyYAML-3.10

sudo python setup.py install

LR -C R R - SN SN Y

Finally, use Python pip to bring in Python packages that may not be up-to-date in the distro
repositories. (On CentOS 7, it will be necessary to install pip first, with sudo yum install
epel-release followed by sudo yum install python-pip.)

$ pip imstall -r \
https://raw.githubusercontent.com/tarantool/test-run/master/requirements.txt \
--user

This step is only necessary once, the first time you do a download.

Use git to download the latest Tarantool source code from the GitHub repository tarantool/
tarantool, branch 1.7, to a local directory named ~/tarantool, for example:

’$ git clone --recursive https://github.com/tarantool/tarantool.git -b 1.7 ~/tarantool

On rare occasions, the submodules need to be updated again with the command:

’$ git submodule update --init --recursive

Use CMake to initiate the build.

$ cd ~/tarantool

$ make clean # unnecessary, added for good luck

$ rm CMakeCache.txt # unnecessary, added for good luck

$ cmake . # start inittating with build type=Debug

On some platforms, it may be necessary to specify the C and C++ versions, for example:

$ CC=gcc-4.8 CXX=g++-4.8 cmake .

The CMake option for specifying build type is -DCMAKE_BUILD_TYPE=type, where type can be:
e Debug — used by project maintainers
e Release — used only if the highest performance is required
e RelWithDebInfo — used for production, also provides debugging capabilities

The CMake option for hinting that the result will be distributed is ~-DENABLE_DIST=0N. If this option
is on, then later make install will install tarantoolctl files in addition to tarantool files.

4. Use make to complete the build.

$ make

ITpumeuanne: For FreeBSD, use gmake instead.

360

Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

This creates the ,tarantool executable in the src/ directory.

Next, it’s highly recommended to say make install to install Tarantool to the /usr/local directory
and keep your system clean. However, it is possible to run the Tarantool executable without installation.

5. Run the test suite.

This step is optional. Tarantool’s developers always run the test suite before they publish new versions.
You should run the test suite too, if you make any changes in the code. Assuming you downloaded to
~/tarantool, the principal steps are:

# make a subdirectory mamed “bin’
$ mkdir ~/tarantool/bin

# link Python to bin (this may require superuser privileges)
$ 1n /usr/bin/python ~/tarantool/bin/python

# get to the test subdirectory
$ cd ~/tarantool/test

# run tests using Python
$ PATH="/tarantool/bin:$PATH ./test-run.py

The output should contain reassuring reports, for example:

TEST RESULT

box/bad_trigger.test.py [ pass ]
box/call.test.py [ pass ]
box/iproto.test.py [ pass ]
box/xlog.test.py [ pass ]
box/admin.test.lua [ pass ]
box/auth_access.test.lua [ pass ]

. etc.

To prevent later confusion, clean up what’s in the bin subdirectory:

$ rm ~/tarantool/bin/python
$ rmdir ~/tarantool/bin

6. Make RPM and Debian packages.

This step is optional. It’s only for people who want to redistribute Tarantool. We highly recommend
to use official packages from the tarantool.org web-site. However, you can build RPM and Debian
packages using PackPack or using the dpkg-buildpackage or rpmbuild tools. Please consult dpkg or
rpmbuild documentation for details.

7. Verify your Tarantool installation.

# if you installed tarantool locally after buzld

$ tarantool

# - OR -

# if you didn't install tarantool locally after buzild
$ ./src/tarantool

This starts Tarantool in the interactive mode.
See also:

e Tarantool README.md

8.3. Build and contribute 361


https://tarantool.org/download.html
https://github.com/packpack/packpack
https://github.com/tarantool/tarantool/blob/1.7/README.md

Tarantool, Beinyck 1.7.5

8.3.2 Building documentation
Tarantool documentation is built using a simplified markup system named Sphinx (see http://sphinx-doc.
org). You can build a local version of this documentation and you can contribute to Tarantool’s version.
You need to install these packages:

e git (a program for downloading source repositories)

e CMake version 2.8 or later (a program for managing the build process)

e Python version greater than 2.6 — preferably 2.7 — and less than 3.0 (Sphinx is a Python-based tool)

e LaTeX (a system for document preparation, the installable package name usually begins with the word
texlive or tetex, on Ubuntu the name is texlive-latex-base)

You need to install these Python modules:
e Dip, any version
e Sphinx version 1.4.4 or later
e sphinx-intl version 0.9.9
e lupa — any version
See more details about installation in the build-from-source section of this documentation.

1. Use git to download the latest source code of this documentation from the GitHub repository
tarantool/doc, branch 1.7. For example, to download to a local directory named ~/tarantool-doc:

git clone https://github.com/tarantool/doc.git ~/tarantool-doc

2. Use CMake to initiate the build.

cd ~/tarantool-doc

make clean # unnecessary, added for good luck
rm CMakeCache.txt # unnecessary, added for good luck
cmake . # initeate

3. Build a local version of the documentation.

Run the make command with an appropriate option to specify which documentation version to build.

cd ~/tarantool-doc

make sphinx-html

make sphinx-singlehtml
make sphinx-html-ru

make sphinx-singlehtml-ru

multi-page English version

one-page English verstion

multi-page Russian version

one-page Russian verstion

all versions plus the entire web-site

®H R R R R

make all

Documentation will be created in subdirectories of /output:
e /output/en (files of the English version)
e /output/ru (files of the Russian version)
The entry point for each version is the index.html file in the appropriate directory.
4. Set up a web-server.

Run the following command to set up a web-server. The example below is for Ubuntu, but the procedure
is similar for other supported operating systems. Make sure to run it from the documentation output
folder, output/en or output/ru, as in the example below:

362 Fnasa 8. Contributor’s Guide


http://sphinx-doc.org
http://sphinx-doc.org
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx-intl
https://pypi.python.org/pypi/lupa

Tarantool, Beinyck 1.7.5

cd “/tarantool-doc/output/en
python -m SimpleHTTPServer 8000

5. Open your browser and enter 127.0.0.1:8000/doc/1.7 into the address box. If your local
documentation build is valid, the manual will appear in the browser.

6. To contribute to documentation, use the .rst format for drafting and submit your updates as a pull
request via GitHub.

To comply with the writing and formatting style, use the guidelines provided in the documentation,
common sense and existing documents.

IIpumeuanue:

e If you suggest creating a new documentation section (a whole new page), it has to be saved to the
relevant section at GitHub.

e If you want to contribute to localizing this documentation (for example into Russian), add your
translation strings to .po files stored in the corresponding locale directory (for example /locale/
ru/LC_MESSAGES/ for Russian). See more about localizing with Sphinx at http://www.sphinx-doc.
org/en/stable/intl.html

8.3.3 Release management

How to make a minor release

$ git tag -a 1.4.4 -m "Next minor in 1.4 series"
$ vim CMakelLists.txt # edtt CPACK_PACKAGE_VERSION_PATCH
$ git push --tags

Update the Web site in doc/www

Update all issues, upload the ChangeLog based on git log output. The ChangeLog must only include items
which are mentioned as issues on github. If anything significant is there, which is not mentioned, something
went wrong in release planning and the release should be held up until this is cleared.

Click ,,Release milestone®. Create a milestone for the next minor release. Alert the driver to target bugs and
blueprints to the new milestone.

8.4 Guidelines

8.4.1 Developer guidelines

How to work on a bug
Any defect, even minor, if it changes the user-visible server behavior, needs a bug report. Report a bug at
http://github.com/tarantool/tarantool/issues.

When reporting a bug, try to come up with a test case right away. Set the current maintenance milestone
for the bug fix, and specify the series. Assign the bug to yourself. Put the status to ,In progress“ Once the
patch is ready, put the bug the bug to ,In review“ and solicit a review for the fix.

Once there is a positive code review, push the patch and set the status to ,Closed*

8.4. Guidelines 363



https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
http://www.sphinx-doc.org/en/stable/intl.html
http://www.sphinx-doc.org/en/stable/intl.html
http://github.com/tarantool/tarantool/issues

Tarantool, Beinyck 1.7.5

Patches for bugs should contain a reference to the respective Launchpad bug page or at least bug id. Each
patch should have a test, unless coming up with one is difficult in the current framework, in which case QA
should be alerted.

There are two things you need to do when your patch makes it into the master:
e put the bug to ,fix committed,

e delete the remote branch.

How to write a commit message
Any commit needs a helpful message. Mind the following guidelines when committing to any of Tarantool
repositories at GitHub.
1. Separate subject from body with a blank line.
2. Try to limit the subject line to 50 characters or so.
3. Start the subject line with a capital letter unless it prefixed with a subsystem name and semicolon:
e memtx:
e vinyl:
e xlog:
e replication:
e recovery:
e iproto:
e net.box:
e lua:
4. Do not end the subject line with a period.
5. Do not put «gh-xx», «closes #xxx» to the subject line.

6. Use the imperative mood in the subject line. A properly formed Git commit subject line should always
be able to complete the following sentence: «If applied, this commit will /your subject line here/».

7. Wrap the body to 72 characters or so.
8. Use the body to explain what and why vs. how.
9. Link GitHub issues on the lasts lines (see how).

10. Use your real name and real email address. For Tarantool team members, @tarantool.org email is
preferred, but not mandatory.

A template:

Summarize changes in 50 characters or less

More detailed explanatory text, if necessary.

Wrap it to 72 characters or so.

In some contexts, the first line is treated as the subject of the
commit, and the rest of the text as the body.

The blank line separating the summary from the body is critical
(unless you omit the body entirely); various tools like ~log~,
“shortlog™ and “rebase” can get confused if you run the two together.

(continues on next page)

364 Fnasa 8. Contributor’s Guide



https://help.github.com/articles/closing-issues-via-commit-messages

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.
- Bullet points are okay, too.

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions
vary here.

Fixes: #123

Closes: #456

Needed for: #859

See also: #343, #7389

Some real-world examples:
e tarantool/tarantool@2993a75
e tarantool /tarantool@ccacba2
e tarantool /tarantool@386df3d
e tarantool/tarantool@076a842

Based on [1] and [2].

8.4.2 Documentation guidelines

These guidelines are updated on the on-demand basis, covering only those issues that cause pains to the
existing writers. At this point, we do not aim to come up with an exhaustive Documentation Style Guide
for the Tarantool project.

Markup issues

Wrapping text

The limit is 80 characters per line for plain text, and no limit for any other constructions when wrapping
affects ReST readability and/or HTML output. Also, it makes no sense to wrap text into lines shorter than
80 characters unless you have a good reason to do so.

The 80-character limit comes from the ISO/ANSI 80x24 screen resolution, and it’s unlikely that
readers/writers will use 80-character consoles. Yet it’s still a standard for many coding guidelines (including
Tarantool). As for writers, the benefit is that an 80-character page guide allows keeping the text window
rather narrow most of the time, leaving more space for other applications in a wide-screen environment.

Formatting code snippets

For code snippets, we mainly use the code-block directive with an appropriate highlighting language. The
most commonly used highlighting languages are:

8.4. Guidelines 365



https://github.com/tarantool/tarantool/commit/2993a75858352f101deb4a15cefd497ae6a78cf7
https://github.com/tarantool/tarantool/commit/ccacba28f813fb99fd9eaf07fb41bf604dd341bc
https://github.com/tarantool/tarantool/commit/386df3d3eb9c5239fc83fd4dd3292d1b49446b89
https://github.com/tarantool/tarantool/commit/076a842011e09c84c25fb5e68f1b23c9917a3750
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://chris.beams.io/posts/git-commit/

Tarantool, Beinyck 1.7.5

e .. code-block:: tarantoolsession
e .. code-block:: console
e .. code-block:: lua

For example (a code snippet in Lua):

for page in paged_iter("X", 10) do

print ("New Page. Number Of Tuples = " .. #page)
for i=1,#page,1 do print(pagel[il]) end
end

In rare cases, when we need custom highlight for specific parts of a code snippet and the code-block directive
is not enough, we use the per-line codenormal directive together and explicit output formatting (defined in
doc/sphinx/_static/sphinx_design.css).

Examples:
e Function syntax (the placeholder space-name is displayed in italics):
box.space.space-name:create _index(,index-name’)
e A tdb session (user input is in bold, command prompt is in blue, computer output is in green):

$ tarantool example.lua

(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua

(TDB) [example.lua]

(TpDB) 3: i =1

Warning: Every entry of explicit output formatting (codenormal, codebold, etc) tends to cause troubles

when this documentation is translated to other languages. Please avoid using explicit output formatting
unless it is REALLY needed.

Using separated links

Avoid separating the link and the target definition (ref), like this:

This is a paragraph that contains “a link™_.

. _a link: http://example.com/

Use non-separated links instead:

This is a paragraph that contains ~a link <http://example.com/> _.

Warning: Every separated link tends to cause troubles when this documentation is translated to other
languages. Please avoid using separated links unless it is REALLY needed (e.g. in tables).

Creating labels for local links

We avoid using links that sphinx generates automatically for most objects. Instead, we add our own labels
for linking to any place in this documentation.

Our naming convention is as follows:

e Character set: a through z, 0 through 9, dash, underscore.

366 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

e Format: path dash filename dash tag

Example: _c_api-box_index-iterator_type where: c_api is the directory name, box_index is the
file name (without «.rst»), and iterator_type is the tag.

The file name is useful for knowing, when you see «refy, where it is pointing to. And if the file name is
meaningful, you see that better.

The file name alone, without a path, is enough when the file name is unique within doc/sphinx. So, for
fiber.rst it should be just «fiber», not «reference-fiber>. While for «index.rst> (we have a handful of
«index.rst» in different directories) please specify the path before the file name, e.g. «reference-index».

Use a dash «-» to delimit the path and the file name. In the documentation source, we use only underscores
«_» in paths and file names, reserving dash «-» as the delimiter for local links.

The tag can be anything meaningful. The only guideline is for Tarantool syntax items (such as
members), where the preferred tag syntax is module_or_object_name dash member_name. For example,
box_space-drop.

Making comments

Sometimes we may need to leave comments in a ReST file. To make sphinx ignore some text during processing,
use the following per-line notation with «.. //» as the comment marker:

’.. // your comment here

The starting symbols «.. //» do not interfere with the other ReST markup, and they are easy to find both
visually and using grep. There are no symbols to escape in grep search, just go ahead with something like
this:

’grep ".. //" doc/sphinx/dev_guide/*.rst

These comments don’t work properly in nested documentation, though (e.g. if you leave a comment in
module -> object -> method, sphinx ignores the comment and all nested content that follows in the method
description).

Language and style issues
US vs British spelling

We use English US spelling.

Instance vs server

We say «instances rather than «servers to refer to an instance of Tarantool server. This keeps the manual
terminology consistent with names like /etc/tarantool/instances.enabled in the Tarantool environment.

Wrong usage: «Replication allows multiple Tarantool servers to work on copies of the same databases.»

Correct usage: «Replication allows multiple Tarantool instances to work on copies of the same databases.»

8.4. Guidelines 367



Tarantool, Beinyck 1.7.5

Examples and templates

Module and function

Here is an example of documenting a module (my_fiber) and a function (my_fiber.create).

my_fiber.create (function [, function-arguments ])
Create and start a my_fiber object. The object is created and begins to run immediately.

ITapameTpsbl
e function — the function to be associated with the my_fiber object
e function-arguments — what will be passed to function

Return created my_fiber object

Rtype userdata

Example:

tarantool> my_fiber = require('my_fiber')

tarantool> function function_name()
> my_fiber.sleep(1000)
> end

tarantool> my_fiber_object = my_fiber.create(function_name)

Module, class and method

Here is an example of documenting a module (my_box.index), a class (my_index_object) and a function
(my_index_object.rename).

object my_index_object

my_index_object:rename (indez-name)
Rename an index.

ITapamerpbi
e index_object — an object reference
e index_name — a new name for the index (type = string)
Return nil
Possible errors: index object does not exist.

Example:

tarantool> box.space.spacebb.index.primary:rename('secondary')

Complexity Factors: Index size, Index type, Number of tuples accessed.

368 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

8.4.3 C Style Guide

The project’s coding style is based on a version of the Linux kernel coding style.

The latest version of the Linux style can be found at: http://www.kernel.org/doc/Documentation/
CodingStyle

Since it is open for changes, the version of style that we follow, one from 2007-July-13, will be also copied
later in this document.

There are a few additional guidelines, either unique to Tarantool or deviating from the Kernel guidelines.

A. Chapters 10 «Kconfig configuration files», 11 «Data structuress, 13 «Printing kernel messages», 14
«Allocating memory» and 17 «Don’t re-invent the kernel macros» do not apply, since they are specific
to Linux kernel programming environment.

B. The rest of Linux Kernel Coding Style is amended as follows:

General guidelines

We use Git for revision control. The latest development is happening in the ,master branch. Our git
repository is hosted on github, and can be checked out with git clone git://github.com /tarantool /tarantool.git
# anonymous read-only access

If you have any questions about Tarantool internals, please post them on the developer discussion list,
https://groups.google.com/forum/#!forum/tarantool. However, please be warned: Launchpad silently
deletes posts from non-subscribed members, thus please be sure to have subscribed to the list prior to posting.
Additionally, some engineers are always present on #tarantool channel on irc.freenode.net.

Commenting style

Use Doxygen comment format, Javadoc flavor, i.e. @tag rather than tag. The main tags in use are @param,
@retval, @Qreturn, @see, @note and @todo.

Every function, except perhaps a very short and obvious one, should have a comment. A sample function
comment may look like below:

/** Write all data to a descriptor.

*

This function is equivalent to 'write', except it would ensure
that all data is written to the file unless a non-ignorable
error occurs.

Q@retval O Success

L K K B

@reval 1 An error occurred (mot EINTR)
*x /

static int

write_all(int fd, void \*data, size_t len);

Public structures and important structure members should be commented as well.

Header files

Use header guards. Put the header guard in the first line in the header, before the copyright or declarations.
Use all-uppercase name for the header guard. Derive the header guard name from the file name, and append

8.4. Guidelines 369



http://www.kernel.org/doc/Documentation/CodingStyle
http://www.kernel.org/doc/Documentation/CodingStyle
https://groups.google.com/forum/#!forum/tarantool

Tarantool, Beinyck 1.7.5

_INCLUDED to get a macro name. For example, core/log_io.h -> CORE_LOG_I0_ H INCLUDED. In
.c (implementation) file, include the respective declaration header before all other headers, to ensure that
the header is self- sufficient. Header «header.h» is self-sufficient if the following compiles without errors:

’ #include "header.h"

Allocating memory

Prefer the supplied slab (salloc) and pool (palloc) allocators to malloc() /free() for any performance-intensive
or large memory allocations. Repetitive use of malloc()/free() can lead to memory fragmentation and should
therefore be avoided.

Always free all allocated memory, even allocated at start-up. We aim at being valgrind leak-check clean,
and in most cases it’s just as easy to free() the allocated memory as it is to write a valgrind suppression.
Freeing all allocated memory is also dynamic-load friendly: assuming a plug-in can be dynamically loaded
and unloaded multiple times, reload should not lead to a memory leak.

Other

Select GNU (C99 extensions are acceptable. It’s OK to mix declarations and statements, use true and false.

The not-so-current list of all GCC C extensions can be found at: http://gcc.gnu.org/onlinedocs/gec-4.
3.5/gcc/C-Extensions.html

Linux kernel coding style

This is a short document describing the preferred coding style for the linux kernel. Coding style is very
personal, and I won’t _force  my views on anybody, but this is what goes for anything that I have to be
able to maintain, and I’d prefer it for most other things too. Please at least consider the points made here.

First off, I'd suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a
great symbolic gesture.

Anyway, here goes:

Chapter 1: Indentation

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try to
make indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to be 3.

Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends.
Especially when you’ve been looking at your screen for 20 straight hours, you’ll find it a lot easier to see how
the indentation works if you have large indentations.

Now, some people will claim that having 8-character indentations makes the code move too far to the right,
and makes it hard to read on a 80-character terminal screen. The answer to that is that if you need more
than 3 levels of indentation, you're screwed anyway, and should fix your program.

In short, 8-char indents make things easier to read, and have the added benefit of warning you when you’re
nesting your functions too deep. Heed that warning.

The preferred way to ease multiple indentation levels in a switch statement is to align the «switch» and its
subordinate «case» labels in the same column instead of «double-indenting» the «case» labels. e.g.:

370 Fnasa 8. Contributor’s Guide


http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/C-Extensions.html

Tarantool, Beinyck 1.7.5

switch (suffix) {

case 'G':

case 'g':
mem <<= 30;
break;

case 'M':

case 'm':
mem <<= 20;
break;

case 'K':

case 'k':

mem <<= 10;

/* fall through */
default:

break;

}

Don’t put multiple statements on a single line unless you have something to hide:

if (condition) do_this;
do_something_everytime;

Don’t put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky
expressions.

Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and the
above example is deliberately broken.

Get a decent editor and don’t leave whitespace at the end of lines.

Chapter 2: Breaking long lines and strings

Coding style is all about readability and maintainability using commonly available tools.
The limit on the length of lines is 80 columns and this is a strongly preferred limit.

Statements longer than 80 columns will be broken into sensible chunks. Descendants are always substantially
shorter than the parent and are placed substantially to the right. The same applies to function headers with
a long argument list. Long strings are as well broken into shorter strings. The only exception to this is where
exceeding 80 columns significantly increases readability and does not hide information.

void fun(int a, int b, int c)

{
if (condition)
printk (KERN_WARNING "Warning this is a long printk with "
"3 parameters a: %u b: %u "
"c: Ju \n", a, b, ¢);
else
next_statement;
}

Chapter 3: Placing Braces and Spaces

The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there
are few technical reasons to choose one placement strategy over the other, but the preferred way, as shown

8.4. Guidelines 371




Tarantool, Beinyck 1.7.5

to us by the prophets Kernighan and Ritchie, is to put the opening brace last on the line, and put the closing
brace first, thusly:

if (x is true) {
we do y
3

This applies to all non-function statement blocks (if, switch, for, while, do). e.g.:

switch (action) {
case KOBJ_ADD:
return "add";
case KOBJ_REMOVE:
return "remove';
case KOBJ_CHANGE:
return "change";
default:
return NULL;
}

However, there is one special case, namely functions: they have the opening brace at the beginning of the
next line, thus:

int function(int x)

{
body of function;
}
Heretic people all over the world have claimed that this inconsistency is ... well ... inconsistent, but all

right-thinking people know that (a) K&R are right  and (b) K&R are right. Besides, functions are special
anyway (you can’t nest them in C).

Note that the closing brace is empty on a line of its own, _except_ in the cases where it is followed by a
continuation of the same statement, ie a «while» in a do-statement or an «else» in an if-statement, like this:

do {
body of do-loop;
} while (condition);

and

if (x == y) {
} else if (x > y) {
} else {

}

Rationale: K&R.

Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without
any loss of readability. Thus, as the supply of new-lines on your screen is not a renewable resource (think
25-line terminal screens here), you have more empty lines to put comments on.

Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

372 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

This does not apply if one branch of a conditional statement is a single statement. Use braces in both
branches.

if (conditiomn) {
do_this(Q);
do_that();

} else {
otherwise();

}

Chapter 3.1: Spaces

Linux kernel style for use of spaces depends (mostly) on function-versus-keyword usage. Use a space
after (most) keywords. The notable exceptions are sizeof, typeof, alignof, and _ _attribute , which look
somewhat like functions (and are usually used with parentheses in Linux, although they are not required in
the language, as in: «sizeof info» after «struct fileinfo info;» is declared).

So use a space after these keywords: if, switch, case, for, do, while but not with sizeof, typeof, alignof, or
__attribute_ . E.g.,

s = sizeof (struct file);

Do not add spaces around (inside) parenthesized expressions. This example is bad:

s = sizeof ( struct file );

When declaring pointer data or a function that returns a pointer type, the preferred use of ,** is adjacent
to the data name or function name and not adjacent to the type name. Examples:

char #*linux_banner;
unsigned long long memparse(char *ptr, char #**retptr);
char *match_strdup(substring_t *s);

Use one space around (on each side of) most binary and ternary operators, such as any of these:
=+-<>F /% & " <=>===1=7:
but no space after unary operators:
& * + - 7 ! sizeof typeof alignof  attribute  defined
no space before the postfix increment & decrement unary operators:
++ -
no space after the prefix increment & decrement unary operators:
++ -
and no space around the ,.“ and «->» structure member operators.

Do not leave trailing whitespace at the ends of lines. Some editors with «smart» indentation will insert
whitespace at the beginning of new lines as appropriate, so you can start typing the next line of code right
away. However, some such editors do not remove the whitespace if you end up not putting a line of code
there, such as if you leave a blank line. As a result, you end up with lines containing trailing whitespace.

Git will warn you about patches that introduce trailing whitespace, and can optionally strip the trailing
whitespace for you; however, if applying a series of patches, this may make later patches in the series fail by
changing their context lines.

8.4. Guidelines 373




Tarantool, Beinyck 1.7.5

Chapter 4: Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C
programmers do not use cute names like ThisVariableIsATemporaryCounter. A C programmer would call
that variable «tmp», which is much easier to write, and not the least more difficult to understand.

HOWEVER, while mixed-case names are frowned upon, descriptive names for global variables are a must.
To call a global function «foo» is a shooting offense.

GLOBAL variables (to be used only if you really need them) need to have descriptive names, as do
global functions. If you have a function that counts the number of active users, you should call that
«count_active users()» or similar, you should not_ call it «cntusr()».

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the compiler
knows the types anyway and can check those, and it only confuses the programmer. No wonder MicroSoft
makes buggy programs.

LOCAL variable names should be short, and to the point. If you have some random integer loop counter, it
should probably be called «i». Calling it «loop counters is non-productive, if there is no chance of it being
mis-understood. Similarly, «tmp» can be just about any type of variable that is used to hold a temporary
value.

If you are afraid to mix up your local variable names, you have another problem, which is called the function-
growth-hormone-imbalance syndrome. See chapter 6 (Functions).

Chapter 5: Typedefs

Please don’t use things like «vps_ ts.

It’s a _mistake to use typedef for structures and pointers. When you see a

’vps_t a;

in the source, what does it mean?

In contrast, if it says

struct virtual_container *a;

you can actually tell what «a» is.
Lots of people think that typedefs «help readabilitys. Not so. They are useful only for:
(a) totally opaque objects (where the typedef is actively used to _hide what the object is).
Example: «pte_t» etc. opaque objects that you can only access using the proper accessor functions.

NOTE! Opaqueness and «accessor functions» are not good in themselves. The reason we have them for
things like pte t etc. is that there really is absolutely _zero  portably accessible information there.

(b) Clear integer types, where the abstraction _helps avoid confusion whether it is «int» or «longs.
u8/ul6/u32 are perfectly fine typedefs, although they fit into category (d) better than here.

NOTE! Again - there needs to be a _reason  for this. If something is «unsigned long», then there’s
no reason to do

’typedef unsigned long myflags_t;

but if there is a clear reason for why it under certain circumstances might be an «unsigned int» and
under other configurations might be «unsigned long», then by all means go ahead and use a typedef.

374 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

(c) when you use sparse to literally create a _new  type for type-checking.
(d) New types which are identical to standard C99 types, in certain exceptional circumstances.

Although it would only take a short amount of time for the eyes and brain to become accustomed to
the standard types like ,,uint32_t“, some people object to their use anyway.

Therefore, the Linux-specific ,u8/ul6,/u32/u64“ types and their signed equivalents which are identical
to standard types are permitted — although they are not mandatory in new code of your own.

When editing existing code which already uses one or the other set of types, you should conform to
the existing choices in that code.

(e) Types safe for use in userspace.

In certain structures which are visible to userspace, we cannot require C99 types and cannot use the
,u32¢ form above. Thus, we use 132 and similar types in all structures which are shared with
userspace.

Maybe there are other cases too, but the rule should basically be to NEVER EVER use a typedef unless
you can clearly match one of those rules.

In general, a pointer, or a struct that has elements that can reasonably be directly accessed should never
be a typedef.

Chapter 6: Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of text
(the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and indentation level of that
function. So, if you have a conceptually simple function that is just one long (but simple) case-statement,
where you have to do lots of small things for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school student
might not even understand what the function is all about, you should adhere to the maximum limits all the
more closely. Use helper functions with descriptive names (you can ask the compiler to in-line them if you
think it’s performance-critical, and it will probably do a better job of it than you would have done).

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you're doing
something wrong. Re-think the function, and split it into smaller pieces. A human brain can generally easily
keep track of about 7 different things, anything more and it gets confu/sed. You know you’re brilliant, but
maybe you’d like to understand what you did 2 weeks from now.

In source files, separate functions with one blank line. If the function is exported, the EXPORT* macro for
it should follow immediately after the closing function brace line. E.g.:

int system_is_up(void)
{
return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL (system_is_up) ;

In function prototypes, include parameter names with their data types. Although this is not required by the
C language, it is preferred in Linux because it is a simple way to add valuable information for the reader.

8.4. Guidelines 375




Tarantool, Beinyck 1.7.5

Chapter 7: Centralized exiting of functions

Albeit deprecated by some people, the equivalent of the goto statement is used frequently by compilers in
form of the unconditional jump instruction.

The goto statement comes in handy when a function exits from multiple locations and some common work
such as cleanup has to be done.

The rationale is:
e unconditional statements are easier to understand and follow
e nesting is reduced
e errors by not updating individual exit points when making modifications are prevented

e saves the compiler work to optimize redundant code away ;)

int fun(int a)
{
int result = 0;
char *buffer = kmalloc(SIZE);
if (buffer == NULL)
return -ENOMEM;

if (conditionl) {
while (loopl) {

}
result = 1;
goto out;

out:
kfree(buffer) ;
return result;

Chapter 8: Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code
works in a comment: it’s much better to write the code so that the _working is obvious, and it’s a waste
of time to explain badly written code. ¢ Generally, you want your comments to tell WHAT your code does,
not HOW. Also, try to avoid putting comments inside a function body: if the function is so complex that
you need to separately comment parts of it, you should probably go back to chapter 6 for a while. You can
make small comments to note or warn about something particularly clever (or ugly), but try to avoid excess.
Instead, put the comments at the head of the function, telling people what it does, and possibly WHY it
does it.

When commenting the kernel API functions, please use the kernel-doc format. See the files
Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc for details.

Linux style for comments is the C89 "/\x ... \*/" style. Don’t use C99-style "// ..." comments.

The preferred style for long (multi-line) comments is:

376 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

This is the preferred style for multi-line
comments in the Linuz kernel source code.
Please use it constistently.

Description: A column of asterisks on the left side,
with beginning and ending almost-blank lines.

*/

It’s also important to comment data, whether they are basic types or derived types. To this end, use just
one data declaration per line (no commas for multiple data declarations). This leaves you room for a small
comment on each item, explaining its use.

Chapter 9: You’ve made a mess of it

That’s OK, we all do. You’ve probably been told by your long-time Unix user helper that «GNU emacs»
automatically formats the C sources for you, and you’ve noticed that yes, it does do that, but the defaults
it uses are less than desirable (in fact, they are worse than random typing - an infinite number of monkeys
typing into GNU emacs would never make a good program).

So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick
the following in your .emacs file:

(defun c-lineup-arglist-tabs-only (ignored)

"Line up argument lists by tabs, not spaces"

(let* ((anchor (c-langelem-pos c-syntactic-element))
(column (c-langelem-2nd-pos c-syntactic-element))
(offset (- (1+ column) anchor))

(steps (floor offset c-basic-offset)))
(* (max steps 1)
c-basic-offset)))

(add-hook 'c-mode-common-hook
(lambda ()

;; Add kernel style

(c-add-style

"linux-tabs-only"

'("linux" (c-offsets-alist
(arglist-cont-nonempty
c-lineup-gcc-asm-reg
c-lineup-arglist-tabs-only))))))

(add-hook 'c-mode-hook
(lambda ()
(let ((filename (buffer-file-name)))
;; Enable kernel mode for the appropriate files
(when (and filename
(string-match (expand-file-name "~/src/linux-trees")
filename))
(setq indent-tabs-mode t)
(c-set-style "linux-tabs-only")))))

This will make emacs go better with the kernel coding style for C files below ~/src/linux-trees.
But even if you fail in getting emacs to do sane formatting, not everything is lost: use «indent».

Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need

8.4. Guidelines 377




Tarantool, Beinyck 1.7.5

to give it a few command line options. However, that’s not too bad, because even the makers of GNU
indent recognize the authority of K&R (the GNU people aren’t evil, they are just severely misguided in
this matter), so you just give indent the options «-kr -i8» (stands for «K&R, 8 character indents» ), or use
«scripts/Lindent», which indents in the latest style.

«indent» has a lot of options, and especially when it comes to comment re-formatting you may want to take
a look at the man page. But remember: «indent» is not a fix for bad programming.

Chapter 10: Kconfig configuration files

For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different.
Lines under a «configs definition are indented with one tab, while help text is indented an additional two
spaces. Example:

config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.

Features that might still be considered unstable should be defined as dependent on «<EXPERIMENTALSy:

config SLUB
depends on EXPERIMENTAL && !ARCH_USES_SLAB_PAGE_STRUCT
bool "SLUB (Unqueued Allocator)"

while seriously dangerous features (such as write support for certain filesystems) should advertise this
prominently in their prompt string:

config ADFS_FS_RW
bool "ADFS write support (DANGERQOUS)"
depends on ADFS_FS

For full documentation on the configuration files, see the file Documentation/kbuild /kconfig-language.txt.

Chapter 11: Data structures

Data structures that have visibility outside the single-threaded environment they are created and destroyed
in should always have reference counts. In the kernel, garbage collection doesn’t exist (and outside the kernel
garbage collection is slow and inefficient), which means that you absolutely have to reference count all
your uses.

Reference counting means that you can avoid locking, and allows multiple users to have access to the data
structure in parallel - and not having to worry about the structure suddenly going away from under them
just because they slept or did something else for a while.

Note that locking is _not_ a replacement for reference counting. Locking is used to keep data structures
coherent, while reference counting is a memory management technique. Usually both are needed, and they
are not to be confused with each other.

378 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

Many data structures can indeed have two levels of reference counting, when there are users of different
«classes». The subclass count counts the number of subclass users, and decrements the global count just
once when the subclass count goes to zero.

Examples of this kind of «multi-level-reference-counting» can be found in memory management («struct
mm_struct»>: mm_users and mm_count), and in filesystem code («struct super block»: s_count and
s_active).

Remember: if another thread can find your data structure, and you don’t have a reference count on it, you
almost certainly have a bug.

Chapter 12: Macros, Enums and RTL

Names of macros defining constants and labels in enums are capitalized.

#define CONSTANT 0xz12345

Enums are preferred when defining several related constants.
CAPITALIZED macro names are appreciated but macros resembling functions may be named in lower case.
Generally, inline functions are preferable to macros resembling functions.

Macros with multiple statements should be enclosed in a do - while block:

#define macrofun(a, b, c) \
do { \
if (a == 5) \
do_this(b, c); \

} while (0)

Things to avoid when using macros:

1. macros that affect control flow:

#define FOO(z) \
do { \
if (blah(z) < 0) \
return -EBUGGERED; \
} while(0)

is a _very_ bad idea. It looks like a function call but exits the «calling» function; don’t break the
internal parsers of those who will read the code.

2. macros that depend on having a local variable with a magic name:

#define FOO(val) bar(index, val)

might look like a good thing, but it’s confusing as hell when one reads the code and it’s prone to
breakage from seemingly innocent changes.

3. macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns
FOO into an inline function.

4. forgetting about precedence: macros defining constants using expressions must enclose the expression
in parentheses. Beware of similar issues with macros using parameters.

#define CONSTANT 0z4000
#define CONSTEXP (CONSTANT | 3)

8.4. Guidelines 379



Tarantool, Beinyck 1.7.5

The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is
used frequently with assembly language in the kernel.

Chapter 13: Printing kernel messages

Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good
impression. Do not use crippled words like «dont»; use «do nots» or «don’t» instead. Make the messages
concise, clear, and unambiguous.

Kernel messages do not have to be terminated with a period.
Printing numbers in parentheses (%d) adds no value and should be avoided.

There are a number of driver model diagnostic macros in <linux/device.h> which you should use to
make sure messages are matched to the right device and driver, and are tagged with the right level:
dev_err(), dev_warn(), dev_info(), and so forth. For messages that aren’t associated with a particular
device, <linux/kernel.h> defines pr_ debug() and pr_info().

Coming up with good debugging messages can be quite a challenge; and once you have them, they can
be a huge help for remote troubleshooting. Such messages should be compiled out when the DEBUG
symbol is not defined (that is, by default they are not included). When you use dev _dbg() or pr_ debug(),
that’s automatic. Many subsystems have Kconfig options to turn on -DDEBUG. A related convention uses
VERBOSE DEBUG to add dev_ vdbg() messages to the ones already enabled by DEBUG.

Chapter 14: Allocating memory

The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kcalloc(), and
vmalloc(). Please refer to the APT documentation for further information about them.

The preferred form for passing a size of a struct is the following:

’p = kmalloc(sizeof (*¥p), ...);

The alternative form where struct name is spelled out hurts readability and introduces an opportunity for
a bug when the pointer variable type is changed but the corresponding sizeof that is passed to a memory
allocator is not.

Casting the return value which is a void pointer is redundant. The conversion from void pointer to any other
pointer type is guaranteed by the C programming language.

Chapter 15: The inline disease

There appears to be a common misperception that gcc has a magic «make me fasters speedup option called
«inline». While the use of inlines can be appropriate (for example as a means of replacing macros, see Chapter
12), it very often is not. Abundant use of the inline keyword leads to a much bigger kernel, which in turn
slows the system as a whole down, due to a bigger icache footprint for the CPU and simply because there
is less memory available for the pagecache. Just think about it; a pagecache miss causes a disk seek, which
easily takes 5 milliseconds. There are a LOT of cpu cycles that can go into these 5 milliseconds.

A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them.
An exception to this rule are the cases where a parameter is known to be a compiletime constant, and as
a result of this constantness you know the compiler will be able to optimize most of your function away at
compile time. For a good example of this later case, see the kmalloc() inline function.

380 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Often people argue that adding inline to functions that are static and used only once is always a win since
there is no space tradeoff. While this is technically correct, gcc is capable of inlining these automatically
without help, and the maintenance issue of removing the inline when a second user appears outweighs the
potential value of the hint that tells gce to do something it would have done anyway.

Chapter 16: Function return values and names

Functions can return values of many different kinds, and one of the most common is a value indicating
whether the function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx =
failure, 0 = success) or a «succeeded» boolean (0 = failure, non-zero = success).

Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language
included a strong distinction between integers and booleans then the compiler would find these mistakes for
us... but it doesn’t. To help prevent such bugs, always follow this convention:

If the name of a function is an action or an imperative command,
the function should return an error-code integer. If the name
is a predicate, the function should return a "succeeded" boolean.

For example, «add work» is a command, and the add _work() function returns 0 for success or -EBUSY for
failure. In the same way, «PCI device present» is a predicate, and the pci_dev present() function returns
1 if it succeeds in finding a matching device or 0 if it doesn’t.

All EXPORTed functions must respect this convention, and so should all public functions. Private (static)
functions need not, but it is recommended that they do.

Functions whose return value is the actual result of a computation, rather than an indication of whether the
computation succeeded, are not subject to this rule. Generally they indicate failure by returning some out-
of-range result. Typical examples would be functions that return pointers; they use NULL or the ERR_PTR
mechanism to report failure.

Chapter 17: Don’t re-invent the kernel macros

The header file include/linux/kernel.h contains a number of macros that you should use, rather than explicitly
coding some variant of them yourself. For example, if you need to calculate the length of an array, take
advantage of the macro

’#define ARRAY_SIZE(z) (sizeof(z) / sizeof((z)[0]))

Similarly, if you need to calculate the size of some structure member, use

’#define FIELD_SIZEOF(t, f) (stizeof(((t*)0)->f))

There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse
that header file to see what else is already defined that you shouldn’t reproduce in your code.

Chapter 18: Editor modelines and other cruft

Some editors can interpret configuration information embedded in source files, indicated with special markers.
For example, emacs interprets lines marked like this:

-*%- mode: c -*-

Or like this:

8.4. Guidelines 381



Tarantool, Beinyck 1.7.5

/*

Local Variables:

compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
End:

*/

Vim interprets markers that look like this:

/* vim:set sw=8 noet */

Do not include any of these in source files. People have their own personal editor configurations, and your
source files should not override them. This includes markers for indentation and mode configuration. People
may use their own custom mode, or may have some other magic method for making indentation work
correctly.

Appendix I: References

e The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice
Hall, Inc., 1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).

e The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999. ISBN
0-201-61586-X.

e GNU manuals - where in compliance with K&R and this text - for cpp, gee, gee internals and indent
e WGI14 International standardization workgroup for the programming language C

e Kernel CodingStyle, by greg@kroah.com at OLS 2002

8.4.4 Python Style Guide

Introduction

This document gives coding conventions for the Python code comprising the standard library in the main
Python distribution. Please see the companion informational PEP describing style guidelines for the C code
in the C implementation of Python®.

This document and PEP 257 (Docstring Conventions) were adapted from Guido’s original Python Style
Guide essay, with some additions from Barry’s style guide?.

A Foolish Consistency is the Hobgoblin of Little Minds

One of Guido’s key insights is that code is read much more often than it is written. The guidelines provided
here are intended to improve the readability of code and make it consistent across the wide spectrum of
Python code. As PEP 20 says, «Readability counts».

A style guide is about consistency. Consistency with this style guide is important. Consistency within a
project is more important. Consistency within one module or function is the most important.

But most importantly: know when to be inconsistent — sometimes the style guide just doesn’t apply. When
in doubt, use your best judgment. Look at other examples and decide what looks best. And don’t hesitate
to ask!

L PEP 7, Style Guide for C Code, van Rossum
2 Barry’s GNU Mailman style guide

382 Fnasa 8. Contributor’s Guide



https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_Practice_of_Programming
http://www.gnu.org/manual/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
https://www.python.org/dev/peps/pep-0007/
http://barry.warsaw.us/software/STYLEGUIDE.txt

Tarantool, Beinyck 1.7.5

Two good reasons to break a particular rule:

1. When applying the rule would make the code less readable, even for someone who is used to reading
code that follows the rules.

2. To be consistent with surrounding code that also breaks it (maybe for historic reasons) — although this
is also an opportunity to clean up someone else’s mess (in true XP style).

Code lay-out

Indentation

Use 4 spaces per indentation level.
For really old code that you don’t want to mess up, you can continue to use 8-space tabs.

Continuation lines should align wrapped elements either vertically using Python’s implicit line joining inside
parentheses, brackets and braces, or using a hanging indent. When using a hanging indent the following
considerations should be applied; there should be no arguments on the first line and further indentation
should be used to clearly distinguish itself as a continuation line.

Yes:

# Aligned with opening delimiter
foo = long_function_name(var_one, var_two,
var_three, var_four)

# More indentation included to distinguish this from the rest.
def long_function_name (
var_one, var_two, var_three,
var_four):
print (var_one)

No:

# Arguments on first line forbidden when not using vertical alignment
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Further indentation required as indentation @s not distinguishable
def long_function_name (

var_one, var_two, var_three,

var_four) :

print (var_one)

Optional:

# Eztra indentation <s not mecessary.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

The closing brace/bracket/parenthesis on multi-line constructs may either line up under the first non-
whitespace character of the last line of list, as in:

my_list = [
1’ 2’ 3’

(continues on next page)

8.4. Guidelines 383




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

4’ 5’ 6’
1
result = some_function_that_takes_arguments(
Ial s Ibl s ICI s
Idl , 1 e 1 s If 1 s
)

or it may be lined up under the first character of the line that starts the multi-line construct, as in:

my_list = [

1, 2, 3,
4, 5, 6,
]
result = some_function_that_takes_arguments (
lal , Ibl , Icl .
Idl , Iel , Ifl ,
)

Tabs or Spaces?

Never mix tabs and spaces.

The most popular way of indenting Python is with spaces only. The second-most popular way is with tabs
only. Code indented with a mixture of tabs and spaces should be converted to using spaces exclusively.
When invoking the Python command line interpreter with the -t option, it issues warnings about code that
illegally mixes tabs and spaces. When using -tt these warnings become errors. These options are highly
recommended!

For new projects, spaces-only are strongly recommended over tabs. Most editors have features that make
this easy to do.

Maximum Line Length

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character lines; plus, limiting windows to 80
characters makes it possible to have several windows side-by-side. The default wrapping on such devices
disrupts the visual structure of the code, making it more difficult to understand. Therefore, please limit all
lines to a maximum of 79 characters. For flowing long blocks of text (docstrings or comments), limiting the
length to 72 characters is recommended.

The preferred way of wrapping long lines is by using Python’s implied line continuation inside parentheses,
brackets and braces. Long lines can be broken over multiple lines by wrapping expressions in parentheses.
These should be used in preference to using a backslash for line continuation.

Backslashes may still be appropriate at times. For example, long, multiple with-statements cannot use
implicit continuation, so backslashes are acceptable:

with open('/path/to/some/file/you/want/to/read') as file_1, \
open('/path/to/some/file/being/written’, 'w') as file_2:
file_2.write(file_1.read())

Another such case is with assert statements.

384 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

Make sure to indent the continued line appropriately. The preferred place to break around a binary operator
is after the operator, not before it. Some examples:

class Rectangle(Blob) :

def __init__(self, width, height,
color='black', emphasis=None, highlight=0):
if (width == 0 and height == 0 and
color == 'red' and emphasis == 'strong' or
highlight > 100):
raise ValueError("sorry, you lose")

if width == 0 and height == 0 and (color == 'red' or
emphasis is None):
raise ValueError ("I don't think so -- values are s "%

(width, height))
Blob.__init__(self, width, height,
color, emphasis, highlight)

Blank Lines

Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank line.

Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be omitted
between a bunch of related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical sections.

Python accepts the control-L (i.e. ~L) form feed character as whitespace; Many tools treat these characters
as page separators, so you may use them to separate pages of related sections of your file. Note, some editors
and web-based code viewers may not recognize control-L as a form feed and will show another glyph in its
place.

Encodings (PEP 263)

Code in the core Python distribution should always use the ASCII or Latin-1 encoding (a.k.a. ISO-8859-1).
For Python 3.0 and beyond, UTF-8 is preferred over Latin-1, see PEP 3120.

Files using ASCII should not have a coding cookie. Latin-1 (or UTF-8) should only be used when a comment
or docstring needs to mention an author name that requires Latin-1; otherwise, using \x, \u or \U escapes
is the preferred way to include non-ASCII data in string literals.

For Python 3.0 and beyond, the following policy is prescribed for the standard library (see PEP 3131):
All identifiers in the Python standard library MUST use ASCII-only identifiers, and SHOULD use English
words wherever feasible (in many cases, abbreviations and technical terms are used which aren’t English). In
addition, string literals and comments must also be in ASCII. The only exceptions are (a) test cases testing
the non-ASCII features, and (b) names of authors. Authors whose names are not based on the latin alphabet
MUST provide a latin transliteration of their names.

Open source projects with a global audience are encouraged to adopt a similar policy.

Imports

e Imports should usually be on separate lines, e.g.:

8.4. Guidelines 385




Tarantool, Beinyck 1.7.5

Yes: import os
import sys

No: import sys, os

It’s okay to say this though:

from subprocess import Popen, PIPE

Imports are always put at the top of the file, just after any module comments and docstrings, and
before module globals and constants.

Imports should be grouped in the following order:

1. standard library imports

2. related third party imports

3. local application/library specific imports
You should put a blank line between each group of imports.
Put any relevant __all__ specification after the imports.

Relative imports for intra-package imports are highly discouraged. Always use the absolute package
path for all imports. Even now that PEP 328 is fully implemented in Python 2.5, its style of explicit
relative imports is actively discouraged; absolute imports are more portable and usually more readable.

When importing a class from a class-containing module, it’s usually okay to spell this:

from myclass import MyClass
from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them

import myclass
import foo.bar.yourclass

and use «myclass.MyClass» and «foo.bar.yourclass.YourClass».

Whitespace in Expressions and Statements

Pet Peeves

Avoid extraneous whitespace in the following situations:

Immediately inside parentheses, brackets or braces.

Yes: spam(ham[1], {eggs: 2})
No: spam( ham[ 1 ], { eggs: 2 } )

Immediately before a comma, semicolon, or colon:

Yes: if x == 4: print x, y; X, y = ¥, X
No: if x==4 : print x , y ; x , y=7y , X

Immediately before the open parenthesis that starts the argument list of a function call:

386

Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Yes: spam(1)
No: spam (1)

e Immediately before the open parenthesis that starts an indexing or slicing:

Yes: dict['key'] = list[index]
No: dict ['key'] = list [index]

e More than one space around an assignment (or other) operator to align it with another.

Yes:

x =1

y =2
long_variable = 3
No:

b4 =1
y =2

long_variable = 3

Other Recommendations

e Always surround these binary operators with a single space on either side: assignment (=), augmented
assignment (+=, -= etc.), comparisons (==, <, >, 1=, <> <= >= in not in, is, is not), Booleans (and,
or, not).

e If operators with different priorities are used, consider adding whitespace around the operators with
the lowest priority(ies). Use your own judgement; however, never use more than one space, and always
have the same amount of whitespace on both sides of a binary operator.

Yes:

i=1i+1
submitted += 1

X = x*¥2 - 1

hypot2 = x*x + y*y
c = (atb) * (a-b)

No:

i=i+1

submitted +=1

x =x % 2 -1

hypot2 = x * x + y * y
c=(a+b) x (a-Db)

e Don’t use spaces around the = sign when used to indicate a keyword argument or a default parameter
value.

Yes:

def complex(real, imag=0.0):
return magic(r=real, i=imag)

No:

8.4. Guidelines 387



Tarantool, Beinyck 1.7.5

def complex(real, imag = 0.0):
return magic(r = real, i = imag)

e Compound statements (multiple statements on the same line) are generally discouraged.

Yes:
if foo == 'blah’':
do_blah_thing()
do_one ()
do_two ()
do_three()
Rather not:
if foo == 'blah': do_blah_thing()
do_one(); do_two(); do_three()

e While sometimes it’s okay to put an if/for/while with a small body on the same line, never do this for
multi-clause statements. Also avoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()
for x in 1st: total += x
while t < 10: t = delay()

Definitely not:

if foo == 'blah': do_blah_thing()
else: do_non_blah_thing()

try: something()
finally: cleanup()

do_one(); do_two(); do_three(long, argument,
list, like, this)

if foo == 'blah': one(); two(); three()

Comments
Comments that contradict the code are worse than no comments. Always make a priority of keeping the
comments up-to-date when the code changes!

Comments should be complete sentences. If a comment is a phrase or sentence, its first word should be
capitalized, unless it is an identifier that begins with a lower case letter (never alter the case of identifiers!).

If a comment is short, the period at the end can be omitted. Block comments generally consist of one or
more paragraphs built out of complete sentences, and each sentence should end in a period.

You should use two spaces after a sentence-ending period.
When writing English, Strunk and White apply.

Python coders from non-English speaking countries: please write your comments in English, unless you are
120% sure that the code will never be read by people who don’t speak your language.

388 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

Block Comments

Block comments generally apply to some (or all) code that follows them, and are indented to the same level
as that code. Each line of a block comment starts with a # and a single space (unless it is indented text
inside the comment).

Paragraphs inside a block comment are separated by a line containing a single #.

Inline Comments

Use inline comments sparingly.

An inline comment is a comment on the same line as a statement. Inline comments should be separated by
at least two spaces from the statement. They should start with a # and a single space.

Inline comments are unnecessary and in fact distracting if they state the obvious. Don’t do this:

’x =x +1 # Increment x

But sometimes, this is useful:

’x =x +1 # Compensate for border

Documentation Strings

Conventions for writing good documentation strings (a.k.a. «docstrings») are immortalized in PEP 257.

e Write docstrings for all public modules, functions, classes, and methods. Docstrings are not necessary
for non-public methods, but you should have a comment that describes what the method does. This
comment should appear after the def line.

e PEP 257 describes good docstring conventions. Note that most importantly, the """ that ends a
multiline docstring should be on a line by itself, and preferably preceded by a blank line, e.g.:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.

nnn

e For one liner docstrings, it’s okay to keep the closing """ on the same line.

Version Bookkeeping

If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows.

__version__ = "$Revision$"
# $Source$

These lines should be included after the module’s docstring, before any other code, separated by a blank line
above and below.

8.4. Guidelines 389



Tarantool, Beinyck 1.7.5

Naming Conventions

The naming conventions of Python’s library are a bit of a mess, so we’ll never get this completely consistent
— nevertheless, here are the currently recommended naming standards. New modules and packages (including
third party frameworks) should be written to these standards, but where an existing library has a different
style, internal consistency is preferred.

Descriptive: Naming Styles

There are a lot of different naming styles. It helps to be able to recognize what naming style is being used,
independently from what they are used for.

The following naming styles are commonly distinguished:
¢ b (single lowercase letter)
e B (single uppercase letter)
e lowercase
e lower_case_with_underscores
o UPPERCASE
e UPPER_CASE_WITH_UNDERSCORES

e CapitalizedWords (or CapWords, or CamelCase — so named because of the bumpy look of its letters®).
This is also sometimes known as StudlyCaps.

Note: When using abbreviations in CapWords, capitalize all the letters of the abbreviation. Thus
HTTPServerError is better than HttpServerError.

e mixedCase (differs from CapitalizedWords by initial lowercase character!)
e Capitalized_Words_With_Underscores (ugly!)

There’s also the style of using a short unique prefix to group related names together. This is not used much
in Python, but it is mentioned for completeness. For example, the os.stat () function returns a tuple whose
items traditionally have names like st_mode, st_size, st_mtime and so on. (This is done to emphasize
the correspondence with the fields of the POSIX system call struct, which helps programmers familiar with
that.)

The X11 library uses a leading X for all its public functions. In Python, this style is generally deemed
unnecessary because attribute and method names are prefixed with an object, and function names are
prefixed with a module name.

In addition, the following special forms using leading or trailing underscores are recognized (these can
generally be combined with any case convention):

e _single_leading_underscore: weak «internal uses indicator. E.g. from M import #* does not import
objects whose name starts with an underscore.

e single_trailing underscore_: used by convention to avoid conflicts with Python keyword, e.g.

Tkinter.Toplevel (master, class_='ClasslName')

e __double_leading_underscore: when naming a class attribute, invokes name mangling (inside class
FooBar, __boo becomes _FooBar__boo; see below).

[ R—

8 CamelCase Wikipedia page

390 Fnasa 8. Contributor’s Guide


http://www.wikipedia.com/wiki/CamelCase

Tarantool, Beinyck 1.7.5

e __double_leading_and_trailing underscore__: «magic» objects or attributes that live in user-

controlled namespaces. E.g. __init import__ or __file__. Never invent such names; only use
them as documented.

_ ——

Prescriptive: Naming Conventions
Names to Avoid

Never use the characters 1 (lowercase letter el), ;O (uppercase letter oh), or I (uppercase letter eye) as
single character variable names.

In some fonts, these characters are indistinguishable from the numerals one and zero. When tempted to use
L use L instead.

Package and Module Names

Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves
readability. Python packages should also have short, all-lowercase names, although the use of underscores is
discouraged.

Since module names are mapped to file names, and some file systems are case insensitive and truncate long
names, it is important that module names be chosen to be fairly short — this won’t be a problem on Unix,
but it may be a problem when the code is transported to older Mac or Windows versions, or DOS.

When an extension module written in C or C++ has an accompanying Python module that provides a higher
level (e.g. more object oriented) interface, the C/C++ module has a leading underscore (e.g. _socket).

Class Names

Almost without exception, class names use the CapWords convention. Classes for internal use have a leading
underscore in addition.

Exception Names

Because exceptions should be classes, the class naming convention applies here. However, you should use the
suffix «Error» on your exception names (if the exception actually is an error).

Global Variable Names

(Let’s hope that these variables are meant for use inside one module only.) The conventions are about the
same as those for functions.

exporting globals, or use the older convention of prefixing such globals with an underscore (which you might
want to do to indicate these globals are «module non-public»).

Modules that are designed for use via from M import * should use the __all__ mechanism to prevent

8.4. Guidelines 391



Tarantool, Beinyck 1.7.5

Function Names

Function names should be lowercase, with words separated by underscores as necessary to improve readability.

mixedCase is allowed only in contexts where that’s already the prevailing style (e.g. threading.py), to retain
backwards compatibility.

Function and method arguments

Always use self for the first argument to instance methods.
Always use cls for the first argument to class methods.

If a function argument’s name clashes with a reserved keyword, it is generally better to append a single
trailing underscore rather than use an abbreviation or spelling corruption. Thus class_ is better than clss.
(Perhaps better is to avoid such clashes by using a synonym.)

Method Names and Instance Variables

Use the function naming rules: lowercase with words separated by underscores as necessary to improve
readability.

Use one leading underscore only for non-public methods and instance variables.
To avoid name clashes with subclasses, use two leading underscores to invoke Python’s name mangling rules.

Python mangles these names with the class name: if class Foo has an attribute named __a, it cannot be
accessed by Foo.__a. (An insistent user could still gain access by calling Foo._Foo__a.) Generally, double

leading underscores should be used only to avoid name conflicts with attributes in classes designed to be
subclassed.

Note: there is some controversy about the use of __names (see below).

Constants

Constants are usually defined on a module level and written in all capital letters with underscores separating
words. Examples include MAX_OVERFLOW and TOTAL.

Designing for inheritance

Always decide whether a class’s methods and instance variables (collectively: «attributes») should be public
or non-public. If in doubt, choose non-public; it’s easier to make it public later than to make a public attribute
non-public.

Public attributes are those that you expect unrelated clients of your class to use, with your commitment to
avoid backward incompatible changes. Non-public attributes are those that are not intended to be used by
third parties; you make no guarantees that non-public attributes won’t change or even be removed.

We don’t use the term «private» here, since no attribute is really private in Python (without a generally
unnecessary amount of work).

Another category of attributes are those that are part of the «subclass API» (often called «protected» in
other languages). Some classes are designed to be inherited from, either to extend or modify aspects of the
class’s behavior. When designing such a class, take care to make explicit decisions about which attributes
are public, which are part of the subclass API, and which are truly only to be used by your base class.

392 Fnasa 8. Contributor’s Guide



Tarantool, Beinyck 1.7.5

With this in mind, here are the Pythonic guidelines:
e Public attributes should have no leading underscores.

e If your public attribute name collides with a reserved keyword, append a single trailing underscore
to your attribute name. This is preferable to an abbreviation or corrupted spelling. (However, not
withstanding this rule, ,cls“ is the preferred spelling for any variable or argument which is known to
be a class, especially the first argument to a class method.)

Note 1: See the argument name recommendation above for class methods.

e For simple public data attributes, it is best to expose just the attribute name, without complicated
accessor /mutator methods. Keep in mind that Python provides an easy path to future enhancement,
should you find that a simple data attribute needs to grow functional behavior. In that case, use
properties to hide functional implementation behind simple data attribute access syntax.

Note 1: Properties only work on new-style classes.

Note 2: Try to keep the functional behavior side-effect free, although side-effects such as caching are
generally fine.

Note 3: Avoid using properties for computationally expensive operations; the attribute notation makes
the caller believe that access is (relatively) cheap.

e If your class is intended to be subclassed, and you have attributes that you do not want subclasses to
use, consider naming them with double leading underscores and no trailing underscores. This invokes
Python’s name mangling algorithm, where the name of the class is mangled into the attribute name.
This helps avoid attribute name collisions should subclasses inadvertently contain attributes with the
same name.

Note 1: Note that only the simple class name is used in the mangled name, so if a subclass chooses
both the same class name and attribute name, you can still get name collisions.

Note 2: Name mangling can make certain uses, such as debugging and __getattr__(), less
convenient. However the name mangling algorithm is well documented and easy to perform
manually.

Note 3: Not everyone likes name mangling. Try to balance the need to avoid accidental name clashes
with potential use by advanced callers.

References
Copyright

Author:
e Guido van Rossum <guido@python.org>

e Barry Warsaw <barry@python.org>

8.4.5 Lua Style Guide

Inspiration:
e https://github.com/0livine-Labs/lua-style-guide
e http://dev.minetest.net/Lua_code_style_guidelines

e http://sputnik.freewisdom.org/en/Coding_Standard

8.4. Guidelines 393


mailto:guido@python.org
mailto:barry@python.org
https://github.com/Olivine-Labs/lua-style-guide
http://dev.minetest.net/Lua_code_style_guidelines
http://sputnik.freewisdom.org/en/Coding_Standard

Tarantool, Beinyck 1.7.5

Programming style is an art. There is some arbitrariness to the rules, but there are sound rationales for
them. It is useful not only to provide sound advice on style but to understand the underlying rationale and
human aspect of why the style recommendations are formed:

e http://mindprod.com/jgloss/unmain.html

e http://www.oreilly.com/catalog/perlbp/

e http://books.google.com/books?id=QnghAQAATAAJ

Zen of Python is good; understand it and use wisely:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one — and preferably only one — obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!

https://www.python.org/dev/peps/pep-0020/

Indentation and Formatting

e 4 spaces instead tabs. PIL suggests using of two spaces, but programmer looks at code 4 up to 8 hours

a day, so it’s simplier to distinguish indentation with 4 spaces. Why spaces? Similar representation
everywhere.

You can use vim modelines:

-- vim:ts=4 ss=4 sw=4 ewxpandtab

A file should ends w/ one newline symbol, but shouldn’t ends w/ blank line (two newline symbols).
Every do/while/for /if /function should indent 4 spaces.

related or/and in if must be enclosed in the round brackets (). Example:

if (a == true and b == false) or (a == false and b == true) then
<.o02
end -- good

(continues on next page)

394

Fnasa 8. Contributor’s Guide



http://mindprod.com/jgloss/unmain.html
http://www.oreilly.com/catalog/perlbp/
http://books.google.com/books?id=QnghAQAAIAAJ
https://www.python.org/dev/peps/pep-0020/

Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

if a == true and b == false or a == false and b == true then
<.o02

end -- bad

if a ~ b == true then

end -- good, but not explicat

Type conversion

Do not use concatenation to convert to string or addition to convert to number (use tostring/tonumber
instead):

local a = 123
a=a.. "'
-- bad

local a = 123
a = tostring(a)
-- good

local a = '123'
a=a+5 -- 128
-- bad

local a = '123'
a = tonumber(a) + 5 -- 128
-- good

Try to avoid multiple nested if’s with common body:

if (a == true and b == false) or (a == false and b == true) then
do_something ()

end

-- good

if a == true then

if b == false then
do_something()
end
if b == true then
if a == false then
do_something ()
end
end
-- bad

Avoid multiple concatenations in one statement, use string.format instead:

function say_greeting(period, name)

local a = "good " .. period .. ", " .. name
end
-- bad

function say_greeting(period, name)

local a = string.format("good %s, %s", period, name)
end
-- good

(continues on next page)

8.4.

Guidelines 395




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

local say_greeting_fmt = "good %s, %s"
function say_greeting(period, name)
local a = say_greeting fmt:format (period, name)
end
-- best

e Use and/or for default variable values

function(input)

input = input or 'default_value'
end -- good
function(input)

if input == nil then

input = 'default_value'

end

end -- ok, but excessive

e if’s and return statements:

if a == true then

return do_something()
end
do_other_thing() -- good

if a == true then

return do_something()
else

do_other_thing()
end -- bad

e Using spaces:

— one shouldn’t use spaces between function name and opening round bracket, but arguments must

be splitted with one whitespace charachter

function name (argl,arg2,...)
end -- bad
function name(argl, arg2, ...)
end -- good

— use space after comment marker

while true do -- %nline comment
-- comment
do_something ()
end
--[r
multiline
comment

17 --

— surrounding operators

396

Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

local thing=1

thing = thing-1
thing = thing*1
thing = 'string'..'s
-- bad

1

local thing = 1
thing = thing - 1
thing = thing * 1
thing = 'string'
-- good

— use space after commas in tables

local thing = {1,2,3}
thing = {1 , 2 , 3}
thing = {1 ,2 ,3}

-- bad

local thing = {1, 2, 3}
-- good

— use space in map definitions around equality sign and commas

return {1,2,3,4} -- bad

return {

keyl = vall,key2=val2
} -- bad
return {

1, 2, 3, 4

keyl = vall, key2 = val2,
key3 = vallll
} -- good

also, you may use alignment:

return {
long_key = 'vaaaaalue',
key = 'val',
something = 'even better'
}

— extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may
be omitted between a bunch of related one-liners (e.g. a set of dummy implementations)

use blank lines in function, sparingly, to indicate logical sections

if thing then

-- ...stuff...
end
function derp()

-- ...stuff...
end
local wat =7
-- bad

(continues on next page)

8.4. Guidelines 397



Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

if thing then
-- ...stuff...

end

function derp()

-- ...stuff...

end

local wat = 7
-- good

— Delete whitespace at EOL (strongly forbidden. Use :s/\s\+$//gc in vim to delete them)

Avoid global variable

You must avoid global variables. If you have an exceptional case, use _G variable to set it, add prefix or add
table instead of prefix:

function bad_global_example ()
end -- very, very bad

function good_local_example ()

end

_G.modulename_good_local_example = good_local_example -- good
_G.modulename = {}

_G.modulename.good_local_example = good_local_example -- better

Always use prefix to avoid name clash

Naming

names of variables/»objects» and «methods» /functions: snake case
names of «classes»: CamelCase

private variables/methods (properties in the future) of object starts with underscores <object>.
_<name>. Avoid using of local function private_methods(self) end

boolean - naming is_<...> isnt_<...> has_, hasnt_ is a good style.

for «very local» variables: - t is for tables - i, j are for indexing - n is for counting - k, v is what you
get out of pairs() (are acceptable, _ if unused) - i, v is what you get out of ipairs() (are acceptable,
_ if unused) - k/key is for table keys - v/val/value is for values that are passed around - x/y/z is
for generic math quantities - s/str/string is for strings - c is for 1-char strings - f£/func/cb are for
functions - status, <rv>.. or ok, <rv>.. is what you get out of pcall/xpcall - buf, sz is a (buffer,
size) pair - <name>_p is for pointers - t0.. is for timestamps - err is for errors

abbrevations are acceptable if they’re unambigous and if you’ll document (or they’re too common)
them.

global variables are written with ALL CAPS. If it’s some system variable, then they’re using
underscore to define it (_G/_VERSION/..)

module naming snake case (avoid underscores and dashes) - ,luasql®, instead of ,Lua-SQL*

*_mt and *_methods defines metatable and methods table

398

Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

Idioms and patterns

Always use round brackets in call of functions except multiple cases (common lua style idioms):

e x.cfg{ } functions (box.cfg/memcached.cfg/..)
o ffi.cdef[[ 1] function
Avoid these kind of constructions:

e <func>“<name>“ (strongly avoid require

Y

)

e function object:method() end (use functon object.method(self) end instead)

e do not use semicolon as table separator (only comma)
e semicolons at the end of line (only to split multiple statements on one line)

e try to avoid unnecessary function creation (closures/..)

Modules

Don’t start modules with license/authors/descriptions, you can write it in LICENSE/AUTHORS/README

files. For writing modules use one of the two patterns (dont use modules()):

local M = {}

function M.foo()

end

function M.bar()

end

return M

or

local function foo()
end

local function bar()
end

return {

foo = foo,

bar = bar,

}

Commenting

You should write code the way it shouldn’t be described, but don’t forget about commenting it. You shouldn’t
comment Lua syntax (assume that reader already knows Lua language). Try to tell about functions/variable

names/etc.

Multiline comments: use matching (--[[ 1]--) instead of simple (--[[ 11).

8.4. Guidelines

399




Tarantool, Beinyck 1.7.5

Public function comments (77):

--- Copy any table (shallow and deep wersion)
-- * deepcopy: copies all levels
-- * shallowcopy: copies only first level

-- Supports __copy metamethod for copying custom tables with metatables
-- @function gsplet

-- @table wnp original table

-- @shallow[opt] sep flag for shallow copy

-- @returns table (copy)

Testing

Use tap module for writing efficient tests. Example of test file:

#!/usr/bin/env tarantool

local test = require('tap').test('table')
test:plan(31)

do -- check basic table.copy (deepcopy)
local example_table = {
{1, 2, 3},
{"help, I'm very nested", {{{ }}} }

local copy_table = table.copy(example_table)

test:is_deeply(
example_table,
copy_table,
"checking, that deepcopy behaves ok"

)
test:isnt(

example_table,

copy_table,

"checking, that tables are different"
)
test:isnt(

example_table[1],

copy_table[1],

"checking, that tables are different"
)
test:isnt(

example_table[2],

copy_table[2],

"checking, that tables are different"
)
test:isnt(

example_table[2][2],

copy_table[2] [2],

"checking, that tables are different"
)
test:isnt(

example_table[2] [2] [1],
copy_table[2] [2] [1],

(continues on next page)

400 Fnasa 8. Contributor’s Guide




Tarantool, Beinyck 1.7.5

(npomoszKeHUe ¢ mpeaBLAyIell CTPAHMUIIE )

"checking, that tables are different"

)
end
<002
os.exit(test:check() == true and 0 or 1)

When you’ll test your code output will be something like this:

TAP version 13

1..31

ok - checking, that deepcopy behaves ok

ok - checking, that tables are different

ok - checking, that tables are different

ok - checking, that tables are different

ok - checking, that tables are different

ok - checking, that tables are different

8.4. Guidelines 401




Lua Module Index

box.cfg, 77
box.error, 77
box.index, 77
box.info, 77
box.schema, 7?7
box.session, 77
box.slab, 77
box.space, 77
box.tuple, 77

C
capi_error, 77
clock, 179

console, 181

crypto.cipher, 77
crypto.digest, 77

csv, 185

d
debug, ?7?
digest, 188

S

errno, 191

f

fiber, 194
fio, 205

h
http.client, 7?7
i

iconv, 216

J

json, 218

log, 220

m

msgpack, 221
my_box.index, 77
my_fiber, 77

n

net_box, 77

o)
os, 229

P
pickle, 231

S

schema, 338
shard, 270
socket, 233
strict, 243

t

tap, 243
tarantool, 247

u

uri, 249
uuid, 247

X
xlog, 250

y
yaml, 251

402



	Что нового в Tarantool 1.7?
	What’s new in Tarantool 1.6.9 after February 15, 2017?
	What’s new in Tarantool 1.6?
	Общие сведения
	Сервер приложений + СУБД
	Возможности СУБД

	Руководство пользователя
	Предисловие
	Начало работы
	Функционал СУБД
	Сервер приложений
	Администрирование серверной части
	Репликация
	Коннекторы
	Вопросы и ответы

	Справочники
	Built-in modules reference
	Справочник по сторонним библиотекам
	Справочник по настройке
	Utility tarantoolctl
	Tips on Lua syntax

	Практикум
	Практические задания на Lua
	Практическое задание на C
	libslave tutorial

	Contributor’s Guide
	Справочник по C API
	Internals
	Build and contribute
	Guidelines

	Lua Module Index

