
Tarantool

Release 1.7.4

Mar 14, 2019

Contents

1 What’s new in Tarantool 1.7? 2

2 What’s new in Tarantool 1.6.9 after February 15, 2017? 4

3 What’s new in Tarantool 1.6? 5

4 Overview 6
4.1 An application server together with a database manager . 6
4.2 Database features . 7

5 User’s Guide 8
5.1 Preface . 8
5.2 Getting started . 9
5.3 Database . 13
5.4 Application server . 30
5.5 Server administration . 58
5.6 Replication . 76
5.7 Connectors . 95
5.8 FAQ . 106

6 Reference 108
6.1 Built-in modules reference . 108
6.2 Rocks reference . 243
6.3 Configuration reference . 262
6.4 Utility tarantoolctl . 279
6.5 Tips on Lua syntax . 279

7 Tutorials 281
7.1 Lua tutorials . 281
7.2 C tutorial . 293
7.3 libslave tutorial . 298

8 Contributor’s Guide 302
8.1 C API reference . 302
8.2 Internals . 324
8.3 Build and contribute . 337
8.4 Guidelines . 342

i

Lua Module Index 381

ii

Tarantool, Release 1.7.4

Here is a summary of significant changes introduced in specific versions of Tarantool.

For smaller feature changes and bug fixes, see closed milestones at GitHub.

Contents 1

https://github.com/tarantool/tarantool/milestones?state=closed

CHAPTER 1

What’s new in Tarantool 1.7?

The disk-based storage engine, which was called sophia or phia in earlier versions, is superseded by the vinyl
storage engine.

There are new types for indexed fields.

The LuaJIT version is updated.

Automatic replica set bootstrap (for easier configuration of a new replica set) is supported.

The space_object:inc() function is removed.

The space_object:dec() function is removed.

The space_object:bsize() function is added.

The box.coredump() function is removed, for an alternative see Core dumps.

The hot_standby configuration option is added.

Configuration parameters revised:

• Parameters renamed:

– slab_alloc_arena (in gigabytes) to memtx_memory (in bytes),

– slab_alloc_minimal to memtx_min_tuple_size,

– slab_alloc_maximal to memtx_max_tuple_size,

– replication_source to replication,

– snap_dir to memtx_dir,

– logger to log,

– logger_nonblock to log_nonblock,

– snapshot_count to checkpoint_count,

– snapshot_period to checkpoint_interval,

– panic_on_wal_error and panic_on_snap_error united under force_recovery.

2

Tarantool, Release 1.7.4

• Until Tarantool 1.8, you can use deprecated parameters for both initial and runtime configuration, but
Tarantool will display a warning. Also, you can specify both deprecated and up-to-date parameters,
provided that their values are harmonized. If not, Tarantool will display an error.

3

CHAPTER 2

What’s new in Tarantool 1.6.9 after February 15, 2017?

Due to Tarantool issue#2040 Remove sophia engine from 1.6 there no longer is a storage engine named
sophia. It will be superseded in version 1.7 by the vinyl storage engine.

4

https://github.com/tarantool/tarantool/issues/2040

CHAPTER 3

What’s new in Tarantool 1.6?

Tarantool 1.6 is no longer getting major new features, although it will be maintained. The developers are
concentrating on Tarantool version 1.7.

5

CHAPTER 4

Overview

4.1 An application server together with a database manager

Tarantool is a Lua application server integrated with a database management system. It has a “fiber” model
which means that many Tarantool applications can run simultaneously on a single thread, while each instance
of the Tarantool server itself can run multiple threads for input-output and background maintenance. It
incorporates the LuaJIT – “Just In Time” – Lua compiler, Lua libraries for most common applications, and
the Tarantool Database Server which is an established NoSQL DBMS. Thus Tarantool serves all the purposes
that have made node.js and Twisted popular, plus it supports data persistence.

The code is free. The open-source license is BSD license. The supported platforms are GNU/Linux, Mac
OS and FreeBSD.

Tarantool’s creator and biggest user is Mail.Ru, the largest internet company in Russia, with 30 million
users, 25 million emails per day, and a web site whose Alexa global rank is in the top 40 worldwide.
Tarantool services Mail.Ru’s hottest data, such as the session data of online users, the properties of online
applications, the caches of the underlying data, the distribution and sharding algorithms, and much more.
Outside Mail.Ru the software is used by a growing number of projects in online gaming, digital marketing,
and social media industries. Although Mail.Ru is the sponsor for product development, the roadmap and
the bugs database and the development process are fully open. The software incorporates patches from
dozens of community contributors. The Tarantool community writes and maintains most of the drivers for
programming languages. The greater Lua community has hundreds of useful packages most of which can
become Tarantool extensions.

Users can create, modify and drop Lua functions at runtime. Or they can define Lua programs that are
loaded during startup for triggers, background tasks, and interacting with networked peers. Unlike popular
application development frameworks based on a “reactor” pattern, networking in server-side Lua is sequential,
yet very efficient, as it is built on top of the cooperative multitasking environment that Tarantool itself uses.

One of the built-in Lua packages provides an API for the Database Management System. Thus some
developers see Tarantool as a DBMS with a popular stored procedure language, while others see it as a Lua
interpreter, while still others see it as a replacement for many components of multi-tier Web applications.
Performance can be a few hundred thousand transactions per second on a laptop, scalable upwards or
outwards to server farms.

6

http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://api.mail.ru
http://www.alexa.com/siteinfo/mail.ru

Tarantool, Release 1.7.4

4.2 Database features

Tarantool can run without it, but “The Box” – the DBMS server – is a strong distinguishing feature.

The database API allows for permanently storing Lua objects, managing object collections, creating or
dropping secondary keys, making changes atomically, configuring and monitoring replication, performing
controlled fail-over, and executing Lua code triggered by database events. Remote database instances are
accessible transparently via a remote-procedure-invocation API.

Tarantool’s DBMS server uses the storage engine concept, where different sets of algorithms and data struc-
tures can be used for different situations. Two storage engines are built-in: an in-memory engine which has
all the data and indexes in RAM, and a two-level B-tree engine for data sets whose size is 10 to 1000 times
the amount of available RAM. All storage engines in Tarantool support transactions and replication by using
a common write ahead log (WAL). This ensures consistency and crash safety of the persistent state. Changes
are not considered complete until the WAL is written. The logging subsystem supports group commit.

Tarantool’s in-memory storage engine (memtx) keeps all the data in random-access memory, and therefore
has very low read latency. It also keeps persistent copies of the data in non-volatile storage, such as disk,
when users request “snapshots”. If an instance of the server stops and the random-access memory is lost,
then restarts, it reads the latest snapshot and then replays the transactions that are in the log – therefore
no data is lost.

Tarantool’s in-memory engine is lock-free in typical situations. Instead of the operating system’s concurrency
primitives, such as mutexes, Tarantool uses cooperative multitasking to handle thousands of connections
simultaneously. There is a fixed number of independent execution threads. The threads do not share state.
Instead they exchange data using low-overhead message queues. While this approach limits the number of
cores that the instance will use, it removes competition for the memory bus and ensures peak scalability of
memory access and network throughput. CPU utilization of a typical highly-loaded Tarantool instance is
under 10%. Searches are possible via secondary index keys as well as primary keys.

Tarantool’s disk-based storage engine is a fusion of ideas from modern filesystems, log-structured merge trees
and classical B-trees. All data is organized into ranges. Each range is represented by a file on disk. Range
size is a configuration option and normally is around 64MB. Each range is a collection of pages, serving
different purposes. Pages in a fully merged range contain non-overlapping ranges of keys. A range can be
partially merged if there were a lot of changes in its key range recently. In that case some pages represent
new keys and values in the range. The disk-based storage engine is append only: new data never overwrites
old data. The disk-based storage engine is named vinyl.

Tarantool supports multi-part index keys. The possible index types are HASH, TREE, BITSET, and
RTREE.

Tarantool supports asynchronous replication, locally or to remote hosts. The replication architecture can be
master-master, that is, many nodes may both handle the loads and receive what others have handled, for
the same data sets.

4.2. Database features 7

CHAPTER 5

User’s Guide

5.1 Preface

Welcome to Tarantool! This is the User’s Guide. We recommend reading it first, and consulting Reference
materials for more detail afterwards, if needed.

5.1.1 How to read the documentation

To get started, you can install and launch Tarantool using a Docker container, a binary package, or the online
Tarantool server at http://try.tarantool.org. Either way, as the first tryout, you can follow the introductory
exercises from Chapter 2 “Getting started”. If you want more hands-on experience, proceed to Tutorials
after you are through with Chapter 2.

Chapter 3 “Database” is about using Tarantool as a NoSQL DBMS, whereas Chapter 4 “Application server”
is about using Tarantool as an application server.

Chapter 5 “Server administration” and Chapter 6 “Replication” are primarily for administrators.

Chapter 7 “Connectors” is strictly for users who are connecting from a different language such as C or Perl
or Python — other users will find no immediate need for this chapter.

Chapter 8 “FAQ” gives answers to some frequently asked questions about Tarantool.

For experienced users, there are also Reference materials, a Contributor’s Guide and an extensive set of
comments in the source code.

5.1.2 Getting in touch with the Tarantool community

Please report bugs or make feature requests at http://github.com/tarantool/tarantool/issues.

You can contact developers directly in telegram or in a Tarantool discussion group (English or Russian).

8

http://try.tarantool.org
http://github.com/tarantool/tarantool/issues
http://telegram.me/tarantool
https://groups.google.com/forum/#!forum/tarantool
https://googlegroups.com/group/tarantool-ru

Tarantool, Release 1.7.4

5.1.3 Conventions used in this manual

Square brackets [and] enclose optional syntax.

Two dots in a row .. mean the preceding tokens may be repeated.

A vertical bar | means the preceding and following tokens are mutually exclusive alternatives.

5.2 Getting started

In this chapter, we explain how to install Tarantool, how to start it, and how to create a simple database.

This chapter contains the following sections:

5.2.1 Using a Docker image

For trial and test purposes, we recommend using official Tarantool images for Docker. An official image con-
tains a particular Tarantool version (1.6 or 1.7) and all popular external modules for Tarantool. Everything
is already installed and configured in Linux. These images are the easiest way to install and use Tarantool.

Note: If you’re new to Docker, we recommend going over this tutorial before proceeding with this chapter.

Launching a container

If you don’t have Docker installed, please follow the official installation guide for your OS.

To start a fully functional Tarantool instance, run a container with minimal options:

$ docker run \
--name mytarantool \
-d -p 3301:3301 \
-v /data/dir/on/host:/var/lib/tarantool \
tarantool/tarantool:1.7

This command runs a new container named ‘mytarantool’. Docker starts it from an official image named
‘tarantool/tarantool:1.7’, with Tarantool version 1.7 and all external modules already installed.

Tarantool will be accepting incoming connections on localhost:3301. You may start using it as a key-value
storage right away.

Tarantool persists data inside the container. To make your test data available after you stop the container,
this command also mounts the host’s directory /data/dir/on/host (you need to specify here an absolute
path to an existing local directory) in the container’s directory /var/lib/tarantool (by convention, Tarantool
in a container uses this directory to persist data). So, all changes made in the mounted directory on the
container’s side are applied to the host’s disk.

Tarantool’s database module in the container is already configured and started. You needn’t do it manually,
unless you use Tarantool as an application server and run it with an application.

Attaching to Tarantool

To attach to Tarantool that runs inside the container, say:

5.2. Getting started 9

https://github.com/tarantool/docker
https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/#/step-1-get-docker

Tarantool, Release 1.7.4

$ docker exec -i -t mytarantool console

This command:

• Instructs Tarantool to open an interactive console port for incoming connections.

• Attaches to the Tarantool server inside the container under ‘admin’ user via a standard Unix socket.

Tarantool displays a prompt:

tarantool.sock>

Now you can enter requests on the command line.

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

While you’re attached to the console, let’s create a simple test database.

First, create the first space (named ‘tester’) and the first index (named ‘primary’):

tarantool.sock> s = box.schema.space.create('tester')
tarantool.sock> s:create_index('primary', {

> type = 'hash',
> parts = {1, 'unsigned'}
> })

Next, insert three tuples (our name for “records”) into the space:

tarantool.sock> t = s:insert({1, 'Roxette'})
tarantool.sock> t = s:insert({2, 'Scorpions', 2015})
tarantool.sock> t = s:insert({3, 'Ace of Base', 1993})

To select a tuple from the first space of the database, using the first defined key, say:

tarantool.sock> s:select{3}

The terminal screen now looks like this:

tarantool.sock> s = box.schema.space.create('tester')
2017-01-17 12:04:18.158 ... creating './00000000000000000000.xlog.inprogress'

...
tarantool.sock> s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

...
tarantool.sock> t = s:insert{1, 'Roxette'}

...
tarantool.sock> t = s:insert{2, 'Scorpions', 2015}

...
tarantool.sock> t = s:insert{3, 'Ace of Base', 1993}

(continues on next page)

10 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool.sock> s:select{3}

- - [3, 'Length', 93]
...
tarantool.sock>

Stopping a container

When the testing is over, stop the container politely:

$ docker stop mytarantool

This was a temporary container, and its disk/memory data were flushed when you stopped it. But since you
mounted a data directory from the host in the container, Tarantool’s data files were persisted to the host’s
disk. Now if you start a new container and mount that data directory in it, Tarantool will recover all data
from disk and continue working with the persisted data.

5.2.2 Using a binary package

For production purposes, we recommend official binary packages. You can choose from three Tarantool
versions: 1.6 (stable), 1.7 (release candidate) or 1.8 (alpha). An automatic build system creates, tests
and publishes packages for every push into a corresponding branch (1.6, 1.7 or 1.8) at Tarantool’s GitHub
repository.

To download and install the package that’s appropriate for your OS, start a shell (terminal) and enter the
command-line instructions provided for your OS at Tarantool’s download page.

Starting Tarantool

To start a Tarantool instance, say this:

$ # if you downloaded a binary with apt-get or yum, say this:
$ /usr/bin/tarantool
$ # if you downloaded and untarred a binary tarball to ~/tarantool, say this:
$ ~/tarantool/bin/tarantool

Tarantool starts in the interactive mode and displays a prompt:

tarantool>

Now you can enter requests on the command line.

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

Here is how to create a simple test database after installing.

5.2. Getting started 11

http://tarantool.org/download.html
https://github.com/tarantool/tarantool
https://github.com/tarantool/tarantool
http://tarantool.org/download.html

Tarantool, Release 1.7.4

Create a new directory (it’s just for tests, so you can delete it when the tests are over):

$ mkdir ~/tarantool_sandbox
$ cd ~/tarantool_sandbox

To start Tarantool’s database module and make the instance accept TCP requests on port 3301, say this:

tarantool> box.cfg{listen = 3301}

First, create the first space (named ‘tester’) and the first index (named ‘primary’):

tarantool> s = box.schema.space.create('tester')
tarantool> s:create_index('primary', {

> type = 'hash',
> parts = {1, 'unsigned'}
> })

Next, insert three tuples (our name for “records”) into the space:

tarantool> t = s:insert({1, 'Roxette'})
tarantool> t = s:insert({2, 'Scorpions', 2015})
tarantool> t = s:insert({3, 'Ace of Base', 1993})

To select a tuple from the first space of the database, using the first defined key, say:

tarantool> s:select{3}

The terminal screen now looks like this:

tarantool> s = box.schema.space.create('tester')
2017-01-17 12:04:18.158 ... creating './00000000000000000000.xlog.inprogress'

...
tarantool>s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

...
tarantool> t = s:insert{1, 'Roxette'}

...
tarantool> t = s:insert{2, 'Scorpions', 2015}

...
tarantool> t = s:insert{3, 'Ace of Base', 1993}

...
tarantool> s:select{3}

- - [3, 'Length', 93]
...
tarantool>

Connecting remotely

In the request box.cfg{listen = 3301} that we made earlier, the listen value can be any form of a URI
(uniform resource identifier). In this case, it’s just a local port: port 3301. You can send requests to the
listen URI via:

12 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(1) telnet,

(2) a connector,

(3) another instance of Tarantool (using the console module), or

(4) tarantoolctl utility.

Let’s try (4).

Switch to another terminal. On Linux, for example, this means starting another instance of a Bash shell.
You can switch to any working directory in the new terminal, not necessarily to ~/tarantool_sandbox.

Start the tarantoolctl utility:

$ tarantoolctl connect '3301'

This means “use tarantoolctl connect to connect to the Tarantool instance that’s listening on localhost:3301”.

Try this request:

tarantool> {{box.space.tester:select{2}}}

This means “send a request to that Tarantool instance, and display the result”. The result in this case is one
of the tuples that was inserted earlier. Your terminal screen should now look like this:

$ tarantoolctl connect 3301
/usr/local/bin/tarantoolctl: connected to localhost:3301
localhost:3301> box.space.tester:select{2}

- - [2, 'Scorpions', 2015]
...

localhost:3301>

You can repeat box.space...:insert{} and box.space...:select{} indefinitely, on either Tarantool instance.

When the testing is over:

• To drop the space: s:drop()

• To stop tarantoolctl: Ctrl+C or Ctrl+D

• To stop Tarantool (an alternative): the standard Lua function os.exit()

• To stop Tarantool (from another terminal): sudo pkill -f tarantool

• To destroy the test: rm -r ~/tarantool_sandbox

5.3 Database

In this chapter, we introduce the basic concepts of working with Tarantool as a database manager.

This chapter contains the following sections:

5.3.1 Data model

This section describes how Tarantool stores values and what operations with data it supports.

5.3. Database 13

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 1.7.4

If you tried to create a database as suggested in our “Getting started” exercises, then your test database now
looks like this:

Space

A space – ‘tester’ in our example – is a container.

When Tarantool is being used to store data, there is always at least one space. Each space has a unique
name specified by the user. Besides, each space has a unique numeric identifier which can be specified by
the user, but usually is assigned automatically by Tarantool. Finally, a space always has an engine: memtx
(default) – in-memory engine, fast but limited in size, or vinyl – on-disk engine for huge data sets.

A space is a container for tuples. To be functional, it needs to have a primary index. It can also have
secondary indexes.

Tuple

A tuple plays the same role as a “row” or a “record”, and the components of a tuple (which we call “fields”)
play the same role as a “row column” or “record field”, except that:

• fields can be composite structures, such as arrays or maps, and

• fields don’t need to have names.

Any given tuple may have any number of fields, and the fields may be of different types. The identifier of a
field is the field’s number, base 1 (in Lua and other 1-based languages) or base 0 (in PHP or C/C++). For
example, “1” or “0” can be used in some contexts to refer to the first field of a tuple.

Tuples in Tarantool are stored as MsgPack arrays.

When Tarantool returns a tuple value in console, it uses the YAML format, for example: [3, 'Ace of Base',
1993].

14 Chapter 5. User’s Guide

https://en.wikipedia.org/wiki/MessagePack
https://en.wikipedia.org/wiki/YAML

Tarantool, Release 1.7.4

Index

An index is a group of key values and pointers.

As with spaces, you should specify the index name, and let Tarantool come up with a unique numeric
identifier (“index id”).

An index always has a type. The default index type is ‘TREE’. TREE indexes are provided by all Tarantool
engines, can index unique and non-unique values, support partial key searches, comparisons and ordered
results. Additionally, memtx engine supports HASH, RTREE and BITSET indexes.

An index may be multi-part, that is, you can declare that an index key value is composed of two or more
fields in the tuple, in any order. For example, for an ordinary TREE index, the maximum number of parts
is 255.

An index may be unique, that is, you can declare that it would be illegal to have the same key value twice.

The first index defined on a space is called the primary key index, and it must be unique. All other indexes
are called secondary indexes, and they may be non-unique.

An index definition may include identifiers of tuple fields and their expected types (see allowed indexed field
types below).

In our example, we first defined the primary index (named ‘primary’) based on field #1 of each tuple:

tarantool> i = s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})

The effect is that, for all tuples in space ‘tester’, field #1 must exist and must contain an unsigned integer.
The index type is ‘hash’, so values in field #1 must be unique, because keys in HASH indexes are unique.

After that, we defined a secondary index (named ‘secondary’) based on field #2 of each tuple:

tarantool> i = s:create_index('secondary', {type = 'tree', parts = {2, 'string'}})

The effect is that, for all tuples in space ‘tester’, field #2 must exist and must contain a string. The index
type is ‘tree’, so values in field #2 must not be unique, because keys in TREE indexes may be non-unique.

Note: Space definitions and index definitions are stored permanently in Tarantool’s system spaces _space
and _index (for details, see reference on box.space submodule).

You can add, drop, or alter the definitions at runtime, with some restrictions. See syntax details in reference
on box module.

Data types

Tarantool is both a database and an application server. Hence a developer often deals with two type sets:
the programming language types (e.g. Lua) and the types of the Tarantool storage format (MsgPack).

5.3. Database 15

Tarantool, Release 1.7.4

Lua vs MsgPack

Scalar / compound MsgPack type Lua type Example value
scalar nil “nil” msgpack.NULL
scalar boolean “boolean” true
scalar string “string” ‘A B C’
scalar integer “number” 12345
scalar double “number” 1,2345
compound map “table” (with string keys) table: 0x410f8b10
compound array “table” (with integer keys) [1, 2, 3, 4, 5]
compound array tuple (“cdata”) [12345, ‘A B C’]

In Lua, a nil type has only one possible value, also called nil (displayed as null on Tarantool’s command line,
since the output is in the YAML format). Nils may be compared to values of any types with == (is-equal) or
~= (is-not-equal), but other operations will not work. Nils may not be used in Lua tables; the workaround
is to use msgpack.NULL

A boolean is either true or false.

A string is a variable-length sequence of bytes, usually represented with alphanumeric characters inside
single quotes. In both Lua and MsgPack, strings are treated as binary data, with no attempts to determine
a string’s character set or to perform any string conversion. So, string sorting and comparison are done
byte-by-byte, without any special collation rules applied. (Example: numbers are ordered by their point on
the number line, so 2345 is greater than 500; meanwhile, strings are ordered by the encoding of the first
byte, then the encoding of the second byte, and so on, so ‘2345’ is less than ‘500’.)

In Lua, a number is double-precision floating-point, but Tarantool allows both integer and floating-point
values. Tarantool will try to store a Lua number as floating-point if the value contains a decimal point or
is very large (greater than 100 billion = 1e14), otherwise Tarantool will store it as an integer. To ensure
that even very large numbers are stored as integers, use the tonumber64 function, or the LL (Long Long)
suffix, or the ULL (Unsigned Long Long) suffix. Here are examples of numbers using regular notation,
exponential notation, the ULL suffix and the tonumber64 function: -55, -2.7e+20, 100000000000000ULL,
tonumber64('18446744073709551615').

Lua tables with string keys are stored as MsgPack maps; Lua tables with integer keys starting with 1 – as
MsgPack arrays. Nils may not be used in Lua tables; the workaround is to use msgpack.NULL

A tuple is a light reference to a MsgPack array stored in the database. It is a special type (cdata) to avoid
conversion to a Lua table on retrieval. A few functions may return tables with multiple tuples. For more
tuple examples, see box.tuple.

Note: Tarantool uses the MsgPack format for database storage, which is variable-length. So, for example,
the smallest number requires only one byte, but the largest number requires nine bytes.

Indexed field types

Indexes restrict values which Tarantool’s MsgPack may contain. This is why, for example, ‘unsigned’ is a
separate indexed field type, compared to ‘integer’ data type in MsgPack: they both store ‘integer’ values,
but an ‘unsigned’ index contains only non-negative integer values and an ‘integer’ index contains all integer
values.

Here’s how Tarantool indexed field types correspond to MsgPack data types.

16 Chapter 5. User’s Guide

http://www.lua.org/pil/2.1.html
http://www.lua.org/pil/2.2.html
http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.5.html
http://www.lua.org/pil/2.5.html
http://luajit.org/ext_ffi.html#call

Tarantool, Release 1.7.4

Indexed field
type

MsgPack data type (and possible values) In-
dex
type

Exam-
ples

unsigned (may
also be called
‘uint’ or ‘num’,
but ‘num’ is
deprecated)

integer (integer between 0 and 18446744073709551615, i.e. about 18
quintillion)

TREE,
BIT-
SET
or
HASH

123456

integer (may
also be called
‘int’)

integer (integer between -9223372036854775808 and
18446744073709551615)

TREE
or
HASH

-2^63

number integer (integer between -9223372036854775808 and
18446744073709551615)
double (single-precision floating point number or double-precision
floating point number)

TREE
or
HASH

1.234
-44
1.447e+44

string (may
also be called
‘str’)

string (any set of octets, up to the maximum length) TREE
or
HASH

‘A B C’
‘65 66
67’

array array (arrays of integers between -9223372036854775808 and
9223372036854775807)

RTREE {10,
11}
{3, 5,
9, 10}

scalar null
boolean (true or false)
integer (integer between -9223372036854775808 and
18446744073709551615)
double (single-precision floating point number or double-precision
floating point number)
string (any set of octets)
Note: When there is a mix of types, the key order is: null, then
booleans, then numbers, then strings.

TREE
or
HASH

msg-
pack.NULL
true
-1
1.234
‘’
‘ру’

Persistence

In Tarantool, updates to the database are recorded in the so-called write ahead log (WAL) files. This ensures
data persistence. When a power outage occurs or the Tarantool instance is killed incidentally, the in-memory
database is lost. In this situation, WAL files are used to restore the data. Namely, Tarantool reads the WAL
files and redoes the requests (this is called the “recovery process”). You can change the timing of the WAL
writer, or turn it off, by setting wal_mode.

Tarantool also maintains a set of snapshot files. These files contain an on-disk copy of the entire data set for
a given moment. Instead of reading every WAL file since the databases were created, the recovery process
can load the latest snapshot file and then read only those WAL files that were produced after the snapshot
file was made. After checkpointing, old WAL files can be removed to free up space.

To force immediate creation of a snapshot file, you can use Tarantool’s box.snapshot() request. To enable
automatic creation of snapshot files, you can use Tarantool’s checkpoint daemon. The checkpoint daemon
sets intervals for forced checkpoints. It makes sure that the states of both memtx and vinyl storage engines
are synchronized and saved to disk, and automatically removes old WAL files.

Snapshot files can be created even if there is no WAL file.

Note: The memtx engine makes only regular checkpoints with the interval set in checkpoint daemon

5.3. Database 17

Tarantool, Release 1.7.4

configuration.

The vinyl engine runs checkpointing in the background at all times.

See the Internals section for more details about the WAL writer and the recovery process.

Operations

Data operations

The basic data operations supported in Tarantool are:

• one data-retrieval operation (SELECT), and

• five data-manipulation operations (INSERT, UPDATE, UPSERT, DELETE, REPLACE).

All of them are implemented as functions in box.space submodule.

Examples

• INSERT: Add a new tuple to space ‘tester’.

The first field, field[1], will be 999 (MsgPack type is integer).

The second field, field[2], will be ‘Taranto’ (MsgPack type is string).

tarantool> box.space.tester:insert{999, 'Taranto'}

• UPDATE: Update the tuple, changing field field[2].

The clause “{999}”, which has the value to look up in the index of the tuple’s primary-key field, is
mandatory, because update() requests must always have a clause that specifies a unique key, which in
this case is field[1].

The clause “{{‘=’, 2, ‘Tarantino’}}” specifies that assignment will happen to field[2] with the new
value.

tarantool> box.space.tester:update({999}, {{'=', 2, 'Tarantino'}})

• UPSERT: Upsert the tuple, changing field field[2] again.

The syntax of upsert() is similar to the syntax of update(). However, the execution logic of these
two requests is different. UPSERT is either UPDATE or INSERT, depending on the database’s state.
Also, UPSERT execution is postponed after transaction commit, so, unlike update(), upsert() doesn’t
return data back.

tarantool> box.space.tester:upsert({999}, {{'=', 2, 'Tarantism'}})

• REPLACE: Replace the tuple, adding a new field.

This is also possible with the update() request, but the update() request is usually more complicated.

tarantool> box.space.tester:replace{999, 'Tarantella', 'Tarantula'}

• SELECT: Retrieve the tuple.

The clause “{999}” is still mandatory, although it does not have to mention the primary key.

tarantool> box.space.tester:select{999}

18 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

• DELETE: Delete the tuple.

In this example, we identify the primary-key field.

tarantool> box.space.tester:delete{999}

All the functions operate on tuples and accept only unique key values. So, the number of tuples in the space
is always 0 or 1, since the keys are unique.

Functions insert(), upsert() and replace() accept only primary-key values. Functions select(), delete() and
update() may accept either a primary-key value or a secondary-key value.

Note: Besides Lua, you can use Perl, PHP, Python or other programming language connectors. The client
server protocol is open and documented. See this annotated BNF.

Index operations

Index operations are automatic: if a data-manipulation request changes a tuple, then it also changes the
index keys defined for the tuple.

The simple index-creation operation that we’ve illustrated before is:

box.space.space-name:create_index('index-name')

This creates a unique TREE index on the first field of all tuples (often called “Field#1”), which is assumed
to be numeric.

The simple SELECT request that we’ve illustrated before is:

box.space.space-name:select(value)

This looks for a single tuple via the first index. Since the first index is always unique, the maximum number
of returned tuples will be: one.

The following SELECT variations exist:

1. The search can use comparisons other than equality.

box.space.space-name:select(value, {iterator = 'GT'})

The comparison operators are LT, LE, EQ, REQ, GE, GT (for “less than”, “less than or equal”, “equal”,
“reversed equal”, “greater than or equal”, “greater than” respectively). Comparisons make sense if and
only if the index type is ‘TREE’.

This type of search may return more than one tuple; if so, the tuples will be in descending order by
key when the comparison operator is LT or LE or REQ, otherwise in ascending order.

2. The search can use a secondary index.

box.space.space-name.index.index-name:select(value)

For a primary-key search, it is optional to specify an index name. For a secondary-key search, it is
mandatory.

3. The search may be for some or all key parts.

-- Suppose an index has two parts
tarantool> box.space.space-name.index.index-name.parts

- - type: unsigned

fieldno: 1

5.3. Database 19

Tarantool, Release 1.7.4

- type: string
fieldno: 2

...
-- Suppose the space has three tuples
box.space.space-name:select()

- - [1, 'A']
- [1, 'B']
- [2, '']

...

4. The search may be for all fields, using a table for the value:

box.space.space-name:select({1, 'A'})

or the search can be for one field, using a table or a scalar:

box.space.space-name:select(1)

In the second case, the result will be two tuples: {1, 'A'} and {1, 'B'}.

You can specify even zero fields, causing all three tuples to be returned. (Notice that partial key
searches are available only in TREE indexes.)

Examples

• BITSET example:

tarantool> box.schema.space.create('bitset_example')
tarantool> box.space.bitset_example:create_index('primary')
tarantool> box.space.bitset_example:create_index('bitset',{unique=false,type='BITSET',␣
→˓parts={2,'unsigned'}})
tarantool> box.space.bitset_example:insert{1,1}
tarantool> box.space.bitset_example:insert{2,4}
tarantool> box.space.bitset_example:insert{3,7}
tarantool> box.space.bitset_example:insert{4,3}
tarantool> box.space.bitset_example.index.bitset:select(2, {iterator='BITS_ANY_SET'})

The result will be:

- - [3, 7]
- [4, 3]

...

because (7 AND 2) is not equal to 0, and (3 AND 2) is not equal to 0.

• RTREE example:

tarantool> box.schema.space.create('rtree_example')
tarantool> box.space.rtree_example:create_index('primary')
tarantool> box.space.rtree_example:create_index('rtree',{unique=false,type='RTREE',␣
→˓parts={2,'ARRAY'}})
tarantool> box.space.rtree_example:insert{1, {3, 5, 9, 10}}
tarantool> box.space.rtree_example:insert{2, {10, 11}}
tarantool> box.space.rtree_example.index.rtree:select({4, 7, 5, 9}, {iterator = 'GT'})

The result will be:

20 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

- - [1, [3, 5, 9, 10]]
...

because a rectangle whose corners are at coordinates 4,7,5,9 is entirely within a rectangle
whose corners are at coordinates 3,5,9,10.

Additionally, there exist index iterator operations. They can only be used with code in Lua and C/C++.
Index iterators are for traversing indexes one key at a time, taking advantage of features that are specific
to an index type, for example evaluating Boolean expressions when traversing BITSET indexes, or going in
descending order when traversing TREE indexes.

See also other index operations like alter() and drop() in reference for box.index submodule.

Complexity factors

In reference for box.space and box.index submodules, there are notes about which complexity factors might
affect the resource usage of each function.

Com-
plexity
factor

Effect

Index
size

The number of index keys is the same as the number of tuples in the data set. For a TREE
index, if there are more keys, then the lookup time will be greater, although of course the effect
is not linear. For a HASH index, if there are more keys, then there is more RAM used, but the
number of low-level steps tends to remain constant.

Index
type

Typically, a HASH index is faster than a TREE index if the number of tuples in the space is
greater than one.

Num-
ber
of in-
dexes
ac-
cessed

Ordinarily, only one index is accessed to retrieve one tuple. But to update the tuple, there must
be N accesses if the space has N different indexes.
Note re storage engine: Vinyl optimizes away such accesses if secondary index fields are un-
changed by the update. So, this complexity factor applies only to memtx, since it always makes
a full-tuple copy on every update.

Num-
ber of
tuples
ac-
cessed

A few requests, for example SELECT, can retrieve multiple tuples. This factor is usually less
important than the others.

WAL
set-
tings

The important setting for the write-ahead log is wal_mode. If the setting causes no writing or
delayed writing, this factor is unimportant. If the setting causes every data-change request to
wait for writing to finish on a slow device, this factor is more important than all the others.

5.3.2 Transaction control

Transactions in Tarantool occur in fibers on a single thread. That is why Tarantool has a guarantee of
execution atomicity. That requires emphasis.

Threads, fibers and yields

How does Tarantool process a basic operation? As an example, let’s take this query:

5.3. Database 21

Tarantool, Release 1.7.4

tarantool> box.space.tester:update({3}, {{'=', 2, 'size'}, {'=', 3, 0}})

This is equivalent to an SQL statement like:

UPDATE tester SET "field[2]" = 'size', "field[3]" = 0 WHERE "field[[1]" = 3

This query will be processed with three operating system threads:

1. If we issue the query on a remote client, then the network thread on the server side receives the query,
parses the statement and changes it to a server executable message which has already been checked,
and which the server instance can understand without parsing everything again.

2. The network thread ships this message to the instance’s “transaction processor” thread using a lock-free
message bus. Lua programs execute directly in the transaction processor thread, and do not require
parsing and preparation.

The instance’s transaction processor thread uses the primary-key index on field[1] to find the location
of the tuple. It determines that the tuple can be updated (not much can go wrong when you’re merely
changing an unindexed field value to something shorter).

3. The transaction processor thread sends a message to the write-ahead logging (WAL) thread to commit
the transaction. When done, the WAL thread replies with a COMMIT or ROLLBACK result, which
is returned to the client.

Notice that there is only one transaction processor thread in Tarantool. Some people are used to the idea that
there can be multiple threads operating on the database, with (say) thread #1 reading row #x, while thread
#2 writes row #y. With Tarantool, no such thing ever happens. Only the transaction processor thread can
access the database, and there is only one transaction processor thread for each Tarantool instance.

Like any other Tarantool thread, the transaction processor thread can handle many fibers. A fiber is a set
of computer instructions that may contain “yield” signals. The transaction processor thread will execute all
computer instructions until a yield, then switch to execute the instructions of a different fiber. Thus (say)
the thread reads row #x for the sake of fiber #1, then writes row #y for the sake of fiber #2.

Yields must happen, otherwise the transaction processor thread would stick permanently on the same fiber.
There are two types of yields:

• implicit yields: every data-change operation or network-access causes an implicit yield, and every
statement that goes through the Tarantool client causes an implicit yield.

• explicit yields: in a Lua function, you can (and should) add “yield” statements to prevent hogging.
This is called cooperative multitasking.

Cooperative multitasking

Cooperative multitasking means: unless a running fiber deliberately yields control, it is not preempted by
some other fiber. But a running fiber will deliberately yield when it encounters a “yield point”: a transaction
commit, an operating system call, or an explicit yield() request. Any system call which can block will be
performed asynchronously, and any running fiber which must wait for a system call will be preempted, so
that another ready-to-run fiber takes its place and becomes the new running fiber.

This model makes all programmatic locks unnecessary: cooperative multitasking ensures that there will be
no concurrency around a resource, no race conditions, and no memory consistency issues.

When requests are small, for example simple UPDATE or INSERT or DELETE or SELECT, fiber scheduling
is fair: it takes only a little time to process the request, schedule a disk write, and yield to a fiber serving
the next client.

22 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

However, a function might perform complex computations or might be written in such a way that yields
do not occur for a long time. This can lead to unfair scheduling, when a single client throttles the rest of
the system, or to apparent stalls in request processing. Avoiding this situation is the responsibility of the
function’s author.

Transactions

In the absence of transactions, any function that contains yield points may see changes in the database state
caused by fibers that preempt. Multi-statement transactions exist to provide isolation: each transaction sees
a consistent database state and commits all its changes atomically. At commit time, a yield happens and all
transaction changes are written to the write ahead log in a single batch.

To implement isolation, Tarantool uses a simple optimistic scheduler: the first transaction to commit wins.
If a concurrent active transaction has read a value modified by a committed transaction, it is aborted.

The cooperative scheduler ensures that, in absence of yields, a multi-statement transaction is not preempted
and hence is never aborted. Therefore, understanding yields is essential to writing abort-free code.

Note: You can’t mix storage engines in a transaction today.

Implicit yields

The only explicit yield requests in Tarantool are fiber.sleep() and fiber.yield(), but many other requests
“imply” yields because Tarantool is designed to avoid blocking.

Database operations usually do not yield, but it depends on the engine:

• In memtx, reads or writes do not require I/O and do not yield.

• In vinyl, not all data is in memory, and SELECT often incurs a disc I/O, and therefore yields, while
a write may stall waiting for memory to free up, thus also causing a yield.

In the “autocommit” mode, all data change operations are followed by an automatic commit, which yields.
So does an explicit commit of a multi-statement transaction, box.commit().

Many functions in modules fio, net_box, console and socket (the “os” and “network” requests) yield.

Example #1

• Engine = memtx select() insert() has one yield, at the end of insertion, caused by implicit commit;
select() has nothing to write to the WAL and so does not yield.

• Engine = vinyl select() insert() has between one and three yields, since select() may yield if the data is
not in cache, insert() may yield waiting for available memory, and there is an implicit yield at commit.

• The sequence begin() insert() insert() commit() yields only at commit if the engine is memtx, and can
yield up to 3 times if the engine is vinyl.

Example #2

Assume that in space ‘tester’ there are tuples in which the third field represents a positive dollar amount.
Let’s start a transaction, withdraw from tuple#1, deposit in tuple#2, and end the transaction, making its
effects permanent.

tarantool> function txn_example(from, to, amount_of_money)
> box.begin()
> box.space.tester:update(from, {{'-', 3, amount_of_money}})

(continues on next page)

5.3. Database 23

Tarantool, Release 1.7.4

(continued from previous page)

> box.space.tester:update(to, {{'+', 3, amount_of_money}})
> box.commit()
> return "ok"
> end

...
tarantool> txn_example({999}, {1000}, 1.00)

- "ok"
...

If wal_mode = ‘none’, then implicit yielding at commit time does not take place, because there are no writes
to the WAL.

If a task is interactive – sending requests to the server and receiving responses – then it involves network IO,
and therefore there is an implicit yield, even if the request that is sent to the server is not itself an implicit
yield request. Therefore, the sequence:

select
select
select

causes blocking (in memtx), if it is inside a function or Lua program being executed on the server instance,
but causes yielding (in both memtx and vinyl) if it is done as a series of transmissions from a client, including
a client which operates via telnet, via one of the connectors, or via the MySQL and PostgreSQL rocks, or
via the interactive mode when using Tarantool as a client.

After a fiber has yielded and then has regained control, it immediately issues testcancel.

5.3.3 Access control

Understanding security details is primarily an issue for administrators. Meanwhile, ordinary users should
at least skim this section to get an idea of how Tarantool makes it possible for administrators to prevent
unauthorized access to the database and to certain functions.

In a nutshell:

• There is a method to guarantee with password checks that users really are who they say they are
(“authentication”).

• There is a _user system space, where usernames and password-hashes are stored.

• There are functions for saying that certain users are allowed to do certain things (“privileges”).

• There is a _priv system space, where privileges are stored. Whenever a user tries to do an operation,
there is a check whether the user has the privilege to do the operation (“access control”).

Further on, we explain all of this in more detail.

Users

There is a current user for any program working with Tarantool, local or remote. If a remote connection is
using a binary port, the current user, by default, is ‘guest’. If the connection is using an admin-console port,
the current user is ‘admin’. When executing a Lua initialization script, the current user is also ‘admin’.

The current user name can be found with box.session.user().

24 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

The current user can be changed:

• For a binary port connection – with AUTH protocol command, supported by most clients;

• For an admin-console connection and in a Lua initialization script – with box.session.su;

• For a stored function invoked with CALL command over a binary port – with SETUID property enabled
for the function, which makes Tarantool temporarily replace the current user with the function’s creator,
with all creator’s privileges, during function execution.

Passwords

Each user may have a password. The password is any alphanumeric string.

Tarantool passwords are stored in the _user system space with a cryptographic hash function so that, if
the password is ‘x’, the stored hash-password is a long string like ‘lL3OvhkIPOKh+Vn9Avlkx69M/Ck=‘.
When a client connects to a Tarantool instance, the instance sends a random salt value which the client must
mix with the hashed-password before sending to the instance. Thus the original value ‘x’ is never stored
anywhere except in the user’s head, and the hashed value is never passed down a network wire except when
mixed with a random salt.

Note: For more details of the password hashing algorithm (e.g. for the purpose of writing a new client
application), read the scramble.h header file.

This system prevents malicious onlookers from finding passwords by snooping in the log files or snooping on
the wire. It is the same system that MySQL introduced several years ago, which has proved adequate for
medium-security installations. Nevertheless, administrators should warn users that no system is foolproof
against determined long-term attacks, so passwords should be guarded and changed occasionally. Adminis-
trators should also advise users to choose long unobvious passwords, but it is ultimately up to the users to
choose or change their own passwords.

There are two functions for managing passwords in Tarantool: box.schema.user.password() for changing a
user’s password and box.schema.user.passwd() for getting a hash-password.

Owners and privileges

In Tarantool, all objects are organized into a hierarchy of ownership. Ordinarily the owner of every object
is its creator. The creator of the initial database state (we call it ‘universe’) – including the database itself,
the system spaces, the users – is ‘admin’.

An object’s owner can share some rights on the object by granting privileges to other users. The following
privileges are implemented:

• Read an object,

• Write, i.e. modify contents of an object,

• Execute, i.e. use an object (if the privilege makes sense for the object; for example, spaces can not be
“executed”, but functions can).

Note: Currently, “drop” and “grant” privileges can not be granted to other users. This possibility will be
added in future versions of Tarantool.

This is how the privilege system works under the hood. To be able to create objects, a user needs to have
write access to Tarantool’s system spaces. The ‘admin’ user, who is at the top of the hierarchy and who

5.3. Database 25

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Salt_%28cryptography%29
https://github.com/tarantool/tarantool/blob/1.7/src/scramble.h
http://dev.mysql.com/doc/refman/5.7/en/password-hashing.html

Tarantool, Release 1.7.4

is the ultimate source of privileges, shares write access to a system space (e.g. _space) with some users.
Now the users can insert data into the system space (e.g. creating new spaces) and themselves become
creators/definers of new objects. For the objects they created, the users can in turn share privileges with
other users.

This is why only an object’s owner can drop the object, but not other ordinary users. Meanwhile, ‘admin’
can drop any object or delete any other user, because ‘admin’ is the creator and ultimate owner of them all.

The syntax of all grant()/revoke() commands in Tarantool follows this basic idea.

• Their first argument is “who gets” or “who is revoked” a grant.

• Their second argument is the type of privilege granted, or a list of privileges.

• Their third argument is the object type on which the privilege is granted.

• Their fourth and optional argument is the object name (‘universe’ has no name, because there is only
one ‘universe’, but you need to specify names for functions/users/spaces/etc).

Example #1

Here we disable all privileges and run Tarantool in the ‘no-privilege’ mode.

box.schema.user.grant('guest', 'read,write,execute', 'universe')

Example #2

Here we create a Lua function that will be executed under the user id of its creator, even if called by another
user.

First, we create two spaces (‘u’ and ‘i’) and grant a no-password user (‘internal’) full access to them. Then we
define a function (‘read_and_modify’) and the no-password user becomes this function’s creator. Finally,
we grant another user (‘public_user’) access to execute Lua functions created by the no-password user.

box.schema.space.create('u')
box.schema.space.create('i')
box.schema.space.u:create_index('pk')
box.schema.space.i:create_index('pk')

box.schema.user.create(‘internal’)

box.schema.user.grant('internal', 'read,write', 'space', 'u')
box.schema.user.grant('internal', 'read,write', 'space', 'i')

function read_and_modify(key)
local u = box.space.u
local i = box.space.i
local fiber = require('fiber')
local t = u:get{key}
if t ~= nil

u:put{key, box.session.uid()}
i:put{key, fiber.time()}

end
end

box.session.su('internal')
box.schema.func.create('read_and_modify', {setuid= true})
box.session.su('admin')
box.schema.user.create('public_user', {password = 'secret'})
box.schema.user.grant('public_user', 'execute', 'function', 'read_and_modify')

26 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

Roles

A role is a container for privileges which can be granted to regular users. Instead of granting or revoking
individual privileges, you can put all the privileges in a role and then grant or revoke the role.

Role information is stored in the _user space, but the third field in the tuple – the type field – is ‘role’ rather
than ‘user’.

An important feature in role management is that roles can be nested. For example, role R1 can be granted
a privilege “role R2”, so users with the role R1 will subsequently get all privileges from both roles R1 and
R2. In other words, a user gets all the privileges that are granted to a user’s roles, directly or indirectly.

Example

-- This example will work for a user with many privileges, such as 'admin'
-- Create space T with a primary index
box.schema.space.create('T')
box.space.T:create_index('primary', {})
-- Create user U1 so that later we can change the current user to U1
box.schema.user.create('U1')
-- Create two roles, R1 and R2
box.schema.role.create('R1')
box.schema.role.create('R2')
-- Grant role R2 to role R1 and role R1 to user U1 (order doesn't matter)
box.schema.role.grant('R1', 'execute', 'role', 'R2')
box.schema.user.grant('U1', 'execute', 'role', 'R1')
-- Grant read/write privileges for space T to role R2
-- (but not to role R1 and not to user U1)
box.schema.role.grant('R2', 'read,write', 'space', 'T')
-- Change the current user to user U1
box.session.su('U1')
-- An insertion to space T will now succeed because, due to nested roles,
-- user U1 has write privilege on space T
box.space.T:insert{1}

For details about Tarantool functions related to role management, see reference on box.schema submodule.

Sessions and security

A session is the state of a connection to Tarantool. It contains:

• an integer id identifying the connection,

• the current user associated with the connection,

• text description of the connected peer, and

• session local state, such as Lua variables and functions.

In Tarantool, a single session can execute multiple concurrent transactions. Each transaction is identified by
a unique integer id, which can be queried at start of the transaction using box.session.sync().

Note: To track all connects and disconnects, you can use connection and authentication triggers.

5.3.4 Triggers

Triggers, also known as callbacks, are functions which the server executes when certain events happen.

5.3. Database 27

Tarantool, Release 1.7.4

There are three types of triggers in Tarantool:

• connection triggers, which are executed when a session begins or ends,

• authentication triggers, which are executed during authentication, and

• replace triggers, which are for database events.

All triggers have the following characteristics:

• Triggers associate a function with an event. The request to “define a trigger” implies passing the trigger’s
function to one of the “on_event-name()” functions: box.session.on_connect(), box.session.on_auth(),
box.session.on_disconnect(), or space_object:on_replace().

• Triggers are defined only by the ‘admin’ user.

• Triggers are stored in the Tarantool instance’s memory, not in the database. Therefore triggers disap-
pear when the instance is shut down. To make them permanent, put function definitions and trigger
settings into Tarantool’s initialization script.

• Triggers have low overhead. If a trigger is not defined, then the overhead is minimal: merely a pointer
dereference and check. If a trigger is defined, then its overhead is equivalent to the overhead of calling
a function.

• There can be multiple triggers for one event. In this case, triggers are executed in the reverse order
that they were defined in.

• Triggers must work within the event context. However, effects are undefined if a function contains
requests which normally could not occur immediately after the event, but only before the return from
the event. For example, putting os.exit() or box.rollback() in a trigger function would be bringing in
requests outside the event context.

• Triggers are replaceable. The request to “redefine a trigger” implies passing a new trigger function and
an old trigger function to one of the “on_event-name()” functions.

• The “on_event_name()” functions all have parameters which are function pointers, and they all return
function pointers. Remember that a Lua function definition such as “function f() x = x + 1 end” is
the same as “f = function () x = x + 1 end” – in both cases f gets a function pointer. And “trigger
= box.session.on_connect(f)” is the same as “trigger = box.session.on_connect(function () x = x + 1
end)” – in both cases trigger gets the function pointer which was passed.

To get a list of triggers, you can use:

• on_connect() – with no arguments – to return a table of all connect-trigger functions;

• on_auth() to return all authentication-trigger functions;

• on_disconnect() to return all disconnect-trigger functions;

• on_replace() to return all replace-trigger functions.

Example

Here we log connect and disconnect events into Tarantool server log.

log = require('log')

function on_connect_impl()
log.info("connected "..box.session.peer()..", sid "..box.session.id())

end

function on_disconnect_impl()
log.info("disconnected, sid "..box.session.id())

(continues on next page)

28 Chapter 5. User’s Guide

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 1.7.4

(continued from previous page)

end

function on_auth_impl(user)
log.info("authenticated sid "..box.session.id().." as "..user)

end

function on_connect() pcall(on_connect_impl) end
function on_disconnect() pcall(on_disconnect_impl) end
function on_auth(user) pcall(on_auth_impl, user) end

box.session.on_connect(on_connect)
box.session.on_disconnect(on_disconnect)
box.session.on_auth(on_auth)

5.3.5 Limitations

Number of parts in an index

For TREE or HASH indexes, the maximum is 255 (box.schema.INDEX_PART_MAX). For
RTREE indexes, the maximum is 1 but the field is an ARRAY of up to 20 dimensions. For
BITSET indexes, the maximum is 1.

Number of indexes in a space

128 (box.schema.INDEX_MAX).

Number of fields in a tuple

The theoretical maximum is 2,147,483,647 (box.schema.FIELD_MAX). The practical maximum
is whatever is specified by the space’s field_count member, or the maximal tuple length.

Number of bytes in a tuple

The maximal number of bytes in a tuple is roughly equal to memtx_max_tuple_size (with a
metadata overhead of about 20 bytes per tuple, which is added on top of useful bytes). By default,
the value of memtx_max_tuple_size is 1,048,576. To increase it, specify a larger value when
starting the Tarantool instance. For example, box.cfg{memtx_max_tuple_size=2*1048576}.

Slab size

The maximal size of an allocatable memory unit (slab) is equal to one quarter of
memtx_max_tuple_size (by default, approximately 262,000 bytes). To see memory usage statis-
tics broken down by slab size, use box.slab.stats().

Number of bytes in an index key

If a field in a tuple can contain a million bytes, then the index key can contain a million bytes,
so the maximum is determined by factors such as Number of bytes in a tuple, not by the index
support.

Number of spaces

The theoretical maximum is 65,000 (box.schema.SPACE_MAX).

Number of connections

The practical limit is the number of file descriptors that one can set with the operating system.

Space size

5.3. Database 29

Tarantool, Release 1.7.4

The total maximum size for all spaces is in effect set by memtx_memory, which in turn is limited
by the total available memory.

Update operations count

The maximum number of operations that can be in a single update is 4000
(BOX_UPDATE_OP_CNT_MAX).

Number of users and roles

32 (BOX_USER_MAX).

Length of an index name or space name or user name

32 (box.schema.NAME_MAX).

Number of replicas in a replica set

32 (box.schema.REPLICA_MAX).

5.4 Application server

In this chapter, we introduce the basics of working with Tarantool as a Lua application server.

This chapter contains the following sections:

5.4.1 Launching an application

Using Tarantool as an application server, you can write your own applications. Tarantool’s native language
for writing applications is Lua, so a typical application would be a file that contains your Lua script. But
you can also write applications in C or C++.

Note: If you’re new to Lua, we recommend going over the interactive Tarantool tutorial before proceeding
with this chapter. To launch the tutorial, say tutorial() in Tarantool console:

tarantool> tutorial()

- |
Tutorial -- Screen #1 -- Hello, Moon
====================================

Welcome to the Tarantool tutorial.
It will introduce you to Tarantool’s Lua application server
and database server, which is what’s running what you’re seeing.
This is INTERACTIVE -- you’re expected to enter requests
based on the suggestions or examples in the screen’s text.
<...>

Let’s create and launch our first Lua application for Tarantool. Here’s a simplest Lua application, the good
old “Hello, world!”:

#!/usr/bin/env tarantool
print('Hello, world!')

We save it in a file (let it be myapp.lua in the current directory).

Now let’s discuss how we can launch our application with Tarantool.

30 Chapter 5. User’s Guide

http://www.lua.org/about.html

Tarantool, Release 1.7.4

Launching in Docker

If we run Tarantool in a Docker container, the following command will start Tarantool without any applica-
tion:

create a temporary container and run it in interactive mode
$ docker run --rm -t -i tarantool/tarantool

To run Tarantool with our application, we can say:

create a temporary container and
launch Tarantool with our application
$ docker run --rm -t -i \

-v `pwd`/myapp.lua:/opt/tarantool/myapp.lua \
-v /data/dir/on/host:/var/lib/tarantool \
tarantool/tarantool tarantool /opt/tarantool/myapp.lua

Here two resources on the host get mounted in the container:

• our application file (\`pwd\`/myapp.lua) and

• Tarantool data directory (/data/dir/on/host).

By convention, the directory for Tarantool application code inside a container is /opt/tarantool, and the
directory for data is /var/lib/tarantool.

Launching a binary program

If we run Tarantool from a binary package or from a source build, we can launch our application:

• in the script mode,

• as a server application, or

• as a daemon service.

The simplest way is to pass the filename to Tarantool at start:

Tarantool starts, executes our script in the script mode and exits.

Now let’s turn this script into a server application. We use box.cfg from Tarantool’s built-in Lua module to:

• launch the database (a database has a persistent on-disk state, which needs to be restored after we
start an application) and

• configure Tarantool as a server that accepts requests over a TCP port.

We also add some simple database logic, using space.create() and create_index() to create a space with a
primary index. We use the function box.once() to make sure that our logic will be executed only once when
the database is initialized for the first time, so we don’t try to create an existing space or index on each
invocation of the script:

Now we launch our application in the same manner as before:

This time, Tarantool executes our script and keeps working as a server, accepting TCP requests on port
3301. We can see Tarantool in the current session’s process list:

But the Tarantool instance will stop if we close the current terminal window. To detach Tarantool and
our application from the terminal window, we can launch it in the daemon mode. To do so, we add some
parameters to box.cfg{}:

• background = true that actually tells Tarantool to work as a daemon service,

5.4. Application server 31

Tarantool, Release 1.7.4

• log = 'dir-name' that tells the Tarantool daemon where to store its log file (other log settings are
available in Tarantool log module), and

• pid_file = 'file-name' that tells the Tarantool daemon where to store its pid file.

For example:

box.cfg {
listen = 3301
background = true,
log = '1.log',
pid_file = '1.pid'

}

We launch our application in the same manner as before:

Tarantool executes our script, gets detached from the current shell session (you won’t see it with ps | grep
"tarantool") and continues working in the background as a daemon attached to the global session (with SID
= 0):

Now that we have discussed how to create and launch a Lua application for Tarantool, let’s dive deeper into
programming practices.

5.4.2 Creating an application

Further we walk you through key programming practices that will give you a good start in writing Lua
applications for Tarantool. For an adventure, this is a story of implementing. . . a real microservice based
on Tarantool! We implement a backend for a simplified version of Pokémon Go, a location-based augmented
reality game released in mid-2016. In this game, players use a mobile device’s GPS capability to locate,
capture, battle and train virtual monsters called “pokémon”, who appear on the screen as if they were in the
same real-world location as the player.

To stay within the walk-through format, let’s narrow the original gameplay as follows. We have a map with
pokémon spawn locations. Next, we have multiple players who can send catch-a-pokémon requests to the
server (which runs our Tarantool microservice). The server replies whether the pokémon is caught or not,
increases the player’s pokémon counter if yes, and triggers the respawn-a-pokémon method that spawns a
new pokémon at the same location in a while.

We leave client-side applications outside the scope of this story. Yet we promise a mini-demo in the end to
simulate real users and give us some fun. :-)

First, what would be the best way to deliver our microservice?

Modules, rocks and applications

To make our game logic available to other developers and Lua applications, let’s put it into a Lua module.

A module (called “rock” in Lua) is an optional library which enhances Tarantool functionality. So, we
can install our logic as a module in Tarantool and use it from any Tarantool application or module. Like
applications, modules in Tarantool can be written in Lua (rocks), C or C++.

Modules are good for two things:

• easier code management (reuse, packaging, versioning), and

• hot code reload without restarting the Tarantool instance.

32 Chapter 5. User’s Guide

https://en.wikipedia.org/wiki/Pok\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 1 e\egroup \spacefactor \accent@spacefactor mon_Go

Tarantool, Release 1.7.4

Technically, a module is a file with source code that exports its functions in an API. For example, here is a
Lua module named mymodule.lua that exports one function named myfun:

local exports = {}
exports.myfun = function(input_string)
print('Hello', input_string)

end
return exports

To launch the function myfun() – from another module, from a Lua application, or from Tarantool itself, –
we need to save this module as a file, then load this module with the require() directive and call the exported
function.

For example, here’s a Lua application that uses myfun() function from mymodule.lua module:

-- loading the module
local mymodule = require('mymodule')

-- calling myfun() from within test() function
local test = function()
mymodule.myfun()

end

A thing to remember here is that the require() directive takes load paths to Lua modules from the package.
path variable. This is a semicolon-separated string, where a question mark is used to interpolate the module
name. By default, this variable contains system-wide Lua paths and the working directory. But if we put
our modules inside a specific folder (e.g. scripts/), we need to add this folder to package.path before any
calls to require():

package.path = 'scripts/?.lua;' .. package.path

For our microservice, a simple and convenient solution would be to put all methods in a Lua module (say
pokemon.lua) and to write a Lua application (say game.lua) that initializes the gaming environment and
starts the game loop.

Now let’s get down to implementation details. In our game, we need three entities:

• map, which is an array of pokémons with coordinates of respawn locations; in this version of the game,
let a location be a rectangle identified with two points, upper-left and lower-right;

• player, which has an ID, a name, and coordinates of the player’s location point;

• pokémon, which has the same fields as the player, plus a status (active/inactive, that is present on the
map or not) and a catch probability (well, let’s give our pokémons a chance to escape :-))

We’ll store these entities as tuples in Tarantool spaces. But to deliver our backend application as a mi-
croservice, the good practice would be to send/receive our data in the universal JSON format, thus using
Tarantool as a document storage.

Avro schemas

To store JSON data as tuples, we will apply a savvy practice which reduces data footprint and ensures all
stored documents are valid. We will use Tarantool module avro-schema which checks the schema of a JSON
document and converts it to a Tarantool tuple. The tuple will contain only field values, and thus take a

5.4. Application server 33

https://github.com/tarantool/avro-schema

Tarantool, Release 1.7.4

lot less space than the original document. In avro-schema terms, converting JSON documents to tuples is
“flattening”, and restoring the original documents is “unflattening”. The usage is quite straightforward:

(1) For each entity, we need to define a schema in Apache Avro schema syntax, where we list the entity’s
fields with their names and Lua types.

(2) At initialization, we call avro-schema.create() that creates objects in memory for all schema entities,
and compile() that generates flatten/unflatten methods for each entity.

(3) Further on, we just call flatten/unflatten methods for a respective entity on receiving/sending the
entity’s data.

Here’s what our schema definitions for the player and pokémon entities look like:

local schema = {
player = {

type="record",
name="player_schema",
fields={

{name="id", type="long"},
{name="name", type="string"},
{

name="location",
type= {

type="record",
name="player_location",
fields={

{name="x", type="double"},
{name="y", type="double"}

}
}

}
}

},
pokemon = {

type="record",
name="pokemon_schema",
fields={

{name="id", type="long"},
{name="status", type="string"},
{name="name", type="string"},
{name="chance", type="double"},
{

name="location",
type= {

type="record",
name="pokemon_location",
fields={

{name="x", type="double"},
{name="y", type="double"}

}
}

}
}

}
}

And here’s how we create and compile our entities at initialization:

34 Chapter 5. User’s Guide

https://en.wikipedia.org/wiki/Apache_Avro

Tarantool, Release 1.7.4

-- load avro-schema module with require()
local avro = require('avro_schema')

-- create models
local ok_m, pokemon = avro.create(schema.pokemon)
local ok_p, player = avro.create(schema.player)
if ok_m and ok_p then

-- compile models
local ok_cm, compiled_pokemon = avro.compile(pokemon)
local ok_cp, compiled_player = avro.compile(player)
if ok_cm and ok_cp then

-- start the game
<...>

else
log.error('Schema compilation failed')

end
else

log.info('Schema creation failed')
end
return false

As for the map entity, it would be an overkill to introduce a schema for it, because we have only one map
in the game, it has very few fields, and – which is most important – we use the map only inside our logic,
never exposing it to external users.

Next, we need methods to implement the game logic. To simulate object-oriented programming in our Lua
code, let’s store all Lua functions and shared variables in a single local variable (let’s name it as game). This
will allow us to address functions or variables from within our module as self.func_name or self.var_name.
Like this:

local game = {
-- a local variable
num_players = 0,

-- a method that prints a local variable
hello = function(self)
print('Hello! Your player number is ' .. self.num_players .. '.')

end,

-- a method that calls another method and returns a local variable
sign_in = function(self)
self.num_players = self.num_players + 1
self:hello()
return self.num_players

end
}

In OOP terms, we can now regard local variables inside game as object fields, and local functions as object
methods.

Note: In this manual, Lua examples use local variables. Use global variables with caution, since the
module’s users may be unaware of them.

5.4. Application server 35

Tarantool, Release 1.7.4

To enable/disable the use of undeclared global variables in your Lua code, use Tarantool’s strict module.

So, our game module will have the following methods:

• catch() to calculate whether the pokémon was caught (besides the coordinates of both the player and
pokémon, this method will apply a probability factor, so not every pokémon within the player’s reach
will be caught);

• respawn() to add missing pokémons to the map, say, every 60 seconds (we assume that a frightened
pokémon runs away, so we remove a pokémon from the map on any catch attempt and add it back to
the map in a while);

• notify() to log information about caught pokémons (like “Player 1 caught pokémon A”);

• start() to initialize the game (it will create database spaces, create and compile avro schemas, and
launch respawn()).

Besides, it would be convenient to have methods for working with Tarantool storage. For example:

• add_pokemon() to add a pokémon to the database, and

• map() to populate the map with all pokémons stored in Tarantool.

We’ll need these two methods primarily when initializing our game, but we can also call them later, for
example to test our code.

Bootstrapping a database

Let’s discuss game initialization. In start() method, we need to populate Tarantool spaces with pokémon
data. Why not keep all game data in memory? Why use a database? The answer is: persistence. Without
a database, we risk losing data on power outage, for example. But if we store our data in an in-memory
database, Tarantool takes care to persist it on disk whenever it’s changed. This gives us one more benefit:
quick startup in case of failure. Tarantool has a smart algorithm that quickly loads all data from disk into
memory on startup, so the warm-up takes little time.

We’ll be using functions from Tarantool built-in box module:

• box.schema.create_space('pokemons') to create a space named pokemon for storing information
about pokémons (we don’t create a similar space for players, because we intend to only send/receive
player information via API calls, so we needn’t store it);

• box.space.pokemons:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}}) to create
a primary HASH index by pokémon ID;

• box.space.pokemons:create_index('status', {type = 'tree', parts = {2, 'str'}}) to create a secondary
TREE index by pokémon status.

Notice the parts = argument in the index specification. The pokémon ID is the first field in a Tarantool
tuple since it’s the first member of the respective Avro type. So does the pokémon status. The actual JSON
document may have ID or status fields at any position of the JSON map.

The implementation of start() method looks like this:

-- create game object
start = function(self)

-- create spaces and indexes
box.once('init', function()

box.schema.create_space('pokemons')
box.space.pokemons:create_index(

"primary", {type = 'hash', parts = {1, 'unsigned'}}
(continues on next page)

36 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

)
box.space.pokemons:create_index(

"status", {type = "tree", parts = {2, 'str'}}
)

end)

-- create models
local ok_m, pokemon = avro.create(schema.pokemon)
local ok_p, player = avro.create(schema.player)
if ok_m and ok_p then

-- compile models
local ok_cm, compiled_pokemon = avro.compile(pokemon)
local ok_cp, compiled_player = avro.compile(player)
if ok_cm and ok_cp then

-- start the game
<...>

else
log.error('Schema compilation failed')

end
else

log.info('Schema creation failed')
end
return false

end

GIS

Now let’s discuss catch(), which is the main method in our gaming logic.

Here we receive the player’s coordinates and the target pokémon’s ID number, and we need to answer whether
the player has actually caught the pokémon or not (remember that each pokémon has a chance to escape).

First thing, we validate the received player data against its Avro schema. And we check whether such a
pokémon exists in our database and is displayed on the map (the pokémon must have the active status):

catch = function(self, pokemon_id, player)
-- check player data
local ok, tuple = self.player_model.flatten(player)
if not ok then

return false
end
-- get pokemon data
local p_tuple = box.space.pokemons:get(pokemon_id)
if p_tuple == nil then

return false
end
local ok, pokemon = self.pokemon_model.unflatten(p_tuple)
if not ok then

return false
end
if pokemon.status ~= self.state.ACTIVE then

return false
end
-- more catch logic to follow
<...>

end

5.4. Application server 37

Tarantool, Release 1.7.4

Next, we calculate the answer: caught or not.

To work with geographical coordinates, we use Tarantool gis module.

To keep things simple, we don’t load any specific map, assuming that we deal with a world map. And we do
not validate incoming coordinates, assuming again that all received locations are within the planet Earth.

We use two geo-specific variables:

• wgs84, which stands for the latest revision of the World Geodetic System standard, WGS84. Basically,
it comprises a standard coordinate system for the Earth and represents the Earth as an ellipsoid.

• nationalmap, which stands for the US National Atlas Equal Area. This is a projected coordinates
system based on WGS84. It gives us a zero base for location projection and allows positioning our
players and pokémons in meters.

Both these systems are listed in the EPSG Geodetic Parameter Registry, where each system has a unique
number. In our code, we assign these listing numbers to respective variables:

wgs84 = 4326,
nationalmap = 2163,

For our game logic, we need one more variable, catch_distance, which defines how close a player must get
to a pokémon before trying to catch it. Let’s set the distance to 100 meters.

catch_distance = 100,

Now we’re ready to calculate the answer. We need to project the current location of both player (p_pos)
and pokémon (m_pos) on the map, check whether the player is close enough to the pokémon (using
catch_distance), and calculate whether the player has caught the pokémon (here we generate some ran-
dom value and let the pokémon escape if the random value happens to be less than 100 minus pokémon’s
chance value):

-- project locations
local m_pos = gis.Point(

{pokemon.location.x, pokemon.location.y}, self.wgs84
):transform(self.nationalmap)
local p_pos = gis.Point(

{player.location.x, player.location.y}, self.wgs84
):transform(self.nationalmap)

-- check catch distance condition
if p_pos:distance(m_pos) > self.catch_distance then

return false
end
-- try to catch pokemon
local caught = math.random(100) >= 100 - pokemon.chance
if caught then

-- update and notify on success
box.space.pokemons:update(

pokemon_id, {{'=', self.STATUS, self.state.CAUGHT}}
)
self:notify(player, pokemon)

end
return caught

38 Chapter 5. User’s Guide

https://github.com/tarantool/gis
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://epsg.io/2163

Tarantool, Release 1.7.4

Index iterators

By our gameplay, all caught pokémons are returned back to the map. We do this for all pokémons on the
map every 60 seconds using respawn() method. We iterate through pokémons by status using Tarantool
index iterator function index:pairs and reset the statuses of all “caught” pokémons back to “active” using
box.space.pokemons:update().

respawn = function(self)
fiber.name('Respawn fiber')
for _, tuple in box.space.pokemons.index.status:pairs(

self.state.CAUGHT) do
box.space.pokemons:update(

tuple[self.ID],
{{'=', self.STATUS, self.state.ACTIVE}}

)
end

end

For readability, we introduce named fields:

ID = 1, STATUS = 2,

The complete implementation of start() now looks like this:

-- create game object
start = function(self)

-- create spaces and indexes
box.once('init', function()
box.schema.create_space('pokemons')
box.space.pokemons:create_index(

"primary", {type = 'hash', parts = {1, 'unsigned'}}
)
box.space.pokemons:create_index(

"status", {type = "tree", parts = {2, 'str'}}
)

end)

-- create models
local ok_m, pokemon = avro.create(schema.pokemon)
local ok_p, player = avro.create(schema.player)
if ok_m and ok_p then

-- compile models
local ok_cm, compiled_pokemon = avro.compile(pokemon)
local ok_cp, compiled_player = avro.compile(player)
if ok_cm and ok_cp then

-- start the game
self.pokemon_model = compiled_pokemon
self.player_model = compiled_player
self.respawn()
log.info('Started')
return true

else
log.error('Schema compilation failed')

end
else

log.info('Schema creation failed')
end
return false

end

5.4. Application server 39

Tarantool, Release 1.7.4

Fibers

But wait! If we launch it as shown above – self.respawn() – the function will be executed only once, just like
all the other methods. But we need to execute respawn() every 60 seconds. Creating a fiber is the Tarantool
way of making application logic work in the background at all times.

A fiber is a lightweight thread. The key difference is that threads use preemptive multitasking, while fibers
use cooperative multitasking. This gives fibers the following two advantages over threads:

• Better controllability. Threads often depend on the kernel’s thread scheduler to preempt a busy thread
and resume another thread, so preemption may occur unpredictably. Fibers yield themselves to run
another fiber while executing, so yields are controlled by application logic.

• Higher performance. Threads require more resources to preempt as they need to address the system
kernel. Fibers are lighter and faster as they don’t need to address the kernel to yield.

Yet fibers have some limitations as compared with threads, the main limitation being no multi-core mode.
All fibers in an application belong to a single thread, so they all use the same CPU core as the parent thread.
Meanwhile, this limitation is not really serious for Tarantool applications, because a typical bottleneck for
Tarantool is the HDD, not the CPU.

A fiber has all the features of a Lua coroutine and all programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

Well, performance or controllability are of little importance in our case. We’ll launch respawn() in a fiber to
make it work in the background all the time. To do so, we’ll need to amend respawn():

respawn = function(self)
-- let's give our fiber a name;
-- this will produce neat output in fiber.info()
fiber.name('Respawn fiber')
while true do

for _, tuple in box.space.pokemons.index.status:pairs(
self.state.CAUGHT) do

box.space.pokemons:update(
tuple[self.ID],
{{'=', self.STATUS, self.state.ACTIVE}}

)
end
fiber.sleep(self.respawn_time)

end
end

and call it as a fiber in start():

start = function(self)
-- create spaces and indexes

<...>
-- create models

<...>
-- compile models

<...>
-- start the game
self.pokemon_model = compiled_pokemon
self.player_model = compiled_player
fiber.create(self.respawn, self)
log.info('Started')

-- errors if schema creation or compilation fails

(continues on next page)

40 Chapter 5. User’s Guide

http://www.lua.org/pil/contents.html#9

Tarantool, Release 1.7.4

(continued from previous page)

<...>
end

Logging

One more helpful function that we used in start() was log.infо() from Tarantool log module. We also need
this function in notify() to add a record to the log file on every successful catch:

-- event notification
notify = function(self, player, pokemon)

log.info("Player '%s' caught '%s'", player.name, pokemon.name)
end

We use default Tarantool log settings, so we’ll see the log output in console when we launch our application
in script mode.

Great! We’ve discussed all programming practices used in our Lua module (see pokemon.lua).

Now let’s prepare the test environment. As planned, we write a Lua application (see game.lua) to initialize
Tarantool’s database module, initialize our game, call the game loop and simulate a couple of player requests.

To launch our microservice, we put both pokemon.lua module and game.lua application in the current
directory, install all external modules, and launch the Tarantool instance running our game.lua application
(this example is for Ubuntu):

$ ls
game.lua pokemon.lua
$ sudo apt-get install tarantool-gis
$ sudo apt-get install tarantool-avro-schema
$ tarantool game.lua

Tarantool starts and initializes the database. Then Tarantool executes the demo logic from game.lua: adds
a pokémon named Pikachu (its chance to be caught is very high, 99.1), displays the current map (it contains
one active pokémon, Pikachu) and processes catch requests from two players. Player1 is located just near
the lonely Pikachu pokémon and Player2 is located far away from it. As expected, the catch results in this
output are “true” for Player1 and “false” for Player2. Finally, Tarantool displays the current map which is
empty, because Pikachu is caught and temporarily inactive:

$ tarantool game.lua
2017-01-09 20:19:24.605 [6282] main/101/game.lua C> version 1.7.3-43-gf5fa1e1
2017-01-09 20:19:24.605 [6282] main/101/game.lua C> log level 5
2017-01-09 20:19:24.605 [6282] main/101/game.lua I> mapping 1073741824 bytes for tuple arena...
2017-01-09 20:19:24.609 [6282] main/101/game.lua I> initializing an empty data directory
2017-01-09 20:19:24.634 [6282] snapshot/101/main I> saving snapshot `./00000000000000000000.snap.inprogress'
2017-01-09 20:19:24.635 [6282] snapshot/101/main I> done
2017-01-09 20:19:24.641 [6282] main/101/game.lua I> ready to accept requests
2017-01-09 20:19:24.786 [6282] main/101/game.lua I> Started

- {'id': 1, 'status': 'active', 'location': {'y': 2, 'x': 1}, 'name': 'Pikachu', 'chance': 99.1}
...

2017-01-09 20:19:24.789 [6282] main/101/game.lua I> Player 'Player1' caught 'Pikachu'

(continues on next page)

5.4. Application server 41

https://github.com/Sulverus/pokemon/blob/master/src/pokemon.lua
https://github.com/Sulverus/pokemon/blob/master/game.lua

Tarantool, Release 1.7.4

(continued from previous page)

true
false
--- []
...

2017-01-09 20:19:24.789 [6282] main C> entering the event loop

nginx

In the real life, this microservice would work over HTTP. Let’s add nginx web server to our environment
and make a similar demo. But how do we make Tarantool methods callable via REST API? We use nginx
with Tarantool nginx upstream module and create one more Lua script (app.lua) that exports three of our
game methods – add_pokemon(), map() and catch() – as REST endpoints of the nginx upstream module:

local game = require('pokemon')
box.cfg{listen=3301}
game:start()

-- add, map and catch functions exposed to REST API
function add(request, pokemon)

return {
result=game:add_pokemon(pokemon)

}
end

function map(request)
return {

map=game:map()
}

end

function catch(request, pid, player)
local id = tonumber(pid)
if id == nil then

return {result=false}
end
return {

result=game:catch(id, player)
}

end

An easy way to configure and launch nginx would be to create a Docker container based on a Docker image
with nginx and the upstream module already installed (see http/Dockerfile). We take a standard nginx.conf,
where we define an upstream with our Tarantool backend running (this is another Docker container, see
details below):

upstream tnt {
server pserver:3301 max_fails=1 fail_timeout=60s;
keepalive 250000;

}

and add some Tarantool-specific parameters (see descriptions in the upstream module’s README file):

42 Chapter 5. User’s Guide

https://nginx.org/en/
https://github.com/tarantool/nginx_upstream_module
https://github.com/Sulverus/pokemon/blob/master/src/app.lua
https://hub.docker.com/r/tarantool/tarantool-nginx/
https://github.com/Sulverus/pokemon/blob/master/http/Dockerfile
https://github.com/Sulverus/pokemon/blob/master/http/nginx.conf
https://github.com/tarantool/nginx_upstream_module#directives

Tarantool, Release 1.7.4

server {
server_name tnt_test;

listen 80 default deferred reuseport so_keepalive=on backlog=65535;

location = / {
root /usr/local/nginx/html;

}

location /api {
answers check infinity timeout
tnt_read_timeout 60m;
if ($request_method = GET) {
tnt_method "map";

}
tnt_http_rest_methods get;
tnt_http_methods all;
tnt_multireturn_skip_count 2;
tnt_pure_result on;
tnt_pass_http_request on parse_args;
tnt_pass tnt;

}
}

Likewise, we put Tarantool server and all our game logic in a second Docker container based on the official
Tarantool 1.7 image (see src/Dockerfile) and set the container’s default command to tarantool app.lua. This
is the backend.

Non-blocking IO

To test the REST API, we create a new script (client.lua), which is similar to our game.lua application, but
makes HTTP POST and GET requests rather than calling Lua functions:

local http = require('curl').http()
local json = require('json')
local URI = os.getenv('SERVER_URI')
local fiber = require('fiber')

local player1 = {
name="Player1",
id=1,
location = {

x=1.0001,
y=2.0003

}
}
local player2 = {

name="Player2",
id=2,
location = {

x=30.123,
y=40.456

}
}

local pokemon = {

(continues on next page)

5.4. Application server 43

https://github.com/tarantool/docker
https://github.com/tarantool/docker
https://github.com/Sulverus/pokemon/blob/master/src/Dockerfile
https://github.com/Sulverus/pokemon/blob/master/client/client.lua

Tarantool, Release 1.7.4

(continued from previous page)

name="Pikachu",
chance=99.1,
id=1,
status="active",
location = {

x=1,
y=2

}
}

function request(method, body, id)
local resp = http:request(

method, URI, body
)
if id ~= nil then

print(string.format('Player %d result: %s',
id, resp.body))

else
print(resp.body)

end
end

local players = {}
function catch(player)

fiber.sleep(math.random(5))
print('Catch pokemon by player ' .. tostring(player.id))
request(

'POST', '{"method": "catch",
"params": [1, '..json.encode(player)..']}',
tostring(player.id)

)
table.insert(players, player.id)

end

print('Create pokemon')
request('POST', '{"method": "add",

"params": ['..json.encode(pokemon)..']}')
request('GET', '')

fiber.create(catch, player1)
fiber.create(catch, player2)

-- wait for players
while #players ~= 2 do

fiber.sleep(0.001)
end

request('GET', '')
os.exit()

When you run this script, you’ll notice that both players have equal chances to make the first attempt at
catching the pokémon. In a classical Lua script, a networked call blocks the script until it’s finished, so
the first catch attempt can only be done by the player who entered the game first. In Tarantool, both
players play concurrently, since all modules are integrated with Tarantool cooperative multitasking and use
non-blocking I/O.

Indeed, when Player1 makes its first REST call, the script doesn’t block. The fiber running catch() function

44 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

on behalf of Player1 issues a non-blocking call to the operating system and yields control to the next fiber,
which happens to be the fiber of Player2. Player2’s fiber does the same. When the network response
is received, Player1’s fiber is activated by Tarantool cooperative scheduler, and resumes its work. All
Tarantool modules use non-blocking I/O and are integrated with Tarantool cooperative scheduler. For
module developers, Tarantool provides an API.

For our HTTP test, we create a third container based on the official Tarantool 1.7 image (see
client/Dockerfile) and set the container’s default command to tarantool client.lua.

To run this test locally, download our pokemon project from GitHub and say:

$ docker-compose build
$ docker-compose up

Docker Compose builds and runs all the three containers: pserver (Tarantool backend), phttp (nginx) and
pclient (demo client). You can see log messages from all these containers in the console, pclient saying that
it made an HTTP request to create a pokémon, made two catch requests, requested the map (empty since
the pokémon is caught and temporarily inactive) and exited:

pclient_1 | Create pokemon
<...>
pclient_1 | {"result":true}
pclient_1 | {"map":[{"id":1,"status":"active","location":{"y":2,"x":1},"name":"Pikachu","chance":99.100000}]}
pclient_1 | Catch pokemon by player 2
pclient_1 | Catch pokemon by player 1
pclient_1 | Player 1 result: {"result":true}
pclient_1 | Player 2 result: {"result":false}
pclient_1 | {"map":[]}
pokemon_pclient_1 exited with code 0

Congratulations! Here’s the end point of our walk-through. As further reading, see more about installing
and contributing a module.

See also reference on Tarantool modules and C API, and don’t miss our Lua cookbook recipes.

5.4.3 Installing a module

Modules in Lua and C that come from Tarantool developers and community contributors are available in
the following locations:

• Tarantool LuaRocks repository, and

• Tarantool deb/rpm repositories.

Note: As a current limitation, neither of these locations is available for Mac OS users.

Installing a module from LuaRocks

See README in tarantool/rocks repository for detailed instructions.

5.4. Application server 45

https://github.com/tarantool/docker
https://github.com/Sulverus/pokemon/blob/master/client/Dockerfile
https://github.com/Sulverus/pokemon
https://github.com/tarantool/rocks#installing-a-module-from-luarocks

Tarantool, Release 1.7.4

Installing a module from deb/rpm

Follow these steps:

1. Install Tarantool as recommended on the download page.

2. Install the module you need. Look up the module’s name on Tarantool rocks page and put the prefix
“tarantool-” before the module name to avoid ambiguity:

for Ubuntu/Debian:
$ sudo apt-get install tarantool-<module-name>

for RHEL/CentOS/Amazon:
$ sudo yum install tarantool-<module-name>

For example, to install the module shard on Ubuntu, say:

$ sudo apt-get install tarantool-shard

Once these steps are complete, you can:

• load any module with

tarantool> local-name = require('module-name')

• search locally for installed modules using package.path (Lua) or package.cpath (C):

tarantool> package.path

- ./?.lua;./?/init.lua; /usr/local/share/tarantool/?.lua;/usr/local/share/
tarantool/?/init.lua;/usr/share/tarantool/?.lua;/usr/share/tarantool/?/ini
t.lua;/usr/local/share/lua/5.1/?.lua;/usr/local/share/lua/5.1/?/init.lua;/
usr/share/lua/5.1/?.lua;/usr/share/lua/5.1/?/init.lua;
...

tarantool> package.cpath

- ./?.so;/usr/local/lib/x86_64-linux-gnu/tarantool/?.so;/usr/lib/x86_64-li
nux-gnu/tarantool/?.so;/usr/local/lib/tarantool/?.so;/usr/local/lib/x86_64
-linux-gnu/lua/5.1/?.so;/usr/lib/x86_64-linux-gnu/lua/5.1/?.so;/usr/local/
lib/lua/5.1/?.so;
...

Note: Question-marks stand for the module name that was specified earlier when saying re-
quire('module-name').

5.4.4 Contributing a module

We have already discussed how to create a simple module in Lua for local usage. Now let’s discuss how to
create a more advanced Tarantool module and then get it published on Tarantool rocks page and included
in official Tarantool images for Docker.

To help our contributors, we have created modulekit, a set of templates for creating Tarantool modules in
Lua and C.

46 Chapter 5. User’s Guide

http://tarantool.org/download.html
http://tarantool.org/rocks.html
http://github.com/tarantool/shard
http://tarantool.org/rocks.html
http://github.com/tarantool/docker
http://github.com/tarantool/modulekit

Tarantool, Release 1.7.4

Note: As a prerequisite for using modulekit, install tarantool-dev package first. For example, in Ubuntu
say:

$ sudo apt-get install tarantool-dev

Contributing a module in Lua

See README in “luakit” branch of tarantool/modulekit repository for detailed instructions and examples.

Contributing a module in C

In some cases, you may want to create a Tarantool module in C rather than in Lua. For example, to work
with specific hardware or low-level system interfaces.

See README in “ckit” branch of tarantool/modulekit repository for detailed instructions and examples.

Note: You can also create modules with C++, provided that the code does not throw exceptions.

5.4.5 Cookbook recipes

Here are contributions of Lua programs for some frequent or tricky situations.

You can execute any of these programs by copying the code into a .lua file, and then entering chmod +x
./program-name.lua and ./program-name.lua on the terminal.

The first line is a “hashbang”:

#!/usr/bin/env tarantool

This runs Tarantool Lua application server, which should be on the execution path.

Use freely.

hello_world.lua

The standard example of a simple program.

#!/usr/bin/env tarantool

print('Hello, World!')

console_start.lua

Use box.once() to initialize a database (creating spaces) if this is the first time the server has been run. Then
use console.start() to start interactive mode.

5.4. Application server 47

http://github.com/tarantool/modulekit/blob/luakit/README.md
http://github.com/tarantool/modulekit/blob/ckit/README.md

Tarantool, Release 1.7.4

#!/usr/bin/env tarantool

-- Configure database
box.cfg {

listen = 3313
}

box.once("bootstrap", function()
box.schema.space.create('tweedledum')
box.space.tweedledum:create_index('primary',

{ type = 'TREE', parts = {1, 'unsigned'}})
end)

require('console').start()

fio_read.lua

Use the fio module to open, read, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio')
local errno = require('errno')
local f = fio.open('/tmp/xxxx.txt', {'O_RDONLY' })
if not f then

error("Failed to open file: "..errno.strerror())
end
local data = f:read(4096)
f:close()
print(data)

fio_write.lua

Use the fio module to open, write, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio')
local errno = require('errno')
local f = fio.open('/tmp/xxxx.txt', {'O_CREAT', 'O_WRONLY', 'O_APPEND'},

tonumber('0666', 8))
if not f then

error("Failed to open file: "..errno.strerror())
end
f:write("Hello\n");
f:close()

ffi_printf.lua

Use the LuaJIT ffi library to call a C built-in function: printf(). (For help understanding ffi, see the FFI
tutorial.)

48 Chapter 5. User’s Guide

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 1.7.4

#!/usr/bin/env tarantool

local ffi = require('ffi')
ffi.cdef[[

int printf(const char *format, ...);
]]

ffi.C.printf("Hello, %s\n", os.getenv("USER"));

ffi_gettimeofday.lua

Use the LuaJIT ffi library to call a C function: gettimeofday(). This delivers time with millisecond precision,
unlike the time function in Tarantool’s clock module.

#!/usr/bin/env tarantool

local ffi = require('ffi')
ffi.cdef[[

typedef long time_t;
typedef struct timeval {
time_t tv_sec;
time_t tv_usec;

} timeval;
int gettimeofday(struct timeval *t, void *tzp);

]]

local timeval_buf = ffi.new("timeval")
local now = function()

ffi.C.gettimeofday(timeval_buf, nil)
return tonumber(timeval_buf.tv_sec * 1000 + (timeval_buf.tv_usec / 1000))

end

ffi_zlib.lua

Use the LuaJIT ffi library to call a C library function. (For help understanding ffi, see the FFI tutorial.)

#!/usr/bin/env tarantool

local ffi = require("ffi")
ffi.cdef[[

unsigned long compressBound(unsigned long sourceLen);
int compress2(uint8_t *dest, unsigned long *destLen,
const uint8_t *source, unsigned long sourceLen, int level);
int uncompress(uint8_t *dest, unsigned long *destLen,
const uint8_t *source, unsigned long sourceLen);

]]
local zlib = ffi.load(ffi.os == "Windows" and "zlib1" or "z")

-- Lua wrapper for compress2()
local function compress(txt)

local n = zlib.compressBound(#txt)
local buf = ffi.new("uint8_t[?]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.compress2(buf, buflen, txt, #txt, 9)

(continues on next page)

5.4. Application server 49

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 1.7.4

(continued from previous page)

assert(res == 0)
return ffi.string(buf, buflen[0])

end

-- Lua wrapper for uncompress
local function uncompress(comp, n)

local buf = ffi.new("uint8_t[?]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.uncompress(buf, buflen, comp, #comp)
assert(res == 0)
return ffi.string(buf, buflen[0])

end

-- Simple test code.
local txt = string.rep("abcd", 1000)
print("Uncompressed size: ", #txt)
local c = compress(txt)
print("Compressed size: ", #c)
local txt2 = uncompress(c, #txt)
assert(txt2 == txt)

ffi_meta.lua

Use the LuaJIT ffi library to access a C object via a metamethod (a method which is defined with a
metatable).

#!/usr/bin/env tarantool

local ffi = require("ffi")
ffi.cdef[[
typedef struct { double x, y; } point_t;
]]

local point
local mt = {
__add = function(a, b) return point(a.x+b.x, a.y+b.y) end,
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
__index = {
area = function(a) return a.x*a.x + a.y*a.y end,

},
}
point = ffi.metatype("point_t", mt)

local a = point(3, 4)
print(a.x, a.y) --> 3 4
print(#a) --> 5
print(a:area()) --> 25
local b = a + point(0.5, 8)
print(#b) --> 12.5

print_arrays.lua

Create Lua tables, and print them. Notice that for the ‘array’ table the iterator function is ipairs(), while for
the ‘map’ table the iterator function is pairs(). (ipairs() is faster than pairs(), but pairs() is recommended for

50 Chapter 5. User’s Guide

http://luajit.org/ext_ffi.html

Tarantool, Release 1.7.4

map-like tables or mixed tables.) The display will look like: “1 Apple | 2 Orange | 3 Grapefruit | 4 Banana |
k3 v3 | k1 v1 | k2 v2”.

#!/usr/bin/env tarantool

array = { 'Apple', 'Orange', 'Grapefruit', 'Banana'}
for k, v in ipairs(array) do print(k, v) end

map = { k1 = 'v1', k2 = 'v2', k3 = 'v3' }
for k, v in pairs(map) do print(k, v) end

count_array.lua

Use the ‘#’ operator to get the number of items in an array-like Lua table. This operation has O(log(N))
complexity.

#!/usr/bin/env tarantool

array = { 1, 2, 3}
print(#array)

count_array_with_nils.lua

Missing elements in arrays, which Lua treats a “nil”s, cause the simple “#” operator to deliver improper
results. The “print(#t)” instruction will print “4”; the “print(counter)” instruction will print “3”; the
“print(max)” instruction will print “10”. Other table functions, such as table.sort(), will also misbehave
when “nils” are present.

#!/usr/bin/env tarantool

local t = {}
t[1] = 1
t[4] = 4
t[10] = 10
print(#t)
local counter = 0
for k,v in pairs(t) do counter = counter + 1 end
print(counter)
local max = 0
for k,v in pairs(t) do if k > max then max = k end end
print(max)

count_array_with_nulls.lua

Use explicit NULL values to avoid the problems caused by Lua’s nil == missing value behavior. Although
json.NULL == nil is true, all the print instructions in this program will print the correct value: 10.

#!/usr/bin/env tarantool

local json = require('json')
local t = {}
t[1] = 1; t[2] = json.NULL; t[3]= json.NULL;
t[4] = 4; t[5] = json.NULL; t[6]= json.NULL;

(continues on next page)

5.4. Application server 51

Tarantool, Release 1.7.4

(continued from previous page)

t[6] = 4; t[7] = json.NULL; t[8]= json.NULL;
t[9] = json.NULL
t[10] = 10
print(#t)
local counter = 0
for k,v in pairs(t) do counter = counter + 1 end
print(counter)
local max = 0
for k,v in pairs(t) do if k > max then max = k end end
print(max)

count_map.lua

Get the number of elements in a map-like table.

#!/usr/bin/env tarantool

local map = { a = 10, b = 15, c = 20 }
local size = 0
for _ in pairs(map) do size = size + 1; end
print(size)

swap.lua

Use a Lua peculiarity to swap two variables without needing a third variable.

#!/usr/bin/env tarantool

local x = 1
local y = 2
x, y = y, x
print(x, y)

class.lua

Create a class, create a metatable for the class, create an instance of the class. Another illustration is at
http://lua-users.org/wiki/LuaClassesWithMetatable.

#!/usr/bin/env tarantool

-- define class objects
local myclass_somemethod = function(self)

print('test 1', self.data)
end

local myclass_someothermethod = function(self)
print('test 2', self.data)

end

local myclass_tostring = function(self)
return 'MyClass <'..self.data..'>'

end

(continues on next page)

52 Chapter 5. User’s Guide

http://lua-users.org/wiki/LuaClassesWithMetatable

Tarantool, Release 1.7.4

(continued from previous page)

local myclass_mt = {
__tostring = myclass_tostring;
__index = {

somemethod = myclass_somemethod;
someothermethod = myclass_someothermethod;

}
}

-- create a new object of myclass
local object = setmetatable({ data = 'data'}, myclass_mt)
print(object:somemethod())
print(object.data)

garbage.lua

Force Lua garbage collection with the collectgarbage function.

#!/usr/bin/env tarantool

collectgarbage('collect')

fiber_producer_and_consumer.lua

Start one fiber for producer and one fiber for consumer. Use fiber.channel() to exchange data and synchronize.
One can tweak the channel size (ch_size in the program code) to control the number of simultaneous tasks
waiting for processing.

#!/usr/bin/env tarantool

local fiber = require('fiber')
local function consumer_loop(ch, i)

-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do

local data = ch:get()
if data == nil then

break
end
print('consumed', i, data)
fiber.sleep(math.random()) -- simulate some work

end
end

local function producer_loop(ch, i)
-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do

local data = math.random()
ch:put(data)
print('produced', i, data)

end
end

(continues on next page)

5.4. Application server 53

https://www.lua.org/manual/5.1/manual.html#2.10
https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 1.7.4

(continued from previous page)

local function start()
local consumer_n = 5
local producer_n = 3

-- Create a channel
local ch_size = math.max(consumer_n, producer_n)
local ch = fiber.channel(ch_size)

-- Start consumers
for i=1, consumer_n,1 do

fiber.create(consumer_loop, ch, i)
end

-- Start producers
for i=1, producer_n,1 do

fiber.create(producer_loop, ch, i)
end

end

start()
print('started')

socket_tcpconnect.lua

Use socket.tcp_connect() to connect to a remote host via TCP. Display the connection details and the result
of a GET request.

#!/usr/bin/env tarantool

local s = require('socket').tcp_connect('google.com', 80)
print(s:peer().host)
print(s:peer().family)
print(s:peer().type)
print(s:peer().protocol)
print(s:peer().port)
print(s:write("GET / HTTP/1.0\r\n\r\n"))
print(s:read('\r\n'))
print(s:read('\r\n'))

socket_tcp_echo.lua

Use socket.tcp_connect() to set up a simple TCP server, by creating a function that handles requests and
echos them, and passing the function to socket.tcp_server(). This program has been used to test with
100,000 clients, with each client getting a separate fiber.

#!/usr/bin/env tarantool

local function handler(s, peer)
s:write("Welcome to test server, " .. peer.host .."\n")
while true do

local line = s:read('\n')
if line == nil then

(continues on next page)

54 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

break -- error or eof
end
if not s:write("pong: "..line) then

break -- error or eof
end

end
end

local server, addr = require('socket').tcp_server('localhost', 3311, handler)

getaddrinfo.lua

Use socket.getaddrinfo() to perform non-blocking DNS resolution, getting both the AF_INET6 and
AF_INET information for ‘google.com’. This technique is not always necessary for tcp connections be-
cause socket.tcp_connect() performs socket.getaddrinfo under the hood, before trying to connect to the first
available address.

#!/usr/bin/env tarantool

local s = require('socket').getaddrinfo('google.com', 'http', { type = 'SOCK_STREAM' })
print('host=',s[1].host)
print('family=',s[1].family)
print('type=',s[1].type)
print('protocol=',s[1].protocol)
print('port=',s[1].port)
print('host=',s[2].host)
print('family=',s[2].family)
print('type=',s[2].type)
print('protocol=',s[2].protocol)
print('port=',s[2].port)

socket_udp_echo.lua

Tarantool does not currently have a udp_server function, therefore socket_udp_echo.lua is more complicated
than socket_tcp_echo.lua. It can be implemented with sockets and fibers.

#!/usr/bin/env tarantool

local socket = require('socket')
local errno = require('errno')
local fiber = require('fiber')

local function udp_server_loop(s, handler)
fiber.name("udp_server")
while true do

-- try to read a datagram first
local msg, peer = s:recvfrom()
if msg == "" then

-- socket was closed via s:close()
break

elseif msg ~= nil then
-- got a new datagram
handler(s, peer, msg)

(continues on next page)

5.4. Application server 55

Tarantool, Release 1.7.4

(continued from previous page)

else
if s:errno() == errno.EAGAIN or s:errno() == errno.EINTR then

-- socket is not ready
s:readable() -- yield, epoll will wake us when new data arrives

else
-- socket error
local msg = s:error()
s:close() -- save resources and don't wait GC
error("Socket error: " .. msg)

end
end

end
end

local function udp_server(host, port, handler)
local s = socket('AF_INET', 'SOCK_DGRAM', 0)
if not s then

return nil -- check errno:strerror()
end
if not s:bind(host, port) then

local e = s:errno() -- save errno
s:close()
errno(e) -- restore errno
return nil -- check errno:strerror()

end

fiber.create(udp_server_loop, s, handler) -- start a new background fiber
return s

end

A function for a client that connects to this server could look something like this . . .

local function handler(s, peer, msg)
-- You don't have to wait until socket is ready to send UDP
-- s:writable()
s:sendto(peer.host, peer.port, "Pong: " .. msg)

end

local server = udp_server('127.0.0.1', 3548, handler)
if not server then

error('Failed to bind: ' .. errno.strerror())
end

print('Started')

require('console').start()

http_get.lua

Use the http module to get data via HTTP.

#!/usr/bin/env tarantool

local http_client = require('http.client')
local json = require('json')

(continues on next page)

56 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

local r = http_client.get('http://api.openweathermap.org/data/2.5/weather?q=Oakland,us')
if r.status ~= 200 then

print('Failed to get weather forecast ', r.reason)
return

end
local data = json.decode(r.body)
print('Oakland wind speed: ', data.wind.speed)

http_send.lua

Use the http module to send data via HTTP.

#!/usr/bin/env tarantool

local http_client = require('http.client')
local json = require('json')
local data = json.encode({ Key = 'Value'})
local headers = { Token = 'xxxx', ['X-Secret-Value'] = 42 }
local r = http_client.post('http://localhost:8081', data, { headers = headers})
if r.status == 200 then

print 'Success'
end

http_server.lua

Use the http rock (which must first be installed) to turn Tarantool into a web server.

#!/usr/bin/env tarantool

local function handler(self)
return self:render{ json = { ['Your-IP-Is'] = self.peer.host } }

end

local server = require('http.server').new(nil, 8080) -- listen *:8080
server:route({ path = '/' }, handler)
server:start()
-- connect to localhost:8080 and see json

http_generate_html.lua

Use the http rock (which must first be installed) to generate HTML pages from templates. The http rock
has a fairly simple template engine which allows execution of regular Lua code inside text blocks (like PHP).
Therefore there is no need to learn new languages in order to write templates.

#!/usr/bin/env tarantool

local function handler(self)
local fruits = { 'Apple', 'Orange', 'Grapefruit', 'Banana'}

return self:render{ fruits = fruits }
end

local server = require('http.server').new(nil, 8080) -- nil means '*'

(continues on next page)

5.4. Application server 57

https://github.com/tarantool/http/
http://rocks.tarantool.org/
https://github.com/tarantool/http/
https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Release 1.7.4

(continued from previous page)

server:route({ path = '/', file = 'index.html.lua' }, handler)
server:start()

An “HTML” file for this server, including Lua, could look like this (it would produce “1 Apple | 2 Orange |
3 Grapefruit | 4 Banana”).

<html>
<body>

<table border="1">
% for i,v in pairs(fruits) do
<tr>

<td><%= i %></td>
<td><%= v %></td>

</tr>
% end

</table>
</body>
</html>

5.5 Server administration

Tarantool is designed to have multiple running instances on the same host.

Here we show how to administer Tarantool instances using any of the following utilities:

• systemd native utilities, or

• tarantoolctl, a utility shipped and installed as part of Tarantool distribution.

Note:

• Unlike the rest of this manual, here we use system-wide paths.

• Console examples here are for Fedora.

This chapter includes the following sections:

5.5.1 Instance configuration

For each Tarantool instance, you need two files:

• [Optional] An application file with instance-specific logic. Put this file into the /usr/share/tarantool/
directory.

For example, /usr/share/tarantool/my_app.lua (here we implement it as a Lua module that bootstraps
the database and exports start() function for API calls):

local function start()
box.schema.space.create("somedata")
box.space.somedata:create_index("primary")
<...>

end

(continues on next page)

58 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

return {
start = start;

}

• An instance file with instance-specific initialization logic and parameters. Put this file, or a symlink to
it, into the /etc/tarantool/instances.enabled directory.

For example, /etc/tarantool/instances.enabled/my_app.lua (here we load my_app.lua module and
make a call to start() function from that module):

#!/usr/bin/env tarantool

box.cfg {
listen = 3301;

}

-- load my_app module and call start() function
-- with some app options controlled by sysadmins
local m = require('my_app').start({...})

Instance file

After this short introduction, you may wonder what an instance file is, what it is for, and how tarantoolctl
uses it. After all, Tarantool is an application server, so why not start the application stored in /usr/share/
tarantool directly?

A typical Tarantool application is not a script, but a daemon running in background mode and processing
requests, usually sent to it over a TCP/IP socket. This daemon needs to be started automatically when the
operating system starts, and managed with the operating system standard tools for service management –
such as systemd or init.d. To serve this very purpose, we created instance files.

You can have more than one instance file. For example, a single application in /usr/share/tarantool can run
in multiple instances, each of them having its own instance file. Or you can have multiple applications in
/usr/share/tarantool – again, each of them having its own instance file.

An instance file is typically created by a system administrator. An application file is often provided by a
developer, in a Lua rock or an rpm/deb package.

An instance file is designed to not differ in any way from a Lua application. It must, however, configure
the database, i.e. contain a call to box.cfg{} somewhere in it, because it’s the only way to turn a Tarantool
script into a background process, and tarantoolctl is a tool to manage background processes. Other than
that, an instance file may contain arbitrary Lua code, and, in theory, even include the entire application
business logic in it. We, however, do not recommend this, since it clutters the instance file and leads to
unnecessary copy-paste when you need to run multiple instances of an application.

tarantoolctl configuration file

While instance files contain instance configuration, tarantoolctl configuration file contains the configuration
that tarantoolctl uses to override instance configuration. In other words, it contains system-wide configura-
tion defaults.

Most of the parameters are similar to those used by box.cfg{}. Here are the default settings (installed to
/etc/default/tarantool as part of Tarantool distribution):

5.5. Server administration 59

Tarantool, Release 1.7.4

default_cfg = {
pid_file = "/var/run/tarantool",
wal_dir = "/var/lib/tarantool",
memtx_dir = "/var/lib/tarantool",
vinyl_dir = "/var/lib/tarantool",
log = "/var/log/tarantool",
username = "tarantool",

}
instance_dir = "/etc/tarantool/instances.enabled"

where:

• pid_file

Directory for the pid file and control-socket file; tarantoolctl will add “/instance_name” to the
directory name.

• wal_dir

Directory for write-ahead .xlog files; tarantoolctl will add “/instance_name” to the directory name.

• memtx_dir

Directory for snapshot .snap files; tarantoolctl will add “/instance_name” to the directory name.

• vinyl_dir

Directory for vinyl files; tarantoolctl will add “/instance_name” to the directory name.

• log

The place where the application log will go; tarantoolctl will add “/instance_name.log” to the name.

• username

The user that runs the Tarantool instance. This is the operating-system user name rather than the
Tarantool-client user name. Tarantool will change its effective user to this user after becoming a
daemon.

• instance_dir

The directory where all instance files for this host are stored. Put instance files in this directory, or
create symbolic links.

As a full-featured example, you can take example.lua script that ships with Tarantool and defines all con-
figuration options.

5.5.2 Starting/stopping an instance

While a Lua application is executed by Tarantool, an instance file is executed by tarantoolctl which is a
Tarantool script.

Here is what tarantoolctl does when you issue the command:

$ tarantoolctl start <instance_name>

1. Read and parse the command line arguments. The last argument, in our case, contains an instance
name.

2. Read and parse its own configuration file. This file contains tarantoolctl defaults, like the path to the
directory where instances should be searched for.

The default tarantoolctl configuration file is installed in /etc/default/tarantool. This file is used when
tarantoolctl is invoked by root. When invoked by a local user, tarantoolctl first looks for its defaults

60 Chapter 5. User’s Guide

https://github.com/tarantool/tarantool/blob/1.7/extra/dist/example.lua

Tarantool, Release 1.7.4

file in the current directory ($PWD/.tarantoolctl), and then in the current user’s home directory
($HOME/.config/tarantool/tarantool). If not found, tarantoolctl falls back to built-in defaults.

3. Look up the instance file in the instance directory, e.g. /etc/tarantool/instances.enabled. To build the
instance file path, tarantoolctl takes the instance name, prepends the instance directory and appends
“.lua” extension to the instance file.

4. Override box.cfg{} function to pre-process its parameters and ensure that instance paths are pointing to
the paths defined in the tarantoolctl configuration file. For example, if the configuration file specifies
that instance work directory must be in /var/tarantool, then the new implementation of box.cfg{}
ensures that work_dir parameter in box.cfg{} is set to /var/tarantool/<instance_name>, regardless
of what the path is set to in the instance file itself.

5. Create a so-called “instance control file”. This is a Unix socket with Lua console attached to it. This
file is used later by tarantoolctl to query the instance state, send commands to the instance and so on.

6. Finally, use Lua dofile command to execute the instance file.

If you start an instance using systemd tools, like this (the instance name is my_app):

$ systemctl start tarantool@my_app
$ ps axuf|grep exampl[e]
taranto+ 5350 1.3 0.3 1448872 7736 ? Ssl 20:05 0:28 tarantool my_app.lua <running>

. . . this actually calls tarantoolctl like in case of tarantoolctl start my_app.

To check the instance file for syntax errors prior to starting my_app instance, say:

$ tarantoolctl check my_app

To enable my_app instance for auto-load during system startup, say:

$ systemctl enable tarantool@my_app

To stop a running my_app instance, say:

$ tarantoolctl stop my_app
$ # - OR -
$ systemctl stop tarantool@my_app

To restart (i.e. stop and start) a running my_app instance, say:

$ tarantoolctl restart my_app
$ # - OR -
$ systemctl restart tarantool@my_app

Running Tarantool locally

Sometimes you may need to run a Tarantool instance locally, e.g. for test purposes. Let’s configure a local
instance, then start and monitor it with tarantoolctl.

First, we create a sandbox directory on the user’s path:

$ mkdir ~/tarantool_test

. . . and set default tarantoolctl configuration in $HOME/.config/tarantool/tarantool. Let the file contents
be:

5.5. Server administration 61

Tarantool, Release 1.7.4

default_cfg = {
pid_file = "/home/user/tarantool_test/my_app.pid",
wal_dir = "/home/user/tarantool_test",
snap_dir = "/home/user/tarantool_test",
vinyl_dir = "/home/user/tarantool_test",
log = "/home/user/tarantool_test/log",

}
instance_dir = "/home/user/tarantool_test"

Note:

• Specify a full path to the user’s home directory instead of “~/”.

• Omit username parameter. tarantoolctl normally doesn’t have permissions to switch current user when
invoked by a local user. The instance will be running under ‘admin’.

Next, we create the instance file ~/tarantool_test/my_app.lua. Let the file contents be:

box.cfg{listen = 3301}
box.schema.user.passwd('Gx5!')
box.schema.user.grant('guest','read,write,execute','universe')
fiber = require('fiber')
box.schema.space.create('tester')
box.space.tester:create_index('primary',{})
i = 0
while 0 == 0 do

fiber.sleep(5)
i = i + 1
print('insert ' .. i)
box.space.tester:insert{i, 'my_app tuple'}

end

Let’s verify our instance file by starting it without tarantoolctl first:

$ cd ~/tarantool_test
$ tarantool my_app.lua
2017-04-06 10:42:15.762 [54085] main/101/my_app.lua C> version 1.7.3-489-gd86e36d5b
2017-04-06 10:42:15.763 [54085] main/101/my_app.lua C> log level 5
2017-04-06 10:42:15.764 [54085] main/101/my_app.lua I> mapping 268435456 bytes for tuple arena...
2017-04-06 10:42:15.774 [54085] iproto/101/main I> binary: bound to [::]:3301
2017-04-06 10:42:15.774 [54085] main/101/my_app.lua I> initializing an empty data directory
2017-04-06 10:42:15.789 [54085] snapshot/101/main I> saving snapshot `./00000000000000000000.snap.inprogress'
2017-04-06 10:42:15.790 [54085] snapshot/101/main I> done
2017-04-06 10:42:15.791 [54085] main/101/my_app.lua I> vinyl checkpoint done
2017-04-06 10:42:15.791 [54085] main/101/my_app.lua I> ready to accept requests
insert 1
insert 2
insert 3
<...>

Now we tell tarantoolctl to start the Tarantool instance:

$ tarantoolctl start my_app

Expect to see messages indicating that the instance has started. Then:

62 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

$ ls -l ~/tarantool_test/my_app

Expect to see the .snap file and the .xlog file. Then:

$ less ~/tarantool_test/log/my_app.log

Expect to see the contents of my_app‘s log, including error messages, if any. Then:

$ tarantoolctl enter my_app
tarantool> box.cfg{}
tarantool> console = require('console')
tarantool> console.connect('localhost:3301')
tarantool> box.space.tester:select({0}, {iterator = 'GE'})

Expect to see several tuples that my_app has created.

Stop now. A polite way to stop my_app is with tarantoolctl, thus we say:

$ tarantoolctl stop my_app

Finally, we make a cleanup.

$ rm -R tarantool_test

5.5.3 Logs

Tarantool logs important events to a file, e.g. /var/log/tarantool/my_app.log. To build the log file path,
tarantoolctl takes the instance name, prepends the instance directory and appends “.log” extension.

Let’s write something to the log file:

$ tarantoolctl enter my_app
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> require('log').info("Hello for the manual readers")

...

Then check the logs:

$ tail /var/log/tarantool/my_app.log
2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> version 1.7.3-382-g68ef3f6a9
2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> log level 5
2017-04-04 15:54:04.978 [29255] main/101/tarantoolctl I> mapping 134217728 bytes for tuple arena...
2017-04-04 15:54:04.985 [29255] iproto/101/main I> binary: bound to [::1]:3301
2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I> recovery start
2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I> recovering from `/var/lib/tarantool/my_app/
→˓00000000000000000000.snap'
2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I> ready to accept requests
2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I> set 'checkpoint_interval' configuration option to 3600
2017-04-04 15:54:04.988 [29255] main/101/my_app I> Run console at unix/:/var/run/tarantool/my_app.control
2017-04-04 15:54:04.989 [29255] main/106/console/unix/:/var/ I> started
2017-04-04 15:54:04.989 [29255] main C> entering the event loop
2017-04-04 15:54:47.147 [29255] main/107/console/unix/: I> Hello for the manual readers

When logging to a file, the system administrator must ensure logs are rotated timely and do not take up all
the available disk space. With tarantoolctl, log rotation is pre-configured to use logrotate program, which
you must have installed.

5.5. Server administration 63

Tarantool, Release 1.7.4

File /etc/logrotate.d/tarantool is part of the standard Tarantool distribution, and you can modify it to
change the default behavior. This is what this file is usually like:

/var/log/tarantool/*.log {
daily
size 512k
missingok
rotate 10
compress
delaycompress
create 0640 tarantool adm
postrotate

/usr/bin/tarantoolctl logrotate `basename ${1%%.*}`
endscript

}

If you use a different log rotation program, you can invoke tarantoolctl logrotate command to request
instances to reopen their log files after they were moved by the program of your choice.

Note: Tarantool can write its logs to a log file, syslog or a program specified in the configuration file (see
log parameter).

By default, logs are written to a file as defined in tarantoolctl defaults. tarantoolctl automatically detects if
an instance is using syslog or an external program for logging, and does not override the log destination in
this case. In such configurations, log rotation is usually handled by the external program used for logging.
So, tarantoolctl logrotate command works only if logging-into-file is enabled in the instance file.

5.5.4 Security

Tarantool allows for two types of connections:

• With console.listen() function from console module, you can set up a port which can be used to open
an administrative console to the server. This is for administrators to connect to a running instance and
make requests. tarantoolctl invokes console.listen() to create a control socket for each started instance.

• With box.cfg{listen=. . . } parameter from box module, you can set up a binary port for connections
which read and write to the database or invoke stored procedures.

When you connect to an admin console:

• The client-server protocol is plain text.

• No password is necessary.

• The user is automatically ‘admin’.

• Each command is fed directly to the built-in Lua interpreter.

Therefore you must set up ports for the admin console very cautiously. If it is a TCP port, it should only
be opened for a specific IP. Ideally, it should not be a TCP port at all, it should be a Unix domain socket,
so that access to the server machine is required. Thus a typical port setup for admin console is:

console.listen('/var/lib/tarantool/socket_name.sock')

and a typical connection URI is:

/var/lib/tarantool/socket_name.sock

64 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

if the listener has the privilege to write on /var/lib/tarantool and the connector has the privilege to read on
/var/lib/tarantool. Alternatively, to connect to an admin console of an instance started with tarantoolctl,
use tarantoolctl enter.

To find out whether a TCP port is a port for admin console, use telnet. For example:

$ telnet 0 3303
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
Tarantool 1.7.3 (Lua console)
type 'help' for interactive help

In this example, the response does not include the word “binary” and does include the words “Lua console”.
Therefore it is clear that this is a successful connection to a port for admin console, and you can now enter
admin requests on this terminal.

When you connect to a binary port:

• The client-server protocol is binary.

• The user is automatically ‘guest’.

• To change the user, it’s necessary to authenticate.

For ease of use, tarantoolctl connect command automatically detects the type of connection during handshake
and uses EVAL binary protocol command when it’s necessary to execute Lua commands over a binary
connection. To execute EVAL, the authenticated user must have global “EXECUTE” privilege.

Therefore, when ssh access to the machine is not available, creating a Tarantool user with global “EXECUTE”
privilege and non-empty password can be used to provide a system administrator remote access to an instance.

5.5.5 Server introspection

Using Tarantool as a client

Tarantool enters the interactive mode if:

• you start Tarantool without an instance file, or

• the instance file contains console.start().

Tarantool displays a prompt (e.g. “tarantool>”) and you can enter requests. When used this way, Tarantool
can be a client for a remote server. See basic examples in Getting started.

The interactive mode is used by tarantoolctl to implement “enter” and “connect” commands.

Executing code on an instance

You can attach to an instance’s admin console and execute some Lua code using tarantoolctl:

$ # for local instances:
$ tarantoolctl enter my_app
/bin/tarantoolctl: Found my_app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my_app.control
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> 1 + 1

(continues on next page)

5.5. Server administration 65

Tarantool, Release 1.7.4

(continued from previous page)

- 2
...
unix/:/var/run/tarantool/my_app.control>

$ # for local and remote instances:
$ tarantoolctl connect username:password@127.0.0.1:3306

You can also use tarantoolctl to execute Lua code on an instance without attaching to its admin console.
For example:

executing commands directly from the command line
$ <command> | tarantoolctl eval my_app
<...>
$ # - OR -
executing commands from a script file
$ tarantoolctl eval my_app script.lua
<...>

Note: Alternatively, you can use the console module or the net.box module from a Tarantool server. Also,
you can write your client programs with any of the connectors. However, most of the examples in this manual
illustrate usage with either tarantoolctl connect or using the Tarantool server as a client.

Health checks

To check the instance status, say:

$ tarantoolctl status my_app
my_app is running (pid: /var/run/tarantool/my_app.pid)
$ # - OR -
$ systemctl status tarantool@my_app
tarantool@my_app.service - Tarantool Database Server
Loaded: loaded (/etc/systemd/system/tarantool@.service; disabled; vendor preset: disabled)
Active: active (running)
Docs: man:tarantool(1)
Process: 5346 ExecStart=/usr/bin/tarantoolctl start %I (code=exited, status=0/SUCCESS)
Main PID: 5350 (tarantool)
Tasks: 11 (limit: 512)
CGroup: /system.slice/system-tarantool.slice/tarantool@my_app.service
+ 5350 tarantool my_app.lua <running>

To check the boot log, on systems with systemd, say:

$ journalctl -u tarantool@my_app -n 5
-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:17:47 MSK. --
Jan 21 21:17:47 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.
Jan 21 21:17:47 localhost.localdomain systemd[1]: Starting Tarantool Database Server...
Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Found my_app.lua in /etc/
→˓tarantool/instances.available
Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Starting instance...
Jan 21 21:17:47 localhost.localdomain systemd[1]: Started Tarantool Database Server

For more details, use the reports provided by functions in the following submodules:

• box.cfg submodule (check and specify all configuration parameters for the Tarantool server)

66 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

• box.slab submodule (monitor the total use and fragmentation of memory allocated for storing data in
Tarantool)

• box.info submodule (introspect Tarantool server variables, primarily those related to replication)

• box.stat submodule (introspect Tarantool request and network statistics)

You can also try tarantool/prometheus, a Lua module that makes it easy to collect metrics (e.g. memory
usage or number of requests) from Tarantool applications and databases and expose them via the Prometheus
protocol.

Example

A very popular administrator request is box.slab.info(), which displays detailed memory usage statistics for
a Tarantool instance.

tarantool> box.slab.info()

- items_size: 228128
items_used_ratio: 1.8%
quota_size: 1073741824
quota_used_ratio: 0.8%
arena_used_ratio: 43.2%
items_used: 4208
quota_used: 8388608
arena_size: 2325176
arena_used: 1003632

...

5.5.6 Daemon supervision

Server signals

Tarantool processes these signals during the main thread event loop:

Signal Effect
SIGHUP May cause log file rotation. See the example in reference on Tarantool

logging parameters.
SIGUSR1 May cause a database checkpoint. See box.snapshot.
SIGTERM May cause graceful shutdown (information will be saved first).
SIGINT (also known as keyboard
interrupt)

May cause graceful shutdown.

SIGKILL Causes an immediate shutdown.

Other signals will result in behavior defined by the operating system. Signals other than SIGKILL may be
ignored, especially if Tarantool is executing a long-running procedure which prevents return to the main
thread event loop.

Automatic instance restart

On systemd-enabled platforms, systemd automatically restarts all Tarantool instances in case of failure. To
demonstrate it, let’s try to destroy an instance:

5.5. Server administration 67

https://github.com/tarantool/prometheus

Tarantool, Release 1.7.4

$ systemctl status tarantool@my_app|grep PID
Main PID: 5885 (tarantool)
$ tarantoolctl enter my_app
/bin/tarantoolctl: Found my_app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my_app.control
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my_app.control
unix/:/var/run/tarantool/my_app.control> os.exit(-1)
/bin/tarantoolctl: unix/:/var/run/tarantool/my_app.control: Remote host closed connection

Now let’s make sure that systemd has restarted the instance:

$ systemctl status tarantool@my_app|grep PID
Main PID: 5914 (tarantool)

Finally, let’s check the boot logs:

$ journalctl -u tarantool@my_app -n 8
-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:09:45 MSK. --
Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Unit entered failed state.
Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Failed with result 'exit-code'.
Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my_app.service: Service hold-off time over,␣
→˓scheduling restart.
Jan 21 21:09:45 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.
Jan 21 21:09:45 localhost.localdomain systemd[1]: Starting Tarantool Database Server...
Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Found my_app.lua in /etc/
→˓tarantool/instances.available
Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Starting instance...
Jan 21 21:09:45 localhost.localdomain systemd[1]: Started Tarantool Database Server.

Core dumps

Tarantool makes a core dump if it receives any of the following signals: SIGSEGV, SIGFPE, SIGABRT or
SIGQUIT. This is automatic if Tarantool crashes.

On systemd-enabled platforms, coredumpctl automatically saves core dumps and stack traces in case of a
crash. Here is a general “how to” for how to enable core dumps on a Unix system:

1. Ensure session limits are configured to enable core dumps, i.e. say ulimit -c unlimited. Check “man 5
core” for other reasons why a core dump may not be produced.

2. Set a directory for writing core dumps to, and make sure that the directory is writable. On Linux, the
directory path is set in a kernel parameter configurable via /proc/sys/kernel/core_pattern.

3. Make sure that core dumps include stack trace information. If you use a binary Tarantool distribution,
this is automatic. If you build Tarantool from source, you will not get detailed information if you pass
-DCMAKE_BUILD_TYPE=Release to CMake.

To simulate a crash, you can execute an illegal command against a Tarantool instance:

$ # !!! please never do this on a production system !!!
$ tarantoolctl enter my_app
unix/:/var/run/tarantool/my_app.control> require('ffi').cast('char *', 0)[0] = 48
/bin/tarantoolctl: unix/:/var/run/tarantool/my_app.control: Remote host closed connection

Alternatively, if you know the process ID of the instance (here we refer to it as $PID), you can abort a
Tarantool instance by running gdb debugger:

68 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

$ gdb -batch -ex "generate-core-file" -p $PID

or manually sending a SIGABRT signal:

$ kill -SIGABRT $PID

Note: To find out the process id of the instance ($PID), you can:

• look it up in the instance’s box.info.pid,

• find it with ps -A | grep tarantool, or

• say systemctl status tarantool@my_app|grep PID.

On a systemd-enabled system, to see the latest crashes of the Tarantool daemon, say:

$ coredumpctl list /usr/bin/tarantool
MTIME PID UID GID SIG PRESENT EXE
Sat 2016-01-23 15:21:24 MSK 20681 1000 1000 6 /usr/bin/tarantool
Sat 2016-01-23 15:51:56 MSK 21035 995 992 6 /usr/bin/tarantool

To save a core dump into a file, say:

$ coredumpctl -o filename.core info <pid>

Stack traces

Since Tarantool stores tuples in memory, core files may be large. For investigation, you normally don’t need
the whole file, but only a “stack trace” or “backtrace”.

To save a stack trace into a file, say:

$ gdb -se "tarantool" -ex "bt full" -ex "thread apply all bt" --batch -c core> /tmp/tarantool_trace.txt

where:

• “tarantool” is the path to the Tarantool executable,

• “core” is the path to the core file, and

• “/tmp/tarantool_trace.txt” is a sample path to a file for saving the stack trace.

Note: Occasionally, you may find that the trace file contains output without debug symbols – the lines will
contain ”??” instead of names. If this happens, check the instructions on these Tarantool wiki pages: How
to debug core dump of stripped tarantool and How to debug core from different OS.

To see the stack trace and other useful information in console, say:

$ coredumpctl info 21035
PID: 21035 (tarantool)
UID: 995 (tarantool)
GID: 992 (tarantool)

Signal: 6 (ABRT)
Timestamp: Sat 2016-01-23 15:51:42 MSK (4h 36min ago)

(continues on next page)

5.5. Server administration 69

https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-from-different-OS

Tarantool, Release 1.7.4

(continued from previous page)

Command Line: tarantool my_app.lua <running>
Executable: /usr/bin/tarantool

Control Group: /system.slice/system-tarantool.slice/tarantool@my_app.service
Unit: tarantool@my_app.service
Slice: system-tarantool.slice

Boot ID: 7c686e2ef4dc4e3ea59122757e3067e2
Machine ID: a4a878729c654c7093dc6693f6a8e5ee
Hostname: localhost.localdomain
Message: Process 21035 (tarantool) of user 995 dumped core.

Stack trace of thread 21035:
#0 0x00007f84993aa618 raise (libc.so.6)
#1 0x00007f84993ac21a abort (libc.so.6)
#2 0x0000560d0a9e9233 _ZL12sig_fatal_cbi (tarantool)
#3 0x00007f849a211220 __restore_rt (libpthread.so.0)
#4 0x0000560d0aaa5d9d lj_cconv_ct_ct (tarantool)
#5 0x0000560d0aaa687f lj_cconv_ct_tv (tarantool)
#6 0x0000560d0aaabe33 lj_cf_ffi_meta___newindex (tarantool)
#7 0x0000560d0aaae2f7 lj_BC_FUNCC (tarantool)
#8 0x0000560d0aa9aabd lua_pcall (tarantool)
#9 0x0000560d0aa71400 lbox_call (tarantool)
#10 0x0000560d0aa6ce36 lua_fiber_run_f (tarantool)
#11 0x0000560d0a9e8d0c _ZL16fiber_cxx_invokePFiP13__va_list_tagES0_ (tarantool)
#12 0x0000560d0aa7b255 fiber_loop (tarantool)
#13 0x0000560d0ab38ed1 coro_init (tarantool)
...

Debugger

To start gdb debugger on the core dump, say:

$ coredumpctl gdb <pid>

It is highly recommended to install tarantool-debuginfo package to improve gdb experience, for example:

$ dnf debuginfo-install tarantool

gdb also provides information about the debuginfo packages you need to install:

$ # gdb -p <pid>
...
Missing separate debuginfos, use: dnf debuginfo-install
glibc-2.22.90-26.fc24.x86_64 krb5-libs-1.14-12.fc24.x86_64
libgcc-5.3.1-3.fc24.x86_64 libgomp-5.3.1-3.fc24.x86_64
libselinux-2.4-6.fc24.x86_64 libstdc++-5.3.1-3.fc24.x86_64
libyaml-0.1.6-7.fc23.x86_64 ncurses-libs-6.0-1.20150810.fc24.x86_64
openssl-libs-1.0.2e-3.fc24.x86_64

Symbolic names are present in stack traces even if you don’t have tarantool-debuginfo package installed.

5.5.7 Disaster recovery

The minimal fault-tolerant Tarantool configuration would be a replication cluster that includes a master and
a replica, or two masters.

70 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

The basic recommendation is to configure all Tarantool instances in a cluster to create snapshot files at a
regular basis.

Here follow action plans for typical crash scenarios.

Master-replica

Configuration: One master and one replica.

Problem: The master has crashed.

Your actions:

1. Ensure the master is stopped for good. For example, log in to the master machine and use systemctl
stop tarantool@<instance_name>.

2. Switch the replica to master mode by setting box.cfg.read_only parameter to false and let the load be
handled by the replica (effective master).

3. Set up a replacement for the crashed master on a spare host, with replication parameter set to replica
(effective master), so it begins to catch up with the new master’s state. The new instance should have
box.cfg.read_only parameter set to true.

You lose the few transactions in the master write ahead log file, which it may have not transferred to the
replica before crash. If you were able to salvage the master .xlog file, you may be able to recover these. In
order to do it:

1. Find out the position of the crashed master, as reflected on the new master.

a. Find out instance UUID from the crashed master xlog:

$ head -5 *.xlog | grep Instance
Instance: ed607cad-8b6d-48d8-ba0b-dae371b79155

b. On the new master, use the UUID to find the position:

tarantool>box.info.vclock[box.space._cluster.index.uuid:select{'ed607cad-8b6d-48d8-ba0b-
→˓dae371b79155'}[1][1]]

- 23425
<...>

2. Play the records from the crashed .xlog to the new master, starting from the new master position:

a. Issue this request locally at the new master’s machine to find out instance ID of the new master:

tarantool> box.space._cluster:select{}

- - [1, '88580b5c-4474-43ab-bd2b-2409a9af80d2']
...

b. Play the records to the new master:

$ tarantoolctl <new_master_uri> <xlog_file> play --from-lsn 23425 --replica 1

Master-master

Configuration: Two masters.

5.5. Server administration 71

Tarantool, Release 1.7.4

Problem: Master#1 has crashed.

Your actions:

1. Let the load be handled by master#2 (effective master) alone.

2. Follow the same steps as in the master-replica recovery scenario to create a new master and salvage lost
data.

Data loss

Configuration: Master-master or master-replica.

Problem: Data was deleted at one master and this data loss was propagated to the other node (master or
replica).

The following steps are applicable only to data in memtx storage engine. Your actions:

1. Put all nodes in read-only mode and disable checkpointing with box.backup.begin(). Disabling the
checkpointing is necessary to prevent automatic garbage collection of older checkpoints.

2. Get the latest valid .snap file and use tarantoolctl cat command to calculate at which lsn the data loss
occurred.

3. Start a new instance (instance#1) and use tarantoolctl play command to play to it the contents of
.snap/.xlog files up to the calculated lsn.

4. Bootstrap a new replica from the recovered master (instance#1).

5.5.8 Backups

Tarantool storage architecture is append-only: files are only appended to, and are never overwritten. Old
files are removed by garbage collection after a checkpoint. You can configure the amount of past checkpoints
preserved by garbage collection by configuring Tarantool’s checkpoint daemon. Backups can be taken at any
time, with minimal overhead on database performance.

Hot backup (memtx)

This is a special case when there are only in-memory tables.

The last snapshot file is a backup of the entire database; and the WAL files that are made after the last
snapshot are incremental backups. Therefore taking a backup is a matter of copying the snapshot and WAL
files.

1. Use tar to make a (possibly compressed) copy of the latest .snap and .xlog files on the memtx_dir and
wal_dir directories.

2. If there is a security policy, encrypt the .tar file.

3. Copy the .tar file to a safe place.

Later, restoring the database is a matter of taking the .tar file and putting its contents back in the memtx_dir
and wal_dir directories.

72 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

Hot backup (vinyl/memtx)

Vinyl stores its files in vinyl_dir, and creates a folder for each database space. Dump and compaction
processes are append-only and create new files. Old files are garbage collected after each checkpoint.

To take a mixed backup:

1. Issue box.backup.begin() on the administrative console. This will suspend garbage collection till the
next box.backup.end() and will return a list of files to backup.

2. Copy the files from the list to a safe location. This will include memtx snapshot files, vinyl run and
index files, at a state consistent with the last checkpoint.

3. Resume garbage collection with box.backup.end().

Continuous remote backup (memtx)

The replication feature is useful for backup as well as for load balancing.

Therefore taking a backup is a matter of ensuring that any given replica is up to date, and doing a cold
backup on it. Since all the other replicas continue to operate, this is not a cold backup from the end user’s
point of view. This could be done on a regular basis, with a cron job or with a Tarantool fiber.

Continuous backup (memtx)

The logged changes done since the last cold backup must be secured, while the system is running.

For this purpose, you need a file copy utility that will do the copying remotely and continuously, copying
only the parts of a write ahead log file that are changing. One such utility is rsync.

Alternatively, you need an ordinary file copy utility, but there should be frequent production of new snapshot
files or new WAL files as changes occur, so that only the new files need to be copied.

5.5.9 Upgrades

Upgrading a Tarantool database

If you created a database with an older Tarantool version and have now installed a newer version, make
the request box.schema.upgrade(). This updates Tarantool system spaces to match the currently installed
version of Tarantool.

For example, here is what happens when you run box.schema.upgrade() with a database created with Taran-
tool version 1.6.4 to version 1.7.2 (only a small part of the output is shown):

tarantool> box.schema.upgrade()
alter index primary on _space set options to {"unique":true}, parts to [[0,"unsigned"]]
alter space _schema set options to {}
create view _vindex...
grant read access to 'public' role for _vindex view
set schema version to 1.7.0

...

5.5. Server administration 73

https://en.wikipedia.org/wiki/Rsync

Tarantool, Release 1.7.4

Upgrading a Tarantool instance

Tarantool is backward compatible between two adjacent versions. For example, you should have no or little
trouble when upgrading from Tarantool 1.6 to 1.7, or from Tarantool 1.7 to 1.8. Meanwhile Tarantool 1.8
may have incompatible changes when migrating from Tarantool 1.6. to 1.8 directly.

How to upgrade from Tarantool 1.6 to 1.7

This procedure is for upgrading a standalone Tarantool instance in production from 1.6.x to 1.7.x. Notice
that this will always imply a downtime. To upgrade without downtime, you need several Tarantool servers
running in a replication cluster (see below).

Tarantool 1.7 has an incompatible .snap and .xlog file format: 1.6 files are supported during upgrade, but
you won’t be able to return to 1.6 after running under 1.7 for a while. It also renames a few configuration
parameters, but old parameters are supported. The full list of breaking changes is available in release notes
for Tarantool 1.7.

1. Check with application developers whether application files need to be updated due to incompatible
changes (see 1.7 release notes). If yes, back up the old application files.

2. Stop the Tarantool server.

3. Make a copy of all data (see an appropriate hot backup procedure in Backups) and the package from
which the current (old) version was installed (for rollback purposes).

4. Update the Tarantool server. See installation instructions at Tarantool download page.

5. Update the Tarantool database. Make the request box.schema.upgrade(). This will create new system
spaces, update data type names (e.g. num -> unsigned, str -> string) and options in Tarantool system
spaces.

6. Update application files, if needed.

7. Launch the updated Tarantool server using tarantoolctl or systemctl.

Upgrading Tarantool in a replication cluster

Tarantool 1.7 can work as a replica for Tarantool 1.6 and vice versa. Replicas perform capability negotiation
on handshake, and new 1.7 replication features are not used with 1.6 replicas. This allows upgrading clustered
configurations.

This procedure allows for a rolling upgrade without downtime and works for any cluster configuration:
master-master or master-replica.

1. Upgrade Tarantool at all replicas (or at any master in a master-master cluster). See details in Upgrading
a Tarantool instance.

2. Verify installation on the replicas:

a. Start Tarantool.

b. Attach to the master and start working as before.

The master runs the old Tarantool version, which is always compatible with the next major version.

3. Upgrade the master. The procedure is similar to upgrading a replica.

4. Verify master installation:

a. Start Tarantool with replica configuration to catch up.

74 Chapter 5. User’s Guide

https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
http://tarantool.org/download.html

Tarantool, Release 1.7.4

b. Switch to master mode.

5. Upgrade the database on any master node in the cluster. Make the request box.schema.upgrade().
This updates Tarantool system spaces to match the currently installed version of Tarantool. Changes
are propagated to other nodes via the regular replication mechanism.

5.5.10 Notes for operating systems

Mac OS

On Mac OS, you can administer Tarantool instances only with tarantoolctl. No native system tools are
supported.

FreeBSD

To make tarantoolctl work along with init.d utilities on FreeBSD, use paths other than those suggested in
Instance configuration. Instead of /usr/share/tarantool/ directory, use /usr/local/etc/tarantool/ and create
the following subdirectories:

• default for tarantoolctl defaults (see example below),

• instances.available for all available instance files, and

• instances.enabled for instance files to be auto-started by sysvinit.

Here is an example of tarantoolctl defaults on FreeBSD:

default_cfg = {
pid_file = "/var/run/tarantool", -- /var/run/tarantool/${INSTANCE}.pid
wal_dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}/
snap_dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
vinyl_dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
logger = "/var/log/tarantool", -- /var/log/tarantool/${INSTANCE}.log
username = "tarantool",

}

-- instances.available - all available instances
-- instances.enabled - instances to autostart by sysvinit
instance_dir = "/usr/local/etc/tarantool/instances.available"

5.5.11 Bug reports

If you found a bug in Tarantool, you’re doing us a favor by taking the time to tell us about it.

Please create an issue at Tarantool repository at GitHub. We encourage you to include the following
information:

• Steps needed to reproduce the bug, and an explanation why this differs from the expected behavior
according to our manual. Please provide specific unique information. For example, instead of “I can’t
get certain information”, say “box.space.x:delete() didn’t report what was deleted”.

• Your operating system name and version, the Tarantool name and version, and any unusual details
about your machine and its configuration.

• Related files like a stack trace or a Tarantool log file.

5.5. Server administration 75

Tarantool, Release 1.7.4

If this is a feature request or if it affects a special category of users, be sure to mention that.

Usually within one or two workdays a Tarantool team member will write an acknowledgment, or some
questions, or suggestions for a workaround.

5.6 Replication

Replication allows multiple Tarantool instances to work on copies of the same databases. The databases are
kept in sync because each instance can communicate its changes to all the other instances.

This chapter includes the following sections:

5.6.1 Replication architecture

Replication mechanism

A pack of instances which operate on copies of the same databases make up a replica set. Each instance in
a replica set has a role, master or replica.

A replica gets all updates from the master by continuously fetching and applying its write ahead log (WAL).
Each record in the WAL represents a single Tarantool data-change request such as INSERT, UPDATE
or DELETE, and is assigned a monotonically growing log sequence number (LSN). In essence, Tarantool
replication is row-based: each data-change request is fully deterministic and operates on a single tuple.
However, unlike a classical row-based log, which contains entire copies of the changed rows, Tarantool’s
WAL contains copies of the requests. For example, for UPDATE requests, Tarantool only stores the primary
key of the row and the update operations, to save space.

Invocations of stored programs are not written to the WAL. Instead, records of the actual data-change
requests, performed by the Lua code, are written to the WAL. This ensures that possible non-determinism
of Lua does not cause replication to go out of sync.

Data definition operations on temporary spaces, such as creating/dropping, adding indexes, truncating, etc.,
are written to the WAL, since information about temporary spaces is stored in non-temporary system spaces,
such as box.space._space. Data change operations on temporary spaces are not written to the WAL and are
not replicated.

To create a valid initial state, to which WAL changes can be applied, every instance of a replica set requires
a start set of checkpoint files, such as .snap files for memtx and .run files for vinyl. A replica joining an
existing replica set, chooses an existing master and automatically downloads the initial state from it. This
is called an initial join.

When an entire replica set is bootstrapped for the first time, there is no master which could provide the
initial checkpoint. In such case, replicas connect to each other, elect a master, which then creates the starting
set of checkpoint files, and distributes it across all other replicas. This is called an automatic bootstrap of a
replica set.

When a replica contacts a master (there can be many masters) for the first time, it becomes part of a replica
set. On subsequent occasions, it should always contact a master in the same replica set. Once connected
to the master, the replica requests all changes that happened after the latest local LSN (there can be many
LSNs – each master has its own LSN).

Each replica set is identified by a globally unique identifier, called replica set UUID. The identifier is created
by the master which creates the very first checkpoint, and is part of the checkpoint file. It is stored in system
space box.space._schema. For example:

76 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

tarantool> box.space._schema:select{'cluster'}

- - ['cluster', '6308acb9-9788-42fa-8101-2e0cb9d3c9a0']
...

Additionally, each instance in a replica set is assigned its own UUID, when it joins the replica set. It is called
an instance UUID and is a globally unique identifier. This UUID is used to ensure that instances do not join
a different replica set, e.g. because of a configuration error. A unique instance identifier is also necessary to
apply rows originating from different masters only once, that is, implement multi-master replication. This is
why each row in the write ahead log, in addition to its log sequence number, stores the instance identifier of
the instance on which it was created. But using UUID as such an identifier would take too much space in the
write ahead log, thus a shorter integer number is assigned to the instance when it joins a replica set. This
number is then used to refer to the instance in the write ahead log. It is called instance id. All identifiers
are stored in system space box.space._cluster. For example:

tarantool> box.space._cluster:select{}

- - [1, '88580b5c-4474-43ab-bd2b-2409a9af80d2']
...

Here the instance ID is 1 (unique within the replica set), and the instance UUID is 88580b5c-4474-43ab-
bd2b-2409a9af80d2 (globally unique).

Using shorter numeric identifiers is also handy to track the state of the entire replica set. For example,
box.info.vclock describes the state of replication in regard to each connected peer.

box.info.vclock

- {1: 827, 2: 584}
...

Here vclock contains log sequence numbers (827 and 584) for instances with short identifiers 1 and 2.

Replication setup

To enable replication, you need to specify two parameters in a box.cfg{} request:

• replication parameter which defines the replication source(s), and

• read_only parameter which is true for a replica and false for a master.

Both these parameters are “dynamic”. This allows a replica to become a master and vice versa on the fly
with the help of a box.cfg{} request.

Further we’re giving a detailed example of bootstrapping a replica set.

Replication roles: master and replica

Replication role (master or replica) is set in read_only configuration parameter. The recommended role for
all-but-one instances in a replica set is “read-only” (replica).

In a master-replica configuration, every change that happens on the master will be visible on the replicas,
but not vice versa.

5.6. Replication 77

Tarantool, Release 1.7.4

A simple two-instance replica set with the master on one machine and the replica on a different machine
provides two benefits:

• failover, because if the master goes down then the replica can take over, and

• load balancing, because clients can connect to either the master or the replica for read requests.

In a master-master configuration (also called “multi-master”), every change that happens on either instance
will be visible on the other one.

The failover benefit in this case is still present, and the load-balancing benefit is enhanced, because any
instance can handle both read and write requests. Meanwhile, for multi-master configurations, it is necessary
to understand the replication guarantees provided by the asynchronous protocol that Tarantool implements.

Tarantool multi-master replication guarantees that each change on each master is propagated to all instances
and is applied only once. Changes from the same instance are applied in the same order as on the originating
instance. Changes from different instances, however, can mix and apply in a different order on different
instances. This may lead to replication going out of sync in certain cases.

For example, assuming the database is only appended to (i.e. it contains only insertions), it is safe to set each
instance to a master. If there are also deletions, but it is not mission critical that deletion happens in the
same order on all replicas (e.g. the DELETE is used to prune expired data), a master-master configuration
is also safe.

UPDATE operations, however, can easily go out of sync. For example, assignment and increment are not
commutative, and may yield different results if applied in different order on different instances.

More generally, it is only safe to use Tarantool master-master replication if all database changes are commu-
tative: the end result does not depend on the order in which the changes are applied. You can start learning
more about conflict-free replicated data types here.

Replication topologies: cascade, ring and full mesh

Replication topology is set in replication configuration parameter. The recommended topology is a full mesh,
because it makes potential failover easy.

Some database products offer cascading replication topologies: creating a replica on a replica. Tarantool
does not recommend such setup.

78 Chapter 5. User’s Guide

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

Tarantool, Release 1.7.4

The problem with a cascading replica set is that some instances have no connection to other instances and
may not receive changes from them. One essential change that must be propagated across all instances in a
replica set is an entry in box.space._cluster system space with replica set UUID. Without knowing a replica
set UUID, a master refuses to accept connections from such instances when replication topology changes.
Here is how this can happen:

We have a chain of three instances. Instance #1 contains entries for instances #1 and #2 in its _cluster
space. Instances #2 and #3 contain entries for instances #1, #2 and #3 in their _cluster spaces.

5.6. Replication 79

Tarantool, Release 1.7.4

Now instance #2 is faulty. Instance #3 tries connecting to instance #1 as its new master, but the master
refuses the connection since it has no entry for instance #3.

Ring replication topology is, however, supported:

So, if you need a cascading topology, you may first create a ring to ensure all instances know each other’s
UUID, and then disconnect the chain in the place you desire.

A stock recommendation for a master-master replication topology, however, is a full mesh:

You then can decide where to locate instances of the mesh – within the same data center, or spread across a
few data centers. Tarantool will automatically ensure that each row is applied only once on each instance.
To remove a degraded instance from a mesh, simply change replication configuration parameter.

This ensures full cluster availability in case of a local failure, e.g. one of the instances failing in one of the
data centers, as well as in case of an entire data center failure.

The maximal number of replicas in a mesh is 32.

5.6.2 Bootstrapping a replica set

Master-replica bootstrap

Let’s first bootstrap a simple master-replica set containing two instances, each located on its own machine.
For easier administration, we make the instance files almost identical.

80 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

Here is an example of the master’s instance file:

-- instance file for the master
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master URI

'replicator:password@192.168.0.102:3301'}, -- replica URI
read_only = false

}
box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication') -- grant replication role
box.schema.space.create("test")
box.space.test:create_index("primary")
print('box.once executed on master')

end)

where:

• listen parameter from box.cfg{} defines a URI (port 3301 in our example), on which the master can
accept connections from replicas.

• replication parameter defines the URIs at which all instances in the replica set can accept connections.
It includes the replica’s URI as well, although the replica is not a replication source right now.

Note: For security reasons, we recommend to prevent unauthorized replication sources by associating
a password with every user that has a replication role. That way, the URI for replication parameter
must have the long form username:password@host:port.

• read_only parameter enables data-change operations on the instance and makes this Tarantool instance
act as a master, not as a replica. That’s the only parameter in our instance files that will differ.

• box.once() function contains database initialization logic that should be executed only once during the
replica set lifetime.

In this example, we create a space with a primary index, and a user for replication purposes. We also say
print('box.once executed on master') to see later in console whether box.once() is executed.

Note: Replication requires privileges. We can grant privileges for accessing spaces directly to the user who
will start the instance. However, it is more usual to grant privileges for accessing spaces to a role, and then
grant the role to the user who will start the replica.

Here we use Tarantool’s predefined role named “replication” which by default grants “read” privileges for all
database objects (“universe”), and we can further set up privileges for this role as required.

In the replica’s instance file, we only set read-only parameter to “true”, and say print('box.once executed on
replica') to make sure that box.once() is not executed more than once. Otherwise the replica’s instance file
is fully identical to the master’s instance file.

-- instance file for the replica
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master URI

'replicator:password@192.168.0.102:3301'}, -- replica URI
read_only = true

}

(continues on next page)

5.6. Replication 81

Tarantool, Release 1.7.4

(continued from previous page)

box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication') - grant replication role
box.schema.space.create("test")
box.space.test:create_index("primary")
print('box.once executed on replica')

end)

Note: The replica does not inherit the master’s configuration parameters, such as those making the check-
point daemon run on the master. To get the same behavior, please set the relevant parameters explicitly so
that they are the same on both master and replica.

Now we can launch the two instances. The master. . .

$ # launching the master
$ tarantool master.lua
2017-06-14 14:12:03.847 [18933] main/101/master.lua C> version 1.7.4-52-g980d30092
2017-06-14 14:12:03.848 [18933] main/101/master.lua C> log level 5
2017-06-14 14:12:03.849 [18933] main/101/master.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:12:03.859 [18933] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. I> can't connect to master
2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. coio.cc:105 !> SystemError connect,␣
→˓called on fd 14, aka 192.168.0.102:56736: Connection refused
2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 14:12:03.861 [18933] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 14:12:19.878 [18933] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓102:3301
2017-06-14 14:12:19.879 [18933] main/101/master.lua I> initializing an empty data directory
2017-06-14 14:12:19.908 [18933] snapshot/101/main I> saving snapshot `/var/lib/tarantool/master/
→˓00000000000000000000.snap.inprogress'
2017-06-14 14:12:19.914 [18933] snapshot/101/main I> done
2017-06-14 14:12:19.914 [18933] main/101/master.lua I> vinyl checkpoint done
2017-06-14 14:12:19.917 [18933] main/101/master.lua I> ready to accept requests
2017-06-14 14:12:19.918 [18933] main/105/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:12:19.918 [18933] main/105/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING: Instance␣
→˓bootstrap hasn't finished yet
box.once executed on master
2017-06-14 14:12:19.920 [18933] main C> entering the event loop

. . . (yep, box.once() got executed on the master) – and the replica:

$ # launching the replica
$ tarantool replica.lua
2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> version 1.7.4-52-g980d30092
2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> log level 5
2017-06-14 14:12:19.487 [18934] main/101/replica.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:12:19.494 [18934] iproto/101/main I> binary: bound to [::]:3311
2017-06-14 14:12:19.495 [18934] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 14:12:19.495 [18934] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓102:3302
2017-06-14 14:12:19.496 [18934] main/104/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:12:19.496 [18934] main/104/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING: Instance␣
→˓bootstrap hasn't finished yet

82 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

In both logs, there are messages saying that the replica got bootstrapped from the master:

$ # bootstrapping the replica (from the master's log)
<...>
2017-06-14 14:12:20.503 [18933] main/106/main I> initial data sent.
2017-06-14 14:12:20.505 [18933] relay/[::ffff:192.168.0.101]:/101/main I> recover from `/var/lib/tarantool/master/
→˓00000000000000000000.xlog'
2017-06-14 14:12:20.505 [18933] main/106/main I> final data sent.
2017-06-14 14:12:20.522 [18933] relay/[::ffff:192.168.0.101]:/101/main I> recover from `/Users/e.shebunyaeva/
→˓work/tarantool-test-repl/master_dir/00000000000000000000.xlog'
2017-06-14 14:12:20.922 [18933] main/105/applier/replicator@192.168.0. I> authenticated

$ # bootstrapping the replica (from the replica's log)
<...>
2017-06-14 14:12:20.498 [18934] main/104/applier/replicator@192.168.0. I> authenticated
2017-06-14 14:12:20.498 [18934] main/101/replica.lua I> bootstrapping replica from 192.168.0.101:3301
2017-06-14 14:12:20.512 [18934] main/104/applier/replicator@192.168.0. I> initial data received
2017-06-14 14:12:20.512 [18934] main/104/applier/replicator@192.168.0. I> final data received
2017-06-14 14:12:20.517 [18934] snapshot/101/main I> saving snapshot `/var/lib/tarantool/replica/
→˓00000000000000000005.snap.inprogress'
2017-06-14 14:12:20.518 [18934] snapshot/101/main I> done
2017-06-14 14:12:20.519 [18934] main/101/replica.lua I> vinyl checkpoint done
2017-06-14 14:12:20.520 [18934] main/101/replica.lua I> ready to accept requests
2017-06-14 14:12:20.520 [18934] main/101/replica.lua I> set 'read_only' configuration option to true
2017-06-14 14:12:20.520 [18934] main C> entering the event loop

Notice that box.once() was executed only at the master, although we added box.once() to both instance files.

We could as well launch the replica first:

$ # launching the replica
$ tarantool replica.lua
2017-06-14 14:35:36.763 [18952] main/101/replica.lua C> version 1.7.4-52-g980d30092
2017-06-14 14:35:36.765 [18952] main/101/replica.lua C> log level 5
2017-06-14 14:35:36.765 [18952] main/101/replica.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:35:36.772 [18952] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. I> can't connect to master
2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. coio.cc:105 !> SystemError connect,␣
→˓called on fd 13, aka 192.168.0.101:56820: Connection refused
2017-06-14 14:35:36.772 [18952] main/104/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 14:35:36.772 [18952] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓102:3301

. . . and the master later:

$ # launching the master
$ tarantool master.lua
2017-06-14 14:35:43.701 [18953] main/101/master.lua C> version 1.7.4-52-g980d30092
2017-06-14 14:35:43.702 [18953] main/101/master.lua C> log level 5
2017-06-14 14:35:43.702 [18953] main/101/master.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:35:43.709 [18953] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 14:35:43.709 [18953] main/105/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓102:3301
2017-06-14 14:35:43.709 [18953] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 14:35:43.709 [18953] main/101/master.lua I> initializing an empty data directory
2017-06-14 14:35:43.721 [18953] snapshot/101/main I> saving snapshot `/var/lib/tarantool/master/
→˓00000000000000000000.snap.inprogress'

(continues on next page)

5.6. Replication 83

Tarantool, Release 1.7.4

(continued from previous page)

2017-06-14 14:35:43.722 [18953] snapshot/101/main I> done
2017-06-14 14:35:43.723 [18953] main/101/master.lua I> vinyl checkpoint done
2017-06-14 14:35:43.723 [18953] main/101/master.lua I> ready to accept requests
2017-06-14 14:35:43.724 [18953] main/105/applier/replicator@192.168.0. I> failed to authenticate
2017-06-14 14:35:43.724 [18953] main/105/applier/replicator@192.168.0. xrow.cc:431 E> ER_LOADING: Instance␣
→˓bootstrap hasn't finished yet
box.once executed on master
2017-06-14 14:35:43.726 [18953] main C> entering the event loop
2017-06-14 14:35:43.779 [18953] main/103/main I> initial data sent.
2017-06-14 14:35:43.780 [18953] relay/[::ffff:192.168.0.101]:/101/main I> recover from `/var/lib/tarantool/master/
→˓00000000000000000000.xlog'
2017-06-14 14:35:43.780 [18953] main/103/main I> final data sent.
2017-06-14 14:35:43.796 [18953] relay/[::ffff:192.168.0.102]:/101/main I> recover from `/var/lib/tarantool/master/
→˓00000000000000000000.xlog'
2017-06-14 14:35:44.726 [18953] main/105/applier/replicator@192.168.0. I> authenticated

In this case, the replica would wait for the master to become available, so the launch order doesn’t matter.
Our box.once() logic would also be executed only once, at the master.

$ # the replica has eventually connected to the master
$ # and got bootstrapped (from the replica's log)
2017-06-14 14:35:43.777 [18952] main/104/applier/replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 14:35:43.777 [18952] main/104/applier/replicator@192.168.0. I> authenticated
2017-06-14 14:35:43.777 [18952] main/101/replica.lua I> bootstrapping replica from 192.168.0.199:3310
2017-06-14 14:35:43.788 [18952] main/104/applier/replicator@192.168.0. I> initial data received
2017-06-14 14:35:43.789 [18952] main/104/applier/replicator@192.168.0. I> final data received
2017-06-14 14:35:43.793 [18952] snapshot/101/main I> saving snapshot `/var/lib/tarantool/replica/
→˓00000000000000000005.snap.inprogress'
2017-06-14 14:35:43.793 [18952] snapshot/101/main I> done
2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> vinyl checkpoint done
2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> ready to accept requests
2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> set 'read_only' configuration option to true
2017-06-14 14:35:43.795 [18952] main C> entering the event loop

Controlled failover

To perform a controlled failover, that is, swap the roles of the master and replica, all we need to do is to
set read_only=true at the master, and read_only=false at the replica. The order of actions is important
here. If a system is running in production, we don’t want concurrent writes happen both at the replica and
the master. Nor do we want the new replica to accept any writes until it has finished fetching all replication
data from the old master. To compare replica and master state, we can use box.info.signature.

1. Set read_only=true at the master.

at the master
tarantool> box.cfg{read_only=true}

2. Record the master’s current position with box.info.signature, containing the sum of all LSNs in the
master’s vector clock.

at the master
tarantool> box.info.signature

3. Wait until the replica’s signature is the same as the master’s.

84 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

at the replica
tarantool> box.info.signature

4. Set read_only=false at the replica to enable write operations.

at the replica
tarantool> box.cfg{read_only=false}

These 4 steps ensure that the replica doesn’t accept new writes until it’s done fetching writes from the
master.

Master-master bootstrap

Now let’s bootstrap a two-instance master-master set. For easier administration, we make master#1 and
master#2 instance files fully identical.

We re-use the master’s instance file from the master-replica example above.

-- instance file for any of the two masters
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master1 URI

'replicator:password@192.168.0.102:3301'}, -- master2 URI
read_only = false

}
box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication') -- grant replication role
box.schema.space.create("test")
box.space.test:create_index("primary")
print('box.once executed on master #1')

end)

In replication parameter, we define the URIs of both masters in the replica set and say print('box.once
executed on master #1') to see when and where the box.once() logic is executed.

Now we can launch the two masters. Again, the launch order doesn’t matter. The box.once() logic will also
be executed only once, at the master which is elected as the replica set leader at bootstrap.

$ # launching master #1
$ tarantool master1.lua
2017-06-14 15:39:03.062 [47021] main/101/master1.lua C> version 1.7.4-52-g980d30092
2017-06-14 15:39:03.062 [47021] main/101/master1.lua C> log level 5
2017-06-14 15:39:03.063 [47021] main/101/master1.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 15:39:03.065 [47021] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 I> can't connect to master
2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 coio.cc:107 !> SystemError connect,␣
→˓called on fd 14, aka 192.168.0.102:57110: Connection refused
2017-06-14 15:39:03.065 [47021] main/105/applier/replicator@192.168.0.10 I> will retry every 1 second
2017-06-14 15:39:03.065 [47021] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓101:3301

(continues on next page)

5.6. Replication 85

Tarantool, Release 1.7.4

(continued from previous page)

2017-06-14 15:39:08.070 [47021] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓102:3301
2017-06-14 15:39:08.071 [47021] main/105/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 15:39:08.071 [47021] main/101/master1.lua I> bootstrapping replica from 192.168.0.102:3301
2017-06-14 15:39:08.073 [47021] main/105/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 15:39:08.074 [47021] main/105/applier/replicator@192.168.0.10 I> final data received
2017-06-14 15:39:08.074 [47021] snapshot/101/main I> saving snapshot `/Users/e.shebunyaeva/work/tarantool-
→˓test-repl/master1_dir/00000000000000000008.snap.inprogress'
2017-06-14 15:39:08.074 [47021] snapshot/101/main I> done
2017-06-14 15:39:08.076 [47021] main/101/master1.lua I> vinyl checkpoint done
2017-06-14 15:39:08.076 [47021] main/101/master1.lua I> ready to accept requests
box.once executed on master #1
2017-06-14 15:39:08.077 [47021] main C> entering the event loop

$ # launching master #2
$ tarantool master2.lua
2017-06-14 15:39:07.452 [47022] main/101/master2.lua C> version 1.7.4-52-g980d30092
2017-06-14 15:39:07.453 [47022] main/101/master2.lua C> log level 5
2017-06-14 15:39:07.453 [47022] main/101/master2.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 15:39:07.455 [47022] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 15:39:07.455 [47022] main/104/applier/replicator@192.168.0.19 I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 15:39:07.455 [47022] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓102:3301
2017-06-14 15:39:07.455 [47022] main/101/master2.lua I> initializing an empty data directory
2017-06-14 15:39:07.457 [47022] snapshot/101/main I> saving snapshot `/Users/e.shebunyaeva/work/tarantool-
→˓test-repl/master2_dir/00000000000000000000.snap.inprogress'
2017-06-14 15:39:07.457 [47022] snapshot/101/main I> done
2017-06-14 15:39:07.458 [47022] main/101/master2.lua I> vinyl checkpoint done
2017-06-14 15:39:07.459 [47022] main/101/master2.lua I> ready to accept requests
2017-06-14 15:39:07.460 [47022] main C> entering the event loop
2017-06-14 15:39:08.072 [47022] main/103/main I> initial data sent.
2017-06-14 15:39:08.073 [47022] relay/[::ffff:192.168.0.102]:/101/main I> recover from `/Users/e.shebunyaeva/
→˓work/tarantool-test-repl/master2_dir/00000000000000000000.xlog'
2017-06-14 15:39:08.073 [47022] main/103/main I> final data sent.
2017-06-14 15:39:08.077 [47022] relay/[::ffff:192.168.0.102]:/101/main I> recover from `/Users/e.shebunyaeva/
→˓work/tarantool-test-repl/master2_dir/00000000000000000000.xlog'
2017-06-14 15:39:08.461 [47022] main/104/applier/replicator@192.168.0.10 I> authenticated

5.6.3 Adding instances

Adding a replica

86 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

To add a second replica instance to the master-replica set from our bootstrapping example, we need an
analog of the instance file that we created for the first replica in that set:

-- instance file for replica #2
box.cfg{
listen = 3301,
replication = ('replicator:password@192.168.0.101:3301', -- master URI

'replicator:password@192.168.0.102:3301', -- replica #1 URI
'replicator:password@192.168.0.103:3301'), -- replica #2 URI

read_only = true
}
box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication’) -- grant replication role
box.schema.space.create("test")
box.space.test:create_index("primary")
print('box.once executed on replica #2')

end)

Here we add replica #2 URI to replication parameter, so now it contains three URIs.

After we launch the new replica instance, it gets connected to the master instance and retrieves the master’s
write ahead log and snapshot files:

$ # launching replica #2
$ tarantool replica2.lua
2017-06-14 14:54:33.927 [46945] main/101/replica2.lua C> version 1.7.4-52-g980d30092
2017-06-14 14:54:33.927 [46945] main/101/replica2.lua C> log level 5
2017-06-14 14:54:33.928 [46945] main/101/replica2.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:54:33.930 [46945] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 14:54:33.930 [46945] main/104/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 14:54:33.930 [46945] main/101/replica2.lua I> bootstrapping replica from 192.168.0.101:3301
2017-06-14 14:54:33.933 [46945] main/104/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 14:54:33.933 [46945] main/104/applier/replicator@192.168.0.10 I> final data received
2017-06-14 14:54:33.934 [46945] snapshot/101/main I> saving snapshot `/var/lib/tarantool/replica2/
→˓00000000000000000010.snap.inprogress'
2017-06-14 14:54:33.934 [46945] snapshot/101/main I> done
2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> vinyl checkpoint done
2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> ready to accept requests
2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> set 'read_only' configuration option to true
2017-06-14 14:54:33.936 [46945] main C> entering the event loop

Since we’re adding a read-only instance, there is no need to dynamically update replication parameter on
the other running instances. This update would be required if we added a master instance.

However, we recommend to specify replica #3 URI in all instance files of the replica set. This will keep
all the files consistent with each other and with the current replication topology, and so will help to avoid
configuration errors in case of further reconfigurations and replica set restart.

5.6. Replication 87

Tarantool, Release 1.7.4

Adding a master

To add a third master instance to the master-master set from our bootstrapping example, we need an analog
of the instance files that we created to bootstrap the other master instances in that set:

-- instance file for master #3
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301', -- master#1 URI

'replicator:password@192.168.0.102:3301', -- master#2 URI
'replicator:password@192.168.0.103:3301'}, -- master#3 URI

read_only = true, -- temporarily read-only
}
box.once("schema", function()
box.schema.user.create('replicator', {password = 'password'})
box.schema.user.grant('replicator', 'replication’) -- grant "replication" role
box.schema.space.create("test")
box.space.test:create_index("primary")

end)

Here we make the following changes:

• Add master#3 URI to replication parameter.

• Temporarily specify read_only=true to disable data-change operations on the instance. After launch,
master #3 will act as a replica until it retrieves all data from the other masters in the replica set.

After we launch the third master instance, it gets connected to the other master instances and retrieves their
write ahead logs and snapshot files:

$ # launching master #3
$ tarantool master3.lua
2017-06-14 17:10:00.556 [47121] main/101/master3.lua C> version 1.7.4-52-g980d30092
2017-06-14 17:10:00.557 [47121] main/101/master3.lua C> log level 5
2017-06-14 17:10:00.557 [47121] main/101/master3.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 17:10:00.559 [47121] iproto/101/main I> binary: bound to [::]:3301
2017-06-14 17:10:00.559 [47121] main/104/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓101:3301
2017-06-14 17:10:00.559 [47121] main/105/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓102:3301
2017-06-14 17:10:00.559 [47121] main/106/applier/replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
→˓103:3301
2017-06-14 17:10:00.559 [47121] main/105/applier/replicator@192.168.0.10 I> authenticated
2017-06-14 17:10:00.559 [47121] main/101/master3.lua I> bootstrapping replica from 192.168.0.102:3301
2017-06-14 17:10:00.562 [47121] main/105/applier/replicator@192.168.0.10 I> initial data received
2017-06-14 17:10:00.562 [47121] main/105/applier/replicator@192.168.0.10 I> final data received

(continues on next page)

88 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

2017-06-14 17:10:00.562 [47121] snapshot/101/main I> saving snapshot `/Users/e.shebunyaeva/work/tarantool-
→˓test-repl/master3_dir/00000000000000000009.snap.inprogress'
2017-06-14 17:10:00.562 [47121] snapshot/101/main I> done
2017-06-14 17:10:00.564 [47121] main/101/master3.lua I> vinyl checkpoint done
2017-06-14 17:10:00.564 [47121] main/101/master3.lua I> ready to accept requests
2017-06-14 17:10:00.565 [47121] main/101/master3.lua I> set 'read_only' configuration option to true
2017-06-14 17:10:00.565 [47121] main C> entering the event loop
2017-06-14 17:10:00.565 [47121] main/104/applier/replicator@192.168.0.10 I> authenticated

Next, we add master#3 URI to replication parameter on the existing two masters. Replication-related
parameters are dynamic, so we only need to make a box.cfg{} request on each of the running instances:

adding master #3 URI to replication sources
tarantool> box.cfg{replication =

> {'replicator:password@192.168.0.101:3301',
> 'replicator:password@192.168.0.102:3301',
> 'replicator:password@192.168.0.103:3301'}}

...

When master #3 catches up with the other masters’ state, we can disable read-only mode for this instance:

making master #3 a real master
tarantool> box.cfg{read_only=false}

...

We also recommend to specify master #3 URI in all instance files in order to keep all the files consistent
with each other and with the current replication topology.

5.6.4 Removing instances

To politely remove an instance from a replica set, follow these steps:

1. On the instance, run box.cfg{} with a blank replication source:

tarantool> box.cfg{replication=''}

...

The other instances in the replica set will carry on. If later the removed instance rejoins, it will receive
all the updates that the other instances made while it was away.

2. If the instance is decommissioned forever, delete the instance’s record from the following locations:

a. replication parameter at all running instances in the replica set:

tarantool> box.cfg{replication=...}

b. box.space._cluster on any master instance in the replica set. For example, a record with instance
id = 3:

tarantool> box.space._cluster:select{}

- - [1, '913f99c8-aee3-47f2-b414-53ed0ec5bf27']
- [2, 'eac1aee7-cfeb-46cc-8503-3f8eb4c7de1e']

(continues on next page)

5.6. Replication 89

Tarantool, Release 1.7.4

(continued from previous page)

- [3, '97f2d65f-2e03-4dc8-8df3-2469bd9ce61e']
...
tarantool> box.space._cluster:delete(3)

- [3, '97f2d65f-2e03-4dc8-8df3-2469bd9ce61e']
...

5.6.5 Monitoring a replica set

To learn what instances belong in the replica set, and obtain statistics for all these instances, use box.info.
replication request:

box.info.replication

replication:
1:
id: 1
uuid: b8a7db60-745f-41b3-bf68-5fcce7a1e019
lsn: 88

2:
id: 2
uuid: cd3c7da2-a638-4c5d-ae63-e7767c3a6896
lsn: 31
upstream:
status: follow
idle: 43.187747001648
lag: 0

downstream:
vclock: {1: 31}
3:
id: 3
uuid: e38ef895-5804-43b9-81ac-9f2cd872b9c4
lsn: 54
upstream:
status: follow
idle: 43.187621831894
lag: 2

downstream:
vclock: {1: 54}

...

This report is for a master-master replica set of three instances, each having its own instance id, UUID and
log sequence number.

90 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

The request was issued at master #1, and the reply includes statistics for the other two masters, given in
regard to master #1.

The primary indicators of replication health are idle and lag parameters (see reference on box.info.replication
for details).

5.6.6 Recovering from a degraded state

“Degraded state” is a situation when the master becomes unavailable – due to hardware or network failure,
or due to a programming bug.

In a master-replica set, if a master disappears, error messages appear on the replicas stating that the
connection is lost:

$ # messages from a replica's log
2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. I> can't read row
2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. coio.cc:349 !> SystemError
unexpected EOF when reading from socket, called on fd 17, aka 192.168.0.101:57815,
peer of 192.168.0.101:3301: Broken pipe
2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. I> will retry every 1 second
2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]:/101/main I> the replica has closed its socket, exiting
2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]:/101/main C> exiting the relay loop

. . . and the master’s status is reported as “disconnected”:

report from replica #1
tarantool> box.info.replication

- 1:

id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
lsn: 542
upstream:
status: disconnected
idle: 182.36929893494
message: connect, called on fd 13, aka 192.168.0.101:58244
lag: 0.00026607513427734

2:
id: 2
uuid: fb252ac7-5c34-4459-84d0-54d248b8c87e
lsn: 0

3:
id: 3
uuid: fd7681d8-255f-4237-b8bb-c4fb9d99024d
lsn: 0

(continues on next page)

5.6. Replication 91

Tarantool, Release 1.7.4

(continued from previous page)

downstream:
vclock: {1: 542}

...

report from replica #2
box.info.replication

- 1:

id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
lsn: 542
upstream:
status: disconnected
idle: 186.76988101006
message: connect, called on fd 13, aka 192.168.0.101:58253
lag: 0.00027203559875488

2:
id: 2
uuid: fb252ac7-5c34-4459-84d0-54d248b8c87e
lsn: 0
upstream:
status: follow
idle: 186.76960110664
lag: 0.00020599365234375

3:
id: 3
uuid: fd7681d8-255f-4237-b8bb-c4fb9d99024d
lsn: 0

...

To declare that one of the replicas must now take over as a new master:

1. Make sure that the old master is gone for good:

• change network routing rules to avoid any more packets being delivered to the master, or

• shut down the master instance, if you have access to the machine, or

• power off the container or the machine.

2. Say box.cfg{read_only=false, listen=URI} on the replica, and box.cfg{replication=URI} on the other
replicas in the set.

Note: If there are updates on the old master that were not propagated before the old master went down,
re-apply them manually to the new master using tarantoolctl cat and tarantoolctl play commands.

There is no automatic way for a replica to detect that the master is gone forever, since sources of failure and
replication environments vary significantly. So the detection of degraded state requires an external observer.

5.6.7 Reseeding a replica

If any of a replica’s .xlog/.snap/.run files are corrupted or deleted, you can “re-seed” the replica:

1. Stop the replica and destroy all local database files (the ones with extensions
.xlog/.snap/.run/.inprogress).

92 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

2. Delete the replica’s record from the following locations:

a. replication parameter at all running instances in the replica set.

b. box.space._cluster on the master instance.

See section Removing instances for details.

3. Restart the replica with the same instance file to contact the master again. The replica will then catch
up with the master by retrieving all the master’s tuples.

Note: Remember that this procedure works only if the master’s WAL files are present.

5.6.8 Preventing duplicate actions

Tarantool guarantees that every update is applied only once at every replica. However, due to asynchronous
nature of the replication, the order of updates is not guaranteed. Further we analyse this problem in more
details, provide examples of replication going out of sync, and suggest solutions.

Replication stops

In a replica set of two masters, suppose master #1 tries to do something that master #2 has already done.
For example, try to simultaneously insert a tuple with the same unique key:

tarantool> box.space.tester:insert{1, 'data'}

This would cause an error saying Duplicate key exists in unique index 'primary' in space 'tester' and the
replication would be stopped.

$ # error messages from master #1
2017-06-26 21:17:03.233 [30444] main/104/applier/rep_user@100.96.166.1 I> can't read row
2017-06-26 21:17:03.233 [30444] main/104/applier/rep_user@100.96.166.1 memtx_hash.cc:226 E> ER_TUPLE_
→˓FOUND:
Duplicate key exists in unique index 'primary' in space 'tester'
2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178]/101/main I> the replica has closed its socket, exiting
2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178]/101/main C> exiting the relay loop

$ # error messages from master #2
2017-06-26 21:17:03.233 [30445] main/104/applier/rep_user@100.96.166.1 I> can't read row
2017-06-26 21:17:03.233 [30445] main/104/applier/rep_user@100.96.166.1 memtx_hash.cc:226 E> ER_TUPLE_
→˓FOUND:
Duplicate key exists in unique index 'primary' in space 'tester'
2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178]/101/main I> the replica has closed its socket, exiting
2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178]/101/main C> exiting the relay loop

If we check replication statuses with box.info, we’ll see that replication at master #1 is stopped (1.upstream.
status = stopped). Additionally, no data is replicated from that master (section 1.downstream is missing in
the report), because the downstream has encountered the same error:

replication statuses (report from master #3)
tarantool> box.info

- version: 1.7.4-52-g980d30092
id: 3

(continues on next page)

5.6. Replication 93

Tarantool, Release 1.7.4

(continued from previous page)

ro: false
vclock: {1: 9, 2: 1000000, 3: 3}
uptime: 557
lsn: 3
vinyl: []
cluster:
uuid: 34d13b1a-f851-45bb-8f57-57489d3b3c8b

pid: 30445
status: running
signature: 1000012
replication:
1:
id: 1
uuid: 7ab6dee7-dc0f-4477-af2b-0e63452573cf
lsn: 9
upstream:
status: stopped
idle: 445.8626639843
message: Duplicate key exists in unique index 'primary' in space 'tester'
lag: 0.00050592422485352

2:
id: 2
uuid: 9afbe2d9-db84-4d05-9a7b-e0cbbf861e28
lsn: 1000000
upstream:
status: follow
idle: 201.99915885925
lag: 0.0015020370483398

downstream:
vclock: {1: 8, 2: 1000000, 3: 3}

3:
id: 3
uuid: e826a667-eed7-48d5-a290-64299b159571
lsn: 3

uuid: e826a667-eed7-48d5-a290-64299b159571
...

When replication is later manually resumed:

resuming stopped replication (at all masters)
tarantool> original_value = box.cfg.replication
tarantool> box.cfg{replication={}}
tarantool> box.cfg{replication=original_value}

. . . the faulty row in the write ahead log files is skipped.

Replication runs out of sync

In a master-master cluster of two instances, suppose we make the following operation:

tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})

When we get this operation applied on both instances in the replica set:

94 Chapter 5. User’s Guide

Tarantool, Release 1.7.4

-- at master #1
tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})
-- at master #2
tarantool> box.space.tester:upsert({1}, {{'=', 2, box.info.uuid}})

. . . we can have the following results, depending on the order of execution:

• each master’s row contains the uuid from master #1,

• each master’s row contains the uuid from master #2,

• master #1 has the uuid of master #2, and vice versa.

Commutative changes

The cases described in previous paragraphs represent examples of non-commutative operations, i.e. op-
erations, which result depends on the execution order. On the contrary, for commutative operations, the
execution order doesn’t matter.

Consider for example the following command:

tarantool> box.space.tester:upsert{{1, 0}, {{'+', 2, 1)}

This operation is commutative: we get the same result no matter in which order the update is applied on
the other masters.

5.7 Connectors

This chapter documents APIs for various programming languages.

5.7.1 Protocol

Tarantool’s binary protocol was designed with a focus on asynchronous I/O and easy integration with proxies.
Each client request starts with a variable-length binary header, containing request id, request type, instance
id, log sequence number, and so on.

The mandatory length, present in request header simplifies client or proxy I/O. A response to a request is
sent to the client as soon as it is ready. It always carries in its header the same type and id as in the request.
The id makes it possible to match a request to a response, even if the latter arrived out of order.

Unless implementing a client driver, you needn’t concern yourself with the complications of the binary
protocol. Language-specific drivers provide a friendly way to store domain language data structures in
Tarantool. A complete description of the binary protocol is maintained in annotated Backus-Naur form in
the source tree: please see the page about Tarantool’s binary protocol.

5.7.2 Packet example

The Tarantool API exists so that a client program can send a request packet to a server instance, and receive
a response. Here is an example of a what the client would send for box.space[513]:insert{'A', 'BB'}. The
BNF description of the components is on the page about Tarantool’s binary protocol.

5.7. Connectors 95

Tarantool, Release 1.7.4

Component Byte #0 Byte #1 Byte #2 Byte #3
code for insert 02
rest of header
2-digit number: space id cd 02 01
code for tuple 21
1-digit number: field count = 2 92
1-character string: field[1] a1 41
2-character string: field[2] a2 42 42

Now, you could send that packet to the Tarantool instance, and interpret the response (the page about
Tarantool’s binary protocol has a description of the packet format for responses as well as requests). But
it would be easier, and less error-prone, if you could invoke a routine that formats the packet according to
typed parameters. Something like response = tarantool_routine("insert", 513, "A", "B");. And that is why
APIs exist for drivers for Perl, Python, PHP, and so on.

5.7.3 Setting up the server for connector examples

This chapter has examples that show how to connect to a Tarantool instance via the Perl, PHP, Python,
node.js, and C connectors. The examples contain hard code that will work if and only if the following
conditions are met:

• the Tarantool instance (tarantool) is running on localhost (127.0.0.1) and is listening on port 3301
(box.cfg.listen = '3301'),

• space examples has id = 999 (box.space.examples.id = 999) and has a primary-key index for a numeric
field (box.space[999].index[0].parts[1].type = "unsigned"),

• user ‘guest’ has privileges for reading and writing.

It is easy to meet all the conditions by starting the instance and executing this script:

box.cfg{listen=3301}
box.schema.space.create('examples',{id=999})
box.space.examples:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
box.schema.user.grant('guest','read,write','space','examples')
box.schema.user.grant('guest','read','space','_space')

5.7.4 Java

See http://github.com/tarantool/tarantool-java/.

5.7.5 Go

Please see https://github.com/mialinx/go-tarantool.

5.7.6 R

See https://github.com/thekvs/tarantoolr.

96 Chapter 5. User’s Guide

http://github.com/tarantool/tarantool-java/
https://github.com/mialinx/go-tarantool
https://github.com/thekvs/tarantoolr

Tarantool, Release 1.7.4

5.7.7 Erlang

See Erlang tarantool driver.

5.7.8 Perl

The most commonly used Perl driver is DR::Tarantool. It is not supplied as part of the Tarantool repository;
it must be installed separately. The most common way to install it is with CPAN, the Comprehensive Perl
Archive Network. DR::Tarantool requires other modules which should be installed first. For example, on
Ubuntu, the installation could look like this:

$ sudo cpan install AnyEvent
$ sudo cpan install Devel::GlobalDestruction
$ sudo cpan install Coro
$ sudo cpan install Test::Pod
$ sudo cpan install Test::Spelling
$ sudo cpan install PAR::Dist
$ sudo cpan install List::MoreUtils
$ sudo cpan install DR::Tarantool

Here is a complete Perl program that inserts [99999,'BB'] into space[999] via the Perl API. Before trying
to run, check that the server instance is listening at localhost:3301 and that the space examples exists, as
described earlier. To run, paste the code into a file named example.pl and say perl example.pl. The program
will connect using an application-specific definition of the space. The program will open a socket connection
with the Tarantool instance at localhost:3301, then send an INSERT request, then — if all is well — end
without displaying any messages. If Tarantool is not running on localhost with listen port = 3301, the
program will print “Connection refused”.

#!/usr/bin/perl
use DR::Tarantool ':constant', 'tarantool';
use DR::Tarantool ':all';
use DR::Tarantool::MsgPack::SyncClient;

my $tnt = DR::Tarantool::MsgPack::SyncClient->connect(
host => '127.0.0.1', # look for tarantool on localhost
port => 3301, # on port 3301
user => 'guest', # username. one could also say 'password=>...'

spaces => {
999 => { # definition of space[999] ...
name => 'examples', # space[999] name = 'examples'
default_type => 'STR', # space[999] field type is 'STR' if undefined
fields => [{ # definition of space[999].fields ...

name => 'field1', type => 'NUM' }], # space[999].field[1] name='field1',type='NUM'
indexes => { # definition of space[999] indexes ...
0 => {
name => 'primary', fields => ['field1'] } } } });

$tnt->insert('examples' => [99999, 'BB']);

The example program uses field type names ‘STR’ and ‘NUM’ instead of ‘string’ and ‘unsigned’, due to a
temporary Perl limitation.

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see DR::Tarantool CPAN repository.

5.7. Connectors 97

https://github.com/stofel/taran
http://search.cpan.org/~unera/DR-Tarantool/
https://en.wikipedia.org/wiki/Cpan
https://en.wikipedia.org/wiki/Cpan
http://search.cpan.org/~unera/DR-Tarantool/

Tarantool, Release 1.7.4

5.7.9 PHP

The most commonly used PHP driver is tarantool-php. It is not supplied as part of the Tarantool repository;
it must be installed separately, for example with git. See installation instructions. in the driver’s README
file.

Here is a complete PHP program that inserts [99999,'BB'] into a space named examples via the PHP
API. Before trying to run, check that the server instance is listening at localhost:3301 and that the space
examples exists, as described earlier. To run, paste the code into a file named example.php and say php -d
extension=~/tarantool-php/modules/tarantool.so example.php. The program will open a socket connection
with the Tarantool instance at localhost:3301, then send an INSERT request, then — if all is well — print
“Insert succeeded”. If the tuple already exists, the program will print “Duplicate key exists in unique index
‘primary’ in space ‘examples’ ”.

<?php
$tarantool = new Tarantool('localhost', 3301);

try {
$tarantool->insert('examples', array(99999, 'BB'));
echo "Insert succeeded\n";

} catch (Exception $e) {
echo "Exception: ", $e->getMessage(), "\n";

}

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see tarantool/tarantool-php project at GitHub.

Besides, you can use an alternative PHP driver from another GitHub project: it includes a client (see
tarantool-php/client) and a mapper for that client (see tarantool-php/mapper).

5.7.10 Python

Here is a complete Python program that inserts [99999,'Value','Value'] into space examples via the high-
level Python API.

#!/usr/bin/python
from tarantool import Connection

c = Connection("127.0.0.1", 3301)
result = c.insert("examples",(99999,'Value', 'Value'))
print result

To prepare, paste the code into a file named example.py and install the tarantool-python connector with
either pip install tarantool>0.4 to install in /usr (requires root privilege) or pip install tarantool>0.4 --user
to install in ~ i.e. user’s default directory. Before trying to run, check that the server instance is listening
at localhost:3301 and that the space examples exists, as described earlier. To run the program, say python
example.py. The program will connect to the Tarantool server, will send the request, and will not throw any
exception if all went well. If the tuple already exists, the program will throw tarantool.error.DatabaseError:
(3, "Duplicate key exists in unique index 'primary' in space 'examples'").

The example program only shows one request and does not show all that’s necessary for good practice.
For that, please see tarantool-python project at GitHub. For an example of using Python API with queue
managers for Tarantool, see queue-python project at GitHub.

98 Chapter 5. User’s Guide

https://github.com/tarantool/tarantool-php
https://github.com/tarantool/tarantool-php/blob/master/#installing-and-building
https://github.com/tarantool/tarantool-php
https://github.com/tarantool-php/client
https://github.com/tarantool-php/mapper
http://github.com/tarantool/tarantool-python
https://github.com/tarantool/queue
https://github.com/tarantool/queue
https://github.com/tarantool/queue-python

Tarantool, Release 1.7.4

5.7.11 Node.js

The most commonly used node.js driver is the Node Tarantool driver. It is not supplied as part of the
Tarantool repository; it must be installed separately. The most common way to install it is with npm. For
example, on Ubuntu, the installation could look like this after npm has been installed:

npm install tarantool-driver --global

Here is a complete node.js program that inserts [99999,'BB'] into space[999] via the node.js API. Before
trying to run, check that the server instance is listening at localhost:3301 and that the space examples exists,
as described earlier. To run, paste the code into a file named example.rs and say node example.rs. The
program will connect using an application-specific definition of the space. The program will open a socket
connection with the Tarantool instance at localhost:3301, then send an INSERT request, then — if all is well
— end after saying “Insert succeeded”. If Tarantool is not running on localhost with listen port = 3301, the
program will print “Connect failed”. If user guest does not have authorization to connect, the program will
print “Auth failed”. If the insert request fails for any reason, for example because the tuple already exists,
the program will print “Insert failed”.

var TarantoolConnection = require('tarantool-driver');
var conn = new TarantoolConnection({port: 3301});
var insertTuple = [99999, "BB"];
conn.connect().then(function() {

conn.auth("guest", "").then(function() {
conn.insert(999, insertTuple).then(function() {

console.log("Insert succeeded");
process.exit(0);

}, function(e) { console.log("Insert failed"); process.exit(1); });
}, function(e) { console.log("Auth failed"); process.exit(1); });
}, function(e) { console.log("Connect failed"); process.exit(1); });

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see The node.js driver repository.

5.7.12 C#

The most commonly used C# driver is progaudi.tarantool, previously named tarantool-csharp. It is not
supplied as part of the Tarantool repository; it must be installed separately. The makers recommend cross-
platform installation using Nuget.

To be consistent with the other instructions in this chapter, here is a way to install the driver directly on
Ubuntu 16.04.

1. Install .net core from Microsoft. Follow .net core installation instructions.

Note:

• Mono will not work, nor will .Net from xbuild. Only .net core supported on Linux and Mac.

• Read the Microsoft End User License Agreement first, because it is not an ordinary open-source
agreement and there will be a message during installation saying “This software may collect information
about you and your use of the software, and send that to Microsoft.” Still you can set environment
variables to opt out from telemetry.

2. Create a new console project.

5.7. Connectors 99

https://github.com/KlonD90/node-tarantool-driver
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://github.com/KlonD90/node-tarantool-driver
https://github.com/progaudi/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.microsoft.com/net/core#ubuntu
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior

Tarantool, Release 1.7.4

$ cd ~
$ mkdir progaudi.tarantool.test
$ cd progaudi.tarantool.test
$ dotnet new console

3. Add progaudi.tarantool reference.

$ dotnet add package progaudi.tarantool

4. Change code in Program.cs.

$ cat <<EOT > Program.cs
using System;
using System.Threading.Tasks;
using ProGaudi.Tarantool.Client;

public class HelloWorld
{
static public void Main ()
{
Test().GetAwaiter().GetResult();

}
static async Task Test()
{
var box = await Box.Connect("127.0.0.1:3301");
var schema = box.GetSchema();
var space = await schema.GetSpace("examples");
await space.Insert((99999, "BB"));

}
}
EOT

5. Build and run your application.

Before trying to run, check that the server is listening at localhost:3301 and that the space examples
exists, as described earlier.

$ dotnet restore
$ dotnet run

The program will:

• connect using an application-specific definition of the space,

• open a socket connection with the Tarantool server at localhost:3301,

• send an INSERT request, and — if all is well — end without saying anything.

If Tarantool is not running on localhost with listen port = 3301, or if user ‘guest’ does not have
authorization to connect, or if the INSERT request fails for any reason, the program will print an error
message, among other things (stacktrace, etc).

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see the progaudi.tarantool driver repository.

5.7.13 C

Here follow two examples of using Tarantool’s high-level C API.

100 Chapter 5. User’s Guide

https://github.com/progaudi/progaudi.tarantool

Tarantool, Release 1.7.4

Example 1

Here is a complete C program that inserts [99999,'B'] into space examples via the high-level C API.

#include <stdio.h>
#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt_net.h>
#include <tarantool/tnt_opt.h>

void main() {
struct tnt_stream *tnt = tnt_net(NULL); /* See note = SETUP */
tnt_set(tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) { /* See note = CONNECT */

printf("Connection refused\n");
exit(-1);

}
struct tnt_stream *tuple = tnt_object(NULL); /* See note = MAKE REQUEST */
tnt_object_format(tuple, "[%d%s]", 99999, "B");
tnt_insert(tnt, 999, tuple); /* See note = SEND REQUEST */
tnt_flush(tnt);
struct tnt_reply reply; tnt_reply_init(&reply); /* See note = GET REPLY */
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {

printf("Insert failed %lu.\n", reply.code);
}
tnt_close(tnt); /* See below = TEARDOWN */
tnt_stream_free(tuple);
tnt_stream_free(tnt);

}

Paste the code into a file named example.c and install tarantool-c. One way to install tarantool-c (using
Ubuntu) is:

$ git clone git://github.com/tarantool/tarantool-c.git ~/tarantool-c
$ cd ~/tarantool-c
$ git submodule init
$ git submodule update
$ cmake .
$ make
$ make install

To compile and link the program, say:

$ # sometimes this is necessary:
$ export LD_LIBRARY_PATH=/usr/local/lib
$ gcc -o example example.c -ltarantool

Before trying to run, check that a server instance is listening at localhost:3301 and that the space examples
exists, as described earlier. To run the program, say ./example. The program will connect to the Tarantool
instance, and will send the request. If Tarantool is not running on localhost with listen address = 3301,
the program will print “Connection refused”. If the insert fails, the program will print “Insert failed” and an
error number (see all error codes in the source file /src/box/errcode.h).

Here are notes corresponding to comments in the example program.

SETUP: The setup begins by creating a stream.

5.7. Connectors 101

https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Release 1.7.4

struct tnt_stream *tnt = tnt_net(NULL);
tnt_set(tnt, TNT_OPT_URI, "localhost:3301");

In this program, the stream will be named tnt. Before connecting on the tnt stream, some options may have
to be set. The most important option is TNT_OPT_URI. In this program, the URI is localhost:3301, since
that is where the Tarantool instance is supposed to be listening.

Function description:

struct tnt_stream *tnt_net(struct tnt_stream *s)
int tnt_set(struct tnt_stream *s, int option, variant option-value)

CONNECT: Now that the stream named tnt exists and is associated with a URI, this example program can
connect to a server.

if (tnt_connect(tnt) < 0)
{ printf("Connection refused\n"); exit(-1); }

Function description:

int tnt_connect(struct tnt_stream *s)

The connection might fail for a variety of reasons, such as: the server is not running, or the URI contains
an invalid password. If the connection fails, the return value will be -1.

MAKE REQUEST: Most requests require passing a structured value, such as the contents of a tuple.

struct tnt_stream *tuple = tnt_object(NULL);
tnt_object_format(tuple, "[%d%s]", 99999, "B");

In this program, the request will be an INSERT, and the tuple contents will be an integer and a string. This
is a simple serial set of values, that is, there are no sub-structures or arrays. Therefore it is easy in this
case to format what will be passed using the same sort of arguments that one would use with a C printf()
function: %d for the integer, %s for the string, then the integer value, then a pointer to the string value.

Function description:

ssize_t tnt_object_format(struct tnt_stream *s, const char *fmt, ...)

SEND REQUEST: The database-manipulation requests are analogous to the requests in the box library.

tnt_insert(tnt, 999, tuple);
tnt_flush(tnt);

In this program, the choice is to do an INSERT request, so the program passes the tnt_stream that was
used for connection (tnt) and the tnt_stream that was set up with tnt_object_format() (tuple).

Function description:

ssize_t tnt_insert(struct tnt_stream *s, uint32_t space, struct tnt_stream *tuple)
ssize_t tnt_replace(struct tnt_stream *s, uint32_t space, struct tnt_stream *tuple)
ssize_t tnt_select(struct tnt_stream *s, uint32_t space, uint32_t index,

uint32_t limit, uint32_t offset, uint8_t iterator,
struct tnt_stream *key)

ssize_t tnt_update(struct tnt_stream *s, uint32_t space, uint32_t index,
struct tnt_stream *key, struct tnt_stream *ops)

GET REPLY: For most requests, the client will receive a reply containing some indication whether the result
was successful, and a set of tuples.

102 Chapter 5. User’s Guide

http://tarantool.github.io/tarantool-c/msgpackobject.html#c.tnt_object_format

Tarantool, Release 1.7.4

struct tnt_reply reply; tnt_reply_init(&reply);
tnt->read_reply(tnt, &reply);
if (reply.code != 0)
{ printf("Insert failed %lu.\n", reply.code); }

This program checks for success but does not decode the rest of the reply.

Function description:

struct tnt_reply *tnt_reply_init(struct tnt_reply *r)
tnt->read_reply(struct tnt_stream *s, struct tnt_reply *r)
void tnt_reply_free(struct tnt_reply *r)

TEARDOWN: When a session ends, the connection that was made with tnt_connect() should be closed,
and the objects that were made in the setup should be destroyed.

tnt_close(tnt);
tnt_stream_free(tuple);
tnt_stream_free(tnt);

Function description:

void tnt_close(struct tnt_stream *s)
void tnt_stream_free(struct tnt_stream *s)

Example 2

Here is a complete C program that selects, using index key [99999], from space examples via the high-level
C API. To display the results, the program uses functions in the MsgPuck library which allow decoding of
MessagePack arrays.

#include <stdio.h>
#include <stdlib.h>
#include <tarantool/tarantool.h>
#include <tarantool/tnt_net.h>
#include <tarantool/tnt_opt.h>

#define MP_SOURCE 1
#include <msgpuck.h>

void main() {
struct tnt_stream *tnt = tnt_net(NULL);
tnt_set(tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) {

printf("Connection refused\n");
exit(1);

}
struct tnt_stream *tuple = tnt_object(NULL);
tnt_object_format(tuple, "[%d]", 99999); /* tuple = search key */
tnt_select(tnt, 999, 0, (2^32) - 1, 0, 0, tuple);
tnt_flush(tnt);
struct tnt_reply reply; tnt_reply_init(&reply);
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {

printf("Select failed.\n");
exit(1);

}

(continues on next page)

5.7. Connectors 103

http://tarantool.github.io/tarantool-c/connection.html#c.tnt_connect
http://rtsisyk.github.io/msgpuck/
https://en.wikipedia.org/wiki/MessagePack

Tarantool, Release 1.7.4

(continued from previous page)

char field_type;
field_type = mp_typeof(*reply.data);
if (field_type != MP_ARRAY) {

printf("no tuple array\n");
exit(1);

}
long unsigned int row_count;
uint32_t tuple_count = mp_decode_array(&reply.data);
printf("tuple count=%u\n", tuple_count);
unsigned int i, j;
for (i = 0; i < tuple_count; ++i) {

field_type = mp_typeof(*reply.data);
if (field_type != MP_ARRAY) {

printf("no field array\n");
exit(1);

}
uint32_t field_count = mp_decode_array(&reply.data);
printf(" field count=%u\n", field_count);
for (j = 0; j < field_count; ++j) {

field_type = mp_typeof(*reply.data);
if (field_type == MP_UINT) {

uint64_t num_value = mp_decode_uint(&reply.data);
printf(" value=%lu.\n", num_value);

} else if (field_type == MP_STR) {
const char *str_value;
uint32_t str_value_length;
str_value = mp_decode_str(&reply.data, &str_value_length);
printf(" value=%.*s.\n", str_value_length, str_value);

} else {
printf("wrong field type\n");
exit(1);

}
}

}
tnt_close(tnt);
tnt_stream_free(tuple);
tnt_stream_free(tnt);

}

Similarly to the first example, paste the code into a file named example2.c.

To compile and link the program, say:

$ gcc -o example2 example2.c -ltarantool

To run the program, say ./example2.

The two example programs only show a few requests and do not show all that’s necessary for good practice.
See more in the tarantool-c documentation at GitHub.

5.7.14 Interpreting function return values

For all connectors, calling a function via Tarantool causes a return in the MsgPack format. If the function is
called using the connector’s API, some conversions may occur. All scalar values are returned as tuples (with
a MsgPack type-identifier followed by a value); all non-scalar values are returned as a group of tuples (with

104 Chapter 5. User’s Guide

http://github.com/tarantool/tarantool-c

Tarantool, Release 1.7.4

a MsgPack array-identifier followed by the scalar values). If the function is called via the binary protocol
command layer – “eval” – rather than via the connector’s API, no conversions occur.

In the following example, a Lua function will be created. Since it will be accessed externally by a ‘guest’ user,
a grant of an execute privilege will be necessary. The function returns an empty array, a scalar string, two
booleans, and a short integer. The values are the ones described in the table Common Types and MsgPack
Encodings.

tarantool> box.cfg{listen=3301}
2016-03-03 18:45:52.802 [27381] main/101/interactive I> ready to accept requests

...
tarantool> function f() return {},'a',false,true,127; end

...
tarantool> box.schema.func.create('f')

...
tarantool> box.schema.user.grant('guest','execute','function','f')

...

Here is a C program which calls the function. Although C is being used for the example, the result would
be precisely the same if the calling program was written in Perl, PHP, Python, Go, or Java.

#include <stdio.h>
#include <stdlib.h>
#include <tarantool/tarantool.h>
#include <tarantool/tnt_net.h>
#include <tarantool/tnt_opt.h>
void main() {
struct tnt_stream *tnt = tnt_net(NULL); /* SETUP */
tnt_set(tnt, TNT_OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) { /* CONNECT */

printf("Connection refused\n");
exit(-1);

}
struct tnt_stream *arg; arg = tnt_object(NULL); /* MAKE REQUEST */
tnt_object_add_array(arg, 0);
struct tnt_request *req1 = tnt_request_call(NULL); /* CALL function f() */
tnt_request_set_funcz(req1, "f");
uint64_t sync1 = tnt_request_compile(tnt, req1);
tnt_flush(tnt); /* SEND REQUEST */
struct tnt_reply reply; tnt_reply_init(&reply); /* GET REPLY */
tnt->read_reply(tnt, &reply);
if (reply.code != 0) {
printf("Call failed %lu.\n", reply.code);
exit(-1);

}
const unsigned char *p= (unsigned char*)reply.data; /* PRINT REPLY */
while (p < (unsigned char *) reply.data_end)
{
printf("%x ", *p);
++p;

}
printf("\n");
tnt_close(tnt); /* TEARDOWN */
tnt_stream_free(arg);

(continues on next page)

5.7. Connectors 105

Tarantool, Release 1.7.4

(continued from previous page)

tnt_stream_free(tnt);
}

When this program is executed, it will print:

dd 0 0 0 5 90 91 a1 61 91 c2 91 c3 91 7f

The first five bytes – dd 0 0 0 5 – are the MsgPack encoding for “32-bit array header with value 5” (see
MsgPack specification). The rest are as described in the table Common Types and MsgPack Encodings.

5.8 FAQ

Q Why Tarantool?

A Tarantool is the latest generation of a family of in-memory data servers developed for web
applications. It is the result of practical experience and trials within Mail.Ru since devel-
opment began in 2008.

Q Why Lua?

A Lua is a lightweight, fast, extensible multi-paradigm language. Lua also happens to be very
easy to embed. Lua coroutines relate very closely to Tarantool fibers, and Lua architec-
ture works well with Tarantool internals. Lua acts well as a stored program language for
Tarantool, although connecting with other languages is also easy.

Q What’s the key advantage of Tarantool?

A

Tarantool provides a rich database feature set (HASH, TREE, RTREE, BITSET indexes,
secondary indexes, composite indexes, transactions, triggers, asynchronous replication) in
a flexible environment of a Lua interpreter.

These two properties make it possible to be a fast, atomic and reliable in-memory data
server which handles non-trivial application-specific logic. The advantage over traditional
SQL servers is in performance: low-overhead, lock-free architecture means Tarantool can
serve an order of magnitude more requests per second, on comparable hardware. The
advantage over NoSQL alternatives is in flexibility: Lua allows flexible processing of data
stored in a compact, denormalized format.

Q What are your development plans?

A We continuously improve server performance. On the feature front, automatic sharding and
synchronous replication, and a subset of SQL are the major goals for 2016-2018. We have
an open roadmap to which we encourage anyone to add feature requests.

Q Who is developing Tarantool?

A There is an engineering team employed by Mail.Ru – check out our commit logs on
github.com/tarantool. The development is fully open. Most of the connectors’ authors,
and the maintainers for different distributions, come from the wider community.

Q How serious is Mail.Ru about Tarantool?

A Tarantool is an open source project, distributed under a BSD license, so it does not depend
on any one sponsor. However, it is an integral part of the Mail.Ru backbone, so it gets a
lot of support from Mail.Ru.

Q Are there problems associated with being an in-memory server?

106 Chapter 5. User’s Guide

http://github.com/msgpack/msgpack/blob/master/spec.md
http://github.com/tarantool/

Tarantool, Release 1.7.4

A The principal storage engine is designed for RAM plus persistent storage. It is immune to data
loss because there is a write-ahead log. Its memory-allocation and compression techniques
ensure there is no waste. And if Tarantool runs out of memory, then it will stop accepting
updates until more memory is available, but will continue to handle read and delete requests
without difficulty. However, for databases which are much larger than the available RAM
space, Tarantool has a second storage engine which is only limited by the available disk
space.

5.8. FAQ 107

CHAPTER 6

Reference

6.1 Built-in modules reference

This reference covers Tarantool’s built-in Lua modules.

Note: Some functions in these modules are analogs to functions from standard Lua libraries. For better
results, we recommend using functions from Tarantool’s built-in modules.

6.1.1 Module box

As well as executing Lua chunks or defining their own functions, you can exploit Tarantool’s storage func-
tionality with the box module and its submodules.

The contents of the box module can be inspected at runtime with box, with no arguments. The box module
contains:

Submodule box.cfg

The box.cfg submodule is for administrators to specify all the server configuration parameters (see “Config-
uration reference” for a complete description of all configuration parameters). Use box.cfg without braces to
get read-only access to those parameters.

Example:

tarantool> box.cfg

- checkpoint_count: 2
too_long_threshold: 0.5
slab_alloc_factor: 1.1
memtx_max_tuple_size: 1048576

(continues on next page)

108

http://www.lua.org/manual/

Tarantool, Release 1.7.4

(continued from previous page)

background: false
<...>

...

Submodule box.index

The box.index submodule provides read-only access for index definitions and index keys. Indexes are con-
tained in box.space.space-name.index array within each space object. They provide an API for ordered
iteration over tuples. This API is a direct binding to corresponding methods of index objects of type box.
index in the storage engine.

object index_object

index_object.unique
True if the index is unique, false if the index is not unique.

Rtype boolean

index_object.type
Index type, ‘TREE’ or ‘HASH’ or ‘BITSET’ or ‘RTREE’.

index_object.parts
An array describing index key fields.

Rtype table

Example:

tarantool> box.space.tester.index.primary

- unique: true
parts:
- type: unsigned
fieldno: 1

id: 0
space_id: 513
name: primary
type: TREE

...

index_object:pairs([key[, iterator-type]])
Search for a tuple or a set of tuples via the given index, and allow iterating over one tuple at a
time.

The key parameter specifies what must match within the index. The iterator parameter specifies
the rule for matching and ordering. Different index types support different iterators. For example,
a TREE index maintains a strict order of keys and can return all tuples in ascending or descending
order, starting from the specified key. Other index types, however, do not support ordering.

To understand consistency of tuples returned by an iterator, it’s essential to know the principles
of the Tarantool transaction processing subsystem. An iterator in Tarantool does not own a
consistent read view. Instead, each procedure is granted exclusive access to all tuples and spaces
until there is a “context switch”: which may happen due to the implicit yield rules, or by an
explicit call to fiber.yield. When the execution flow returns to the yielded procedure, the data
set could have changed significantly. Iteration, resumed after a yield point, does not preserve the

6.1. Built-in modules reference 109

Tarantool, Release 1.7.4

read view, but continues with the new content of the database. The tutorial Indexed pattern
search shows one way that iterators and yields can be used together.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – value to be matched against the index key, which may be
multi-part

• iterator – as defined in tables below. The default iterator type is ‘EQ’

Return iterator which can be used in a for/end loop or with totable()

Possible errors: No such space; wrong type; Selected iteration type is not supported for the index
type; or key is not supported for the iteration type.

Complexity factors: Index size, Index type; Number of tuples accessed.

A search-key-value can be a number (for example 1234), a string (for example 'abcd'), or a table
of numbers and strings (for example {1234, 'abcd'}). Each part of a key will be compared to
each part of an index key.

Iterator types for TREE indexes

Type Ar-
gu-
ments

Description

box.index.EQ
or ‘EQ’

search
value

The comparison operator is ‘==’ (equal to). If an index key is equal to a
search value, it matches. Tuples are returned in ascending order by index
key. This is the default.

box.index.REQ
or ‘REQ’

search
value

Matching is the same as for box.index.EQ. Tuples are returned in descend-
ing order by index key.

box.index.GT
or ‘GT’

search
value

The comparison operator is ‘>’ (greater than). If an index key is greater
than a search value, it matches. Tuples are returned in ascending order
by index key.

box.index.GE
or ‘GE’

search
value

The comparison operator is ‘>=’ (greater than or equal to). If an index
key is greater than or equal to a search value, it matches. Tuples are
returned in ascending order by index key.

box.index.ALL
or ‘ALL’

search
value

Same as box.index.GE.

box.index.LT
or ‘LT’

search
value

The comparison operator is ‘<’ (less than). If an index key is less than a
search value, it matches. Tuples are returned in descending order by index
key.

box.index.LE
or ‘LE’

search
value

The comparison operator is ‘<=’ (less than or equal to). If an index key
is less than or equal to a search value, it matches. Tuples are returned in
descending order by index key.

Informally, we can state that searches with TREE indexes are generally what users will find is
intuitive, provided that there are no nils and no missing parts. Formally, the logic is as follows. A
search key has zero or more parts, for example {}, {1,2,3},{1,nil,3}. An index key has one or more
parts, for example {1}, {1,2,3},{1,2,3}. An search key may contain nil (but not msgpack.NULL,
which is the wrong type). An index key may not contain nil or msgpack.NULL, although a later
version of Tarantool will have different rules – the behavior of searches with nil is subject to
change. Possible iterators are LT, LE, EQ, REQ, GE, GT. A search key is said to “match” an
index key if the following statements, which are pseudocode for the comparison operation, return
TRUE.

110 Chapter 6. Reference

https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Release 1.7.4

If (number-of-search-key-parts > number-of-index-key-parts) return ERROR
If (number-of-search-key-parts == 0) return TRUE
for (i = 1; ; ++i)
{
if (i > number-of-search-key-parts) OR (search-key-part[i] is nil)
{
if (iterator is LT or GT) return FALSE
return TRUE

}
if (type of search-key-part[i] is not compatible with type of index-key-part[i])
{
return ERROR

}
if (search-key-part[i] == index-key-part[i])
{
if (iterator is LT or GT) return FALSE
continue

}
if (search-key-part[i] > index-key-part[i])
{
if (iterator is EQ or REQ or LE or LT) return FALSE
return TRUE

}
if (search-key-part[i] < index-key-part[i])
{
if (iterator is EQ or REQ or GE or GT) return FALSE
return TRUE

}
}

Iterator types for HASH indexes

Type Ar-
gu-
ments

Description

box.index.ALLnone All index keys match. Tuples are returned in ascending order by hash of index
key, which will appear to be random.

box.index.EQ
or
‘EQ’

search
value

The comparison operator is ‘==’ (equal to). If an index key is equal to a search
value, it matches. The number of returned tuples will be 0 or 1. This is the
default.

box.index.GT
or
‘GT’

search
value

The comparison operator is ‘>’ (greater than). If a hash of an index key is greater
than a hash of a search value, it matches. Tuples are returned in ascending order
by hash of index key, which will appear to be random. Provided that the space is
not being updated, one can retrieve all the tuples in a space, N tuples at a time,
by using {iterator=’GT’, limit=N} in each search, and using the last returned
value from the previous result as the start search value for the next search.

Iterator types for BITSET indexes

6.1. Built-in modules reference 111

Tarantool, Release 1.7.4

Type Ar-
gu-
ments

Description

box.index.ALL
or ‘ALL’

none All index keys match. Tuples are returned in their order within
the space.

box.index.EQ or
‘EQ’

bit-
set
value

If an index key is equal to a bitset value, it matches. Tuples are
returned in their order within the space. This is the default.

box.index.BITS_ALL_SETbit-
set
value

If all of the bits which are 1 in the bitset value are 1 in the index
key, it matches. Tuples are returned in their order within the
space.

box.index.BITS_ANY_SETbit-
set
value

If any of the bits which are 1 in the bitset value are 1 in the index
key, it matches. Tuples are returned in their order within the
space.

box.index.BITS_ALL_NOT_SETbit-
set
value

If all of the bits which are 1 in the bitset value are 0 in the index
key, it matches. Tuples are returned in their order within the
space.

Iterator types for RTREE indexes

Type Ar-
gu-
ments

Description

box.index.ALL
or ‘ALL’

none All keys match. Tuples are returned in their order within the space.

box.index.EQ
or ‘EQ’

search
value

If all points of the rectangle-or-box defined by the search value are the
same as the rectangle-or-box defined by the index key, it matches. Tuples
are returned in their order within the space. “Rectangle-or-box” means
“rectangle-or-box as explained in section about RTREE”. This is the de-
fault.

box.index.GT
or ‘GT’

search
value

If all points of the rectangle-or-box defined by the search value are within
the rectangle-or-box defined by the index key, it matches. Tuples are re-
turned in their order within the space.

box.index.GE
or ‘GE’

search
value

If all points of the rectangle-or-box defined by the search value are within,
or at the side of, the rectangle-or-box defined by the index key, it matches.
Tuples are returned in their order within the space.

box.index.LT
or ‘LT’

search
value

If all points of the rectangle-or-box defined by the index key are within the
rectangle-or-box defined by the search key, it matches. Tuples are returned
in their order within the space.

box.index.LE
or ‘LE’

search
value

If all points of the rectangle-or-box defined by the index key are within, or
at the side of, the rectangle-or-box defined by the search key, it matches.
Tuples are returned in their order within the space.

box.index.OVERLAPS
or
‘OVER-
LAPS’

search
val-
ues

If some points of the rectangle-or-box defined by the search value are within
the rectangle-or-box defined by the index key, it matches. Tuples are re-
turned in their order within the space.

box.index.NEIGHBOR
or
‘NEIGH-
BOR’

search
value

If some points of the rectangle-or-box defined by the defined by the key are
within, or at the side of, defined by the index key, it matches. Tuples are
returned in order: nearest neighbor first.

First Example of index pairs():

112 Chapter 6. Reference

Tarantool, Release 1.7.4

Default ‘TREE’ Index and pairs() function:

tarantool> s = box.schema.space.create('space17')

...
tarantool> s:create_index('primary', {

> parts = {1, 'string', 2, 'string'}
> })

...
tarantool> s:insert{'C', 'C'}

- ['C', 'C']
...
tarantool> s:insert{'B', 'A'}

- ['B', 'A']
...
tarantool> s:insert{'C', '!'}

- ['C', '!']
...
tarantool> s:insert{'A', 'C'}

- ['A', 'C']
...
tarantool> function example()

> for _, tuple in
> s.index.primary:pairs(nil, {
> iterator = box.index.ALL}) do
> print(tuple)
> end
> end

...
tarantool> example()
['A', 'C']
['B', 'A']
['C', '!']
['C', 'C']

...
tarantool> s:drop()

...

Second Example of index pairs():

This Lua code finds all the tuples whose primary key values begin with ‘XY’. The assumptions
include that there is a one-part primary-key TREE index on the first field, which must be a string.
The iterator loop ensures that the search will return tuples where the first value is greater than
or equal to ‘XY’. The conditional statement within the loop ensures that the looping will stop
when the first two letters are not ‘XY’.

for _, tuple in
box.space.t.index.primary:pairs("XY",{iterator = "GE"}) do
if (string.sub(tuple[1], 1, 2) ~= "XY") then break end
print(tuple)

(continues on next page)

6.1. Built-in modules reference 113

Tarantool, Release 1.7.4

(continued from previous page)

end

Third Example of index pairs():

This Lua code finds all the tuples whose primary key values are greater than or equal to 1000, and
less than or equal to 1999 (this type of request is sometimes called a “range search” or a “between
search”). The assumptions include that there is a one-part primary-key TREE index on the first
field, which must be a number. The iterator loop ensures that the search will return tuples where
the first value is greater than or equal to 1000. The conditional statement within the loop ensures
that the looping will stop when the first value is greater than 1999.

for _, tuple in
box.space.t2.index.primary:pairs(1000,{iterator = "GE"}) do
if (tuple[1] > 1999) then break end
print(tuple)

end

index_object:select(search-key, options)
This is an alternative to box.space. . . select() which goes via a particular index and can make
use of additional parameters that specify the iterator type, and the limit (that is, the maximum
number of tuples to return) and the offset (that is, which tuple to start with in the list).

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

• options (table/nil) – none, any or all of next parameters

• options.iterator – type of iterator

• options.limit (number) – maximum number of tuples

• options.offset (number) – start tuple number

Return the tuple or tuples that match the field values.

Rtype array of tuples

Example:

-- Create a space named tester.
tarantool> sp = box.schema.space.create('tester')
-- Create a unique index 'primary'
-- which won't be needed for this example.
tarantool> sp:create_index('primary', {parts = {1, 'unsigned' }})
-- Create a non-unique index 'secondary'
-- with an index on the second field.
tarantool> sp:create_index('secondary', {

> type = 'tree',
> unique = false,
> parts = {2, 'string'}
> })

-- Insert three tuples, values in field[2]
-- equal to 'X', 'Y', and 'Z'.
tarantool> sp:insert{1, 'X', 'Row with field[2]=X'}
tarantool> sp:insert{2, 'Y', 'Row with field[2]=Y'}
tarantool> sp:insert{3, 'Z', 'Row with field[2]=Z'}
-- Select all tuples where the secondary index

(continues on next page)

114 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

-- keys are greater than 'X'.`
tarantool> sp.index.secondary:select({'X'}, {

> iterator = 'GT',
> limit = 1000
> })

The result will be a table of tuple and will look like this:

- - [2, 'Y', 'Row with field[2]=Y']
- [3, 'Z', 'Row with field[2]=Z']

...

Note: index.index-name is optional. If it is omitted, then the assumed index is the first (primary-
key) index. Therefore, for the example above, box.space.tester:select({1}, {iterator = 'GT'})
would have returned the same two rows, via the ‘primary’ index.

Note: iterator = iterator-type is optional. If it is omitted, then iterator = 'EQ' is assumed.

Note: field-value [, field-value . . .] is optional. If it is omitted, then every key in the index
is considered to be a match, regardless of iterator type. Therefore, for the example above, box.
space.tester:select{} will select every tuple in the tester space via the first (primary-key) index.

Note: box.space.space-name.index.index-name:select(...)[1]`. can be replaced by box.space.
space-name.index.index-name:get(...). That is, get can be used as a convenient shorthand to
get the first tuple in the tuple set that would be returned by select. However, if there is more
than one tuple in the tuple set, then get returns an error.

Example with BITSET index:

The following script shows creation and search with a BITSET index. Notice: BITSET cannot
be unique, so first a primary-key index is created. Notice: bit values are entered as hexadecimal
literals for easier reading.

tarantool> s = box.schema.space.create('space_with_bitset')
tarantool> s:create_index('primary_index', {

> parts = {1, 'string'},
> unique = true,
> type = 'TREE'
> })

tarantool> s:create_index('bitset_index', {
> parts = {2, 'unsigned'},
> unique = false,
> type = 'BITSET'
> })

tarantool> s:insert{'Tuple with bit value = 01', 0x01}
tarantool> s:insert{'Tuple with bit value = 10', 0x02}
tarantool> s:insert{'Tuple with bit value = 11', 0x03}
tarantool> s.index.bitset_index:select(0x02, {

(continues on next page)

6.1. Built-in modules reference 115

Tarantool, Release 1.7.4

(continued from previous page)

> iterator = box.index.EQ
> })

- - ['Tuple with bit value = 10', 2]
...
tarantool> s.index.bitset_index:select(0x02, {

> iterator = box.index.BITS_ANY_SET
> })

- - ['Tuple with bit value = 10', 2]
- ['Tuple with bit value = 11', 3]

...
tarantool> s.index.bitset_index:select(0x02, {

> iterator = box.index.BITS_ALL_SET
> })

- - ['Tuple with bit value = 10', 2]
- ['Tuple with bit value = 11', 3]

...
tarantool> s.index.bitset_index:select(0x02, {

> iterator = box.index.BITS_ALL_NOT_SET
> })

- - ['Tuple with bit value = 01', 1]
...

index_object:get(key)
Search for a tuple via the given index, as described earlier.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

Return the tuple whose index-key fields are equal to the passed key values.

Rtype tuple

Possible errors: No such index; wrong type; more than one tuple matches.

Complexity factors: Index size, Index type. See also space_object:get().

Example:

tarantool> box.space.tester.index.primary:get(2)

- [2, 'Music']
...

index_object:min([key])
Find the minimum value in the specified index.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

Return the tuple for the first key in the index. If optional key-value is supplied, returns
the first key which is greater than or equal to key-value.

116 Chapter 6. Reference

Tarantool, Release 1.7.4

Rtype tuple

Possible errors: index is not of type ‘TREE’.

Complexity factors: Index size, Index type.

Example:

tarantool> box.space.tester.index.primary:min()

- ['Alpha!', 55, 'This is the first tuple!']
...

index_object:max([key])
Find the maximum value in the specified index.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

Return the tuple for the last key in the index. If optional key-value is supplied, returns
the last key which is less than or equal to key-value.

Rtype tuple

Possible errors: index is not of type ‘TREE’.

Complexity factors: Index size, Index type.

Example:

tarantool> box.space.tester.index.primary:max()

- ['Gamma!', 55, 'This is the third tuple!']
...

index_object:random(seed)
Find a random value in the specified index. This method is useful when it’s important to get
insight into data distribution in an index without having to iterate over the entire data set.

Parameters

• index_object (index_object) – an object reference.

• seed (number) – an arbitrary non-negative integer

Return the tuple for the random key in the index.

Rtype tuple

Complexity factors: Index size, Index type.

Note:

Note re storage engine:

vinyl does not support random().

Example:

6.1. Built-in modules reference 117

Tarantool, Release 1.7.4

tarantool> box.space.tester.index.secondary:random(1)

- ['Beta!', 66, 'This is the second tuple!']
...

index_object:count([key][, iterator])
Iterate over an index, counting the number of tuples which match the key-value.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

• iterator – comparison method

Return the number of matching index keys.

Rtype number

Example:

tarantool> box.space.tester.index.primary:count(999)

- 0
...
tarantool> box.space.tester.index.primary:count('Alpha!', { iterator = 'LE' })

- 1
...

index_object:update(key, {{operator, field_no, value}, ...})
Update a tuple.

Same as box.space. . . update(), but key is searched in this index instead of primary key. This
index ought to be unique.

Parameters

• index_object (index_object) – an object reference.

• key (scalar/table) – values to be matched against the index key

• operator (string) – operation type represented in string

• field_no (number) – what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

• value (lua_value) – what value will be applied

Return the updated tuple.

Rtype tuple

index_object:delete(key)
Delete a tuple identified by a key.

Same as box.space. . . delete(), but key is searched in this index instead of in the primary-key
index. This index ought to be unique.

Parameters

• index_object (index_object) – an object reference.

118 Chapter 6. Reference

Tarantool, Release 1.7.4

• key (scalar/table) – values to be matched against the index key

Return the deleted tuple.

Rtype tuple

Note:

Note re storage engine:

vinyl will return nil, rather than the deleted tuple.

index_object:alter({options})
Alter an index.

Parameters

• index_object (index_object) – an object reference.

• options (table) – options list, same as the options list for create_index

Return nil

Possible errors: Index does not exist, or the first index cannot be changed to {unique = false}, or
the alter function is only applicable for the memtx storage engine.

Note:

Note re storage engine:

vinyl does not support alter().

Example:

tarantool> box.space.space55.index.primary:alter({type = 'HASH'})

...

index_object:drop()
Drop an index. Dropping a primary-key index has a side effect: all tuples are deleted.

Parameters

• index_object (index_object) – an object reference.

Return nil.

Possible errors: Index does not exist, or a primary-key index cannot be dropped while a secondary-
key index exists.

Example:

tarantool> box.space.space55.index.primary:drop()

...

index_object:rename(index-name)
Rename an index.

Parameters

• index_object (index_object) – an object reference.

6.1. Built-in modules reference 119

Tarantool, Release 1.7.4

• index-name (string) – new name for index

Return nil

Possible errors: index_object does not exist.

Example:

tarantool> box.space.space55.index.primary:rename('secondary')

...

Complexity factors: Index size, Index type, Number of tuples accessed.

index_object:bsize()
Return the total number of bytes taken by the index.

Parameters

• index_object (index_object) – an object reference.

Return number of bytes

Rtype number

Example showing use of the box functions

This example will work with the sandbox configuration described in the preface. That is, there is a space
named tester with a numeric primary key. The example function will:

• select a tuple whose key value is 1000;

• return an error if the tuple already exists and already has 3 fields;

• Insert or replace the tuple with:

– field[1] = 1000

– field[2] = a uuid

– field[3] = number of seconds since 1970-01-01;

• Get field[3] from what was replaced;

• Format the value from field[3] as yyyy-mm-dd hh:mm:ss.ffff;

• Return the formatted value.

The function uses Tarantool box functions box.space. . . select, box.space. . . replace, fiber.time, uuid.str. The
function uses Lua functions os.date() and string.sub().

function example()
local a, b, c, table_of_selected_tuples, d
local replaced_tuple, time_field
local formatted_time_field
local fiber = require('fiber')
table_of_selected_tuples = box.space.tester:select{1000}
if table_of_selected_tuples ~= nil then
if table_of_selected_tuples[1] ~= nil then
if #table_of_selected_tuples[1] == 3 then
box.error({code=1, reason='This tuple already has 3 fields'})

end
end

(continues on next page)

120 Chapter 6. Reference

http://www.lua.org/pil/22.1.html
http://www.lua.org/pil/20.html

Tarantool, Release 1.7.4

(continued from previous page)

end
replaced_tuple = box.space.tester:replace
{1000, require('uuid').str(), tostring(fiber.time())}

time_field = tonumber(replaced_tuple[3])
formatted_time_field = os.date("%Y-%m-%d %H:%M:%S", time_field)
c = time_field % 1
d = string.sub(c, 3, 6)
formatted_time_field = formatted_time_field .. '.' .. d
return formatted_time_field

end

. . . And here is what happens when one invokes the function:

tarantool> box.space.tester:delete(1000)

- [1000, '264ee2da03634f24972be76c43808254', '1391037015.6809']
...
tarantool> example(1000)

- 2014-01-29 16:11:51.1582
...
tarantool> example(1000)

- error: 'This tuple already has 3 fields'
...

Example showing a user-defined iterator

Here is an example that shows how to build one’s own iterator. The paged_iter function is an “iterator
function”, which will only be understood by programmers who have read the Lua manual section Iterators
and Closures. It does paginated retrievals, that is, it returns 10 tuples at a time from a table named “t”,
whose primary key was defined with create_index('primary',{parts={1,'string'}}).

function paged_iter(search_key, tuples_per_page)
local iterator_string = "GE"
return function ()
local page = box.space.t.index[0]:select(search_key,
{iterator = iterator_string, limit=tuples_per_page})

if #page == 0 then return nil end
search_key = page[#page][1]
iterator_string = "GT"
return page
end

end

Programmers who use paged_iter do not need to know why it works, they only need to know that, if they
call it within a loop, they will get 10 tuples at a time until there are no more tuples. In this example the
tuples are merely printed, a page at a time. But it should be simple to change the functionality, for example
by yielding after each retrieval, or by breaking when the tuples fail to match some additional criteria.

for page in paged_iter("X", 10) do
print("New Page. Number Of Tuples = " .. #page)
for i = 1, #page, 1 do
print(page[i])

(continues on next page)

6.1. Built-in modules reference 121

https://www.lua.org/pil/7.1.html
https://www.lua.org/pil/7.1.html

Tarantool, Release 1.7.4

(continued from previous page)

end
end

Submodule box.index with index type = RTREE for spatial searches

The box.index submodule may be used for spatial searches if the index type is RTREE. There are operations
for searching rectangles (geometric objects with 4 corners and 4 sides) and boxes (geometric objects with
more than 4 corners and more than 4 sides, sometimes called hyperrectangles). This manual uses the term
rectangle-or-box for the whole class of objects that includes both rectangles and boxes. Only rectangles will
be illustrated.

Rectangles are described according to their X-axis (horizontal axis) and Y-axis (vertical axis) coordinates
in a grid of arbitrary size. Here is a picture of four rectangles on a grid with 11 horizontal points and 11
vertical points:

X AXIS
1 2 3 4 5 6 7 8 9 10 11

1
2 #-------+ <-Rectangle#1

Y AXIS 3 | |
4 +-------#
5 #-----------------------+ <-Rectangle#2
6 | |
7 | #---+ | <-Rectangle#3
8 | | | |
9 | +---# |
10 +-----------------------#
11 # <-Rectangle#4

The rectangles are defined according to this scheme: {X-axis coordinate of top left, Y-axis coordinate
of top left, X-axis coordinate of bottom right, Y-axis coordinate of bottom right} – or more succinctly:
{x1,y1,x2,y2}. So in the picture . . . Rectangle#1 starts at position 1 on the X axis and position 2 on
the Y axis, and ends at position 3 on the X axis and position 4 on the Y axis, so its coordinates are
{1,2,3,4}. Rectangle#2’s coordinates are {3,5,9,10}. Rectangle#3’s coordinates are {4,7,5,9}. And finally
Rectangle#4’s coordinates are {10,11,10,11}. Rectangle#4 is actually a “point” since it has zero width and
zero height, so it could have been described with only two digits: {10,11}.

Some relationships between the rectangles are: “Rectangle#1’s nearest neighbor is Rectangle#2”, and “Rect-
angle#3 is entirely inside Rectangle#2”.

Now let us create a space and add an RTREE index.

tarantool> s = box.schema.space.create('rectangles')
tarantool> i = s:create_index('primary', {

> type = 'HASH',
> parts = {1, 'unsigned'}
> })

tarantool> r = s:create_index('rtree', {
> type = 'RTREE',
> unique = false,
> parts = {2, 'ARRAY'}
> })

Field#1 doesn’t matter, we just make it because we need a primary-key index. (RTREE indexes cannot be
unique and therefore cannot be primary-key indexes.) The second field must be an “array”, which means its

122 Chapter 6. Reference

Tarantool, Release 1.7.4

values must represent {x,y} points or {x1,y1,x2,y2} rectangles. Now let us populate the table by inserting
two tuples, containing the coordinates of Rectangle#2 and Rectangle#4.

tarantool> s:insert{1, {3, 5, 9, 10}}
tarantool> s:insert{2, {10, 11}}

And now, following the description of RTREE iterator types, we can search the rectangles with these requests:

tarantool> r:select({10, 11, 10, 11}, {iterator = 'EQ'})

- - [2, [10, 11]]
...
tarantool> r:select({4, 7, 5, 9}, {iterator = 'GT'})

- - [1, [3, 5, 9, 10]]
...
tarantool> r:select({1, 2, 3, 4}, {iterator = 'NEIGHBOR'})

- - [1, [3, 5, 9, 10]]
- [2, [10, 11]]

...

Request#1 returns 1 tuple because the point {10,11} is the same as the rectangle {10,11,10,11} (“Rectan-
gle#4” in the picture). Request#2 returns 1 tuple because the rectangle {4,7,5,9}, which was “Rectangle#3”
in the picture, is entirely within{3,5,9,10} which was Rectangle#2. Request#3 returns 2 tuples, because the
NEIGHBOR iterator always returns all tuples, and the first returned tuple will be {3,5,9,10} (“Rectangle#2”
in the picture) because it is the closest neighbor of {1,2,3,4} (“Rectangle#1” in the picture).

Now let us create a space and index for cuboids, which are rectangle-or-boxes that have 6 corners and 6
sides.

tarantool> s = box.schema.space.create('R')
tarantool> i = s:create_index('primary', {parts = {1, 'unsigned'}})
tarantool> r = s:create_index('S', {

> type = 'RTREE',
> unique = false,
> dimension = 3,
> parts = {2, 'ARRAY'}
> })

The additional option here is dimension=3. The default dimension is 2, which is why it didn’t need to be
specified for the examples of rectangle. The maximum dimension is 20. Now for insertions and selections
there will usually be 6 coordinates. For example:

tarantool> s:insert{1, {0, 3, 0, 3, 0, 3}}
tarantool> r:select({1, 2, 1, 2, 1, 2}, {iterator = box.index.GT})

Now let us create a space and index for Manhattan-style spatial objects, which are rectangle-or-boxes that
have a different way to calculate neighbors.

tarantool> s = box.schema.space.create('R')
tarantool> i = s:create_index('primary', {parts = {1, 'unsigned'}})
tarantool> r = s:create_index('S', {

> type = 'RTREE',
> unique = false,
> distance = 'manhattan',
> parts = {2, 'ARRAY'}
> })

6.1. Built-in modules reference 123

Tarantool, Release 1.7.4

The additional option here is distance='manhattan'. The default distance calculator is ‘euclid’, which is
the straightforward as-the-crow-flies method. The optional distance calculator is ‘manhattan’, which can be
a more appropriate method if one is following the lines of a grid rather than traveling in a straight line.

tarantool> s:insert{1, {0, 3, 0, 3}}
tarantool> r:select({1, 2, 1, 2}, {iterator = box.index.NEIGHBOR})

More examples of spatial searching are online in the file R tree index quick start and usage.

Submodule box.info

The box.info submodule provides access to information about server instance variables.

• version is the Tarantool version. This value is also shown by tarantool –version.

• id corresponds to replication.id (see below).

• ro is true if the instance is in “read-only” mode (same as read_only in box.cfg{}).

• vclock corresponds to replication.downstream.vclock (see below).

• uptime is the number of seconds since the instance started. This value can also be retrieved with
tarantool.uptime().

• lsn corresponds to replication.lsn (see below).

• vinyl returns runtime statistics for vinyl storage engine.

• cluster.uuid is the UUID of the replica set. Every instance in a replica set will have the same cluster.
uuid value. This value is also stored in box.space._schema system space.

• pid is the process ID. This value is also shown by tarantool module and by the Linux command ps -A.

• status corresponds to replication.upstream.status (see below).

• signature is the sum of all lsn values from the vector clocks (vclock) of all instances in the replica set.

• uuid corresponds to replication.uuid (see below).

replication part contains statistics for all instances in the replica set in regard to the current instance (see
an example in the section “Monitoring a replica set”):

• replication.id is a short numeric identifier of the instance within the replica set.

• replication.uuid is a globally unique identifier of the instance. This value is also stored in
box.space._cluster system space.

• replication.lsn is the log sequence number (LSN) for the latest entry in the instance’s write ahead log
(WAL).

• replication.upstream contains statistics for the replication data uploaded by the instance.

• replication.upstream.status is the replication status of the instance.

– auth means that the instance is getting authenticated to connect to a replication source.

– connecting means that the instance is trying to connect to the replications source(s) listed in its
replication parameter.

– disconnected means that the instance is not connected to the replica set (due to network problems,
not replication errors).

– follow means that the instance’s role is “replica” (read-only) and replication is in progress.

– running means the instance’s role is “master” (non read-only) and replication is in progress.

124 Chapter 6. Reference

https://github.com/tarantool/tarantool/wiki/R-tree-index-quick-start-and-usage

Tarantool, Release 1.7.4

– stopped means that replication was stopped due to a replication error (e.g. duplicate key).

• replication.upstream.idle is the time (in seconds) since the instance received the last event from a
master.

• replication.upstream.lag is the time difference between the local time at the instance, recorded when
the event was received, and the local time at another master recorded when the event was written to
the write ahead log on that master.

Since lag calculation uses operating system clock from two different machines, don’t be surprised if
it’s negative: a time drift may lead to the remote master clock being consistently behind the local
instance’s clock.

For multi-master configurations, this is the maximal lag.

• replication.downstream contains statistics for the replication data requested and downloaded from the
instance.

• replication.downstream.vclock is the instance’s vector clock, which contains a pair ‘id, lsn’.

box.info()
Since box.info contents are dynamic, it’s not possible to iterate over keys with the Lua pairs() function.
For this purpose, box.info() builds and returns a Lua table with all keys and values provided in the
submodule.

Return keys and values in the submodule.

Rtype table

Example:

tarantool> box.info

- version: 1.7.4-52-g980d30092
id: 1
ro: false
vclock: {1: 8}
uptime: 7280
lsn: 8
vinyl: []
cluster:
uuid: f7c0c1c6-f9d8-4df7-82ff-d4bd00610a6c

pid: 16162
status: running
signature: 8
replication:
1:
id: 1
uuid: 1899631e-6369-40a1-81c9-7d170e909276
lsn: 8

2:
id: 2
uuid: bd949e5d-7ff9-413e-b4f2-c9b0149fdda6
lsn: 0
upstream:
status: follow
idle: 7256.7571430206
lag: 0

downstream:
vclock: {1: 8}

3:

(continues on next page)

6.1. Built-in modules reference 125

Tarantool, Release 1.7.4

(continued from previous page)

id: 3
uuid: c5cb61d5-fa48-460d-abd7-3f13709d07a7
lsn: 0
upstream:
status: follow
idle: 7255.7510120869
lag: 0

downstream:
vclock: {1: 8}

uuid: 1899631e-6369-40a1-81c9-7d170e909276
...

Function box.once

box.once(key, function[, ...])
Execute a function, provided it has not been executed before. A passed value is checked to see whether
the function has already been executed. If it has been executed before, nothing happens. If it has not
been executed before, the function is invoked.

See an example of using box.once() while bootstrapping a replica set.

If an error occurs inside box.once() when initializing a database, you can re-execute the failed box.once()
block without stopping the database. The solution is to delete the once object from the system space
_schema. Say box.space._schema:select{}, find your once object there and delete it. For example,
re-executing a block with key='hello' :

tarantool> box.space._schema:select{}

- - ['cluster', 'b4e15788-d962-4442-892e-d6c1dd5d13f2']
- ['max_id', 512]
- ['oncebye']
- ['oncehello']
- ['version', 1, 7, 2]

...

tarantool> box.space._schema:delete('oncehello')

- ['oncehello']
...

tarantool> box.once('hello', function() end)

...

Parameters

• key (string) – a value that will be checked

• function (function) – a function

• ... – arguments that must be passed to function

Submodule box.schema

The box.schema submodule has data-definition functions for spaces, users, roles, and function tuples.

126 Chapter 6. Reference

Tarantool, Release 1.7.4

box.schema.space.create(space-name[, {options}])
Create a space.

Parameters

• space-name (string) – name of space, which should not be a number and should not
contain special characters

• options (table) – see “Options for box.schema.space.create” chart, below

Return space object

Rtype userdata

Options for box.schema.space.create

Name Effect Type Default
tem-
po-
rary

space contents are temporary: changes are not stored in the write-ahead
log and there is no replication. Note re storage engine: vinyl does not
support temporary spaces.

booleanfalse

id unique identifier: users can refer to spaces with the id instead of the name num-
ber

last
space’s
id, +1

field_countfixed count of fields: for example if field_count=5, it is illegal to insert a
tuple with fewer than or more than 5 fields

num-
ber

0 i.e.
not
fixed

if_not_existscreate space only if a space with the same name does not exist already,
otherwise do nothing but do not cause an error

booleanfalse

en-
gine

storage engine: ‘memtx’ or ‘vinyl’ string ‘memtx’

user name of the user who is considered to be the space’s owner for authoriza-
tion purposes

string current
user’s
name

for-
mat

field names and types: For an illustration with the format option, see the
box.space._space example.

ta-
ble

(blank)

There are three syntax variations for object references targeting space objects, for example box.schema.
space.drop(space-id) will drop a space. However, the common approach is to use functions attached to
the space objects, for example space_object:drop().

Example

tarantool> s = box.schema.space.create('space55')

...
tarantool> s = box.schema.space.create('space55', {

> id = 555,
> temporary = false
> })

- error: Space 'space55' already exists
...
tarantool> s = box.schema.space.create('space55', {

> if_not_exists = true
> })

...

6.1. Built-in modules reference 127

Tarantool, Release 1.7.4

After a space is created, usually the next step is to create an index for it, and then it is available for
insert, select, and all the other box.space functions.

box.schema.user.create(user-name[, {options}])
Create a user. For explanation of how Tarantool maintains user data, see section Users and reference
on _user space.

The possible options are:

• if_not_exists = true|false (default = false) - boolean; true means there should be no error if the
user already exists,

• password (default = ‘’) - string; the password = password specification is good because in a URI
(Uniform Resource Identifier) it is usually illegal to include a user-name without a password.

Note: The maximum number of users is 32.

Parameters

• user-name (string) – name of user, which should not be a number and should not
contain special characters

• options (table) – if_not_exists, password

Return nil

Examples:

box.schema.user.create('Lena')
box.schema.user.create('Lena', {password = 'X'})
box.schema.user.create('Lena', {if_not_exists = false})

box.schema.user.drop(user-name[, {options}])
Drop a user. For explanation of how Tarantool maintains user data, see section Users and reference
on _user space.

Parameters

• user-name (string) – the name of the user

• options (table) – if_exists = true|false (default = false) - boolean; true means there
should be no error if the user does not exist.

Examples:

box.schema.user.drop('Lena')
box.schema.user.drop('Lena',{if_exists=false})

box.schema.user.exists(user-name)
Return true if a user exists; return false if a user does not exist. For explanation of how Tarantool
maintains user data, see section Users and reference on _user space.

Parameters

• user-name (string) – the name of the user

Rtype bool

Example:

128 Chapter 6. Reference

Tarantool, Release 1.7.4

box.schema.user.exists('Lena')

box.schema.user.grant(user-name, priveleges, object-type, object-name[, {options}])
box.schema.user.grant(user-name, priveleges, ’universe’[, nil, {options}])
box.schema.user.grant(user-name, role-name[, nil, nil, {options}])

Grant privileges to a user or to another role.

Parameters

• user-name (string) – the name of the user

• priveleges (string) – ‘read’ or ‘write’ or ‘execute’ or a combination,

• object-type (string) – ‘space’ or ‘function’.

• object-name (string) – name of object to grant permissions to

• role-name (string) – name of role to grant to user.

• options (table) – grantor, if_not_exists

If 'function','object-name' is specified, then a _func tuple with that object-name must exist.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’. In this case, object name is omitted.

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).

The possible options are:

• grantor = grantor_name_or_id – string or number, for custom grantor,

• if_not_exists = true|false (default = false) - boolean; true means there should be no error if the
user already has the privilege.

Example:

box.schema.user.grant('Lena', 'read', 'space', 'tester')
box.schema.user.grant('Lena', 'execute', 'function', 'f')
box.schema.user.grant('Lena', 'read,write', 'universe')
box.schema.user.grant('Lena', 'Accountant')
box.schema.user.grant('Lena', 'read,write,execute', 'universe')
box.schema.user.grant('X', 'read', 'universe', nil, {if_not_exists=true}))

box.schema.user.revoke(user-name, privilege, object-type, object-name)
box.schema.user.revoke(user-name, privilege, ’role’, role-name)

Revoke privileges from a user or from another role.

Parameters

• user-name (string) – the name of the user

• privilege (string) – ‘read’ or ‘write’ or ‘execute’ or a combination

• object-type (string) – ‘space’ or ‘function’

• object-name (string) – the name of a function or space

The user must exist, and the object must exist, but it is not an error if the user does not have the
privilege.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).

6.1. Built-in modules reference 129

Tarantool, Release 1.7.4

Example:

box.schema.user.revoke('Lena', 'read', 'space', 'tester')
box.schema.user.revoke('Lena', 'execute', 'function', 'f')
box.schema.user.revoke('Lena', 'read,write', 'universe')
box.schema.user.revoke('Lena', 'Accountant')

box.schema.user.password(password)
Return a hash of a user’s password. For explanation of how Tarantool maintains passwords, see section
Passwords and reference on _user space.

Note:

• If a non-‘guest’ user has no password, it’s impossible to connect to Tarantool using this user. The
user is regarded as “internal” only, not usable from a remote connection. Such users can be useful
if they have defined some procedures with the SETUID option, on which privileges are granted to
externally-connectable users. This way, external users cannot create/drop objects, they can only
invoke procedures.

• For the ‘guest’ user, it’s impossible to set a password: that would be misleading, since ‘guest’ is
the default user on a newly-established connection over a binary port, and Tarantool does not
require a password to establish a binary connection. It is, however, possible to change the current
user to ‘guest’ by providing the AUTH packet with no password at all or an empty password.
This feature is useful for connection pools, which want to reuse a connection for a different user
without re-establishing it.

Parameters

• password (string) – password to be hashed

Rtype string

Example:

box.schema.user.password('ЛЕНА')

box.schema.user.passwd([user-name], password)
Associate a password with the user who is currently logged in, or with another user.

Users who wish to change their own passwords should use box.schema.user.passwd(password) syntax.

Administrators who wish to change passwords of other users should use box.schema.user.passwd(user-
name, password) syntax.

Parameters

• user-name (string) – user-name

• password (string) – password

Example:

box.schema.user.passwd('ЛЕНА')
box.schema.user.passwd('Lena', 'ЛЕНА')

box.schema.user.info([user-name])
Return a description of a user’s privileges. For explanation of how Tarantool maintains user data, see
section Users and reference on _user space.

130 Chapter 6. Reference

Tarantool, Release 1.7.4

Parameters

• user-name (string) – the name of the user. This is optional; if it is not supplied, then
the information will be for the user who is currently logged in.

Example:

box.schema.user.info()
box.schema.user.info('Lena')

box.schema.role.create(role-name[, {options}])
Create a role. For explanation of how Tarantool maintains role data, see section Roles.

Parameters

• role-name (string) – name of role, which should not be a number and should not
contain special characters

• options (table) – if_not_exists = true|false (default = false) - boolean; true means
there should be no error if the role already exists

Return nil

Example:

box.schema.role.create('Accountant')
box.schema.role.create('Accountant', {if_not_exists = false})

box.schema.role.drop(role-name[, {options}])
Drop a role. For explanation of how Tarantool maintains role data, see section Roles.

Parameters

• role-name (string) – the name of the role

• options (table) – if_exists = true|false (default = false) - boolean; true means there
should be no error if the role does not exist.

Example:

box.schema.role.drop('Accountant')

box.schema.role.exists(role-name)
Return true if a role exists; return false if a role does not exist.

Parameters

• role-name (string) – the name of the role

Rtype bool

Example:

box.schema.role.exists('Accountant')

box.schema.role.grant(user-name, privilege, object-type, object-name[, option])
box.schema.role.grant(user-name, privilege, ’universe’[, nil, option])
box.schema.role.grant(role-name, role-name[, nil, nil, option])

Grant privileges to a role.

Parameters

• user-name (string) – the name of the role

6.1. Built-in modules reference 131

Tarantool, Release 1.7.4

• privilege (string) – ‘read’ or ‘write’ or ‘execute’ or a combination

• object-type (string) – ‘space’ or ‘function’

• object-name (string) – the name of a function or space

• option (table) – if_not_exists = true|false (default = false) - boolean; true means
there should be no error if the role already has the privilege

The role must exist, and the object must exist.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name – to grant a role to a role.

Example:

box.schema.role.grant('Accountant', 'read', 'space', 'tester')
box.schema.role.grant('Accountant', 'execute', 'function', 'f')
box.schema.role.grant('Accountant', 'read,write', 'universe')
box.schema.role.grant('public', 'Accountant')
box.schema.role.grant('role1', 'role2', nil, nil, {if_not_exists=false})

box.schema.role.revoke(user-name, privilege, object-type, object-name)
Revoke privileges from a role.

Parameters

• user-name (string) – the name of the role

• privilege (string) – ‘read’ or ‘write’ or ‘execute’ or a combination

• object-type (string) – ‘space’ or ‘function’

• object-name (string) – the name of a function or space

The role must exist, and the object must exist, but it is not an error if the role does not have the
privilege.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name.

Example:

box.schema.role.revoke('Accountant', 'read', 'space', 'tester')
box.schema.role.revoke('Accountant', 'execute', 'function', 'f')
box.schema.role.revoke('Accountant', 'read,write', 'universe')
box.schema.role.revoke('public', 'Accountant')

box.schema.role.info([role-name])
Return a description of a role’s privileges.

Parameters

• role-name (string) – the name of the role.

Example:

box.schema.role.info('Accountant')

132 Chapter 6. Reference

Tarantool, Release 1.7.4

box.schema.func.create(func-name[, {options}])
Create a function tuple. This does not create the function itself – that is done with Lua – but if it is
necessary to grant privileges for a function, box.schema.func.create must be done first. For explanation
of how Tarantool maintains function data, see reference on _func space.

The possible options are:

• if_not_exists = true|false (default = false) - boolean; true means there should be no error if the
_func tuple already exists.

• setuid = true|false (default = false) - with true to make Tarantool treat the function’s caller as
the function’s creator, with full privileges. Remember that SETUID works only over binary ports.
SETUID doesn’t work if you invoke a function via an admin console or inside a Lua script.

• language = ‘LUA’|’C’ (default = ‘LUA’).

Parameters

• func-name (string) – name of function, which should not be a number and should
not contain special characters

• options (table) – if_not_exists, setuid, language.

Return nil

Example:

box.schema.func.create('calculate')
box.schema.func.create('calculate', {if_not_exists = false})
box.schema.func.create('calculate', {setuid = false})
box.schema.func.create('calculate', {language = 'LUA'})

box.schema.func.drop(func-name[, {options}])
Drop a function tuple. For explanation of how Tarantool maintains function data, see reference on
_func space.

Parameters

• func-name (string) – the name of the function

• options (table) – if_exists = true|false (default = false) - boolean; true means there
should be no error if the _func tuple does not exist.

Example:

box.schema.func.drop('calculate')

box.schema.func.exists(func-name)
Return true if a function tuple exists; return false if a function tuple does not exist.

Parameters

• func-name (string) – the name of the function

Rtype bool

Example:

box.schema.func.exists('calculate')

6.1. Built-in modules reference 133

Tarantool, Release 1.7.4

Submodule box.session

The box.session submodule allows querying the session state, writing to a session-specific temporary Lua
table, or setting up triggers which will fire when a session starts or ends. A session is an object associated
with each client connection.

box.session.id()

Return the unique identifier (ID) for the current session. The result can be 0 meaning there
is no session.

Rtype number

box.session.exists(id)

Return 1 if the session exists, 0 if the session does not exist.

Rtype number

box.session.peer(id)
This function works only if there is a peer, that is, if a connection has been made to a separate Tarantool
instance.

Return The host address and port of the session peer, for example “127.0.0.1:55457”. If the
session exists but there is no connection to a separate instance, the return is null. The
command is executed on the server instance, so the “local name” is the server instance’s
host and port, and the “peer name” is the client’s host and port.

Rtype string

Possible errors: ‘session.peer(): session does not exist’

box.session.sync()

Return the value of the sync integer constant used in the binary protocol.

Rtype number

box.session.user()

Return the name of the current user

Rtype string

box.session.su(user-name[, function-to-execute])
Change Tarantool’s current user – this is analogous to the Unix command su.

Or, if function-to-execute is specified, change Tarantool’s current user temporarily while executing the
function – this is analogous to the Unix command sudo.

Parameters

• user-name (string) – name of a target user

• function-to-execute – name of a function, or definition of a function. Additional
parameters may be passed to box.session.su, they will be interpreted as parameters
of function-to-execute.

Example

tarantool> function f(a) return box.session.user() .. a end

...

(continues on next page)

134 Chapter 6. Reference

https://github.com/tarantool/tarantool/blob/1.7/src/box/iproto_constants.h

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> box.session.su('guest', f, '-xxx')

- guest-xxx
...

tarantool> box.session.su('guest',function(...) return ... end,1,2)

- 1
- 2
...

box.session.storage
A Lua table that can hold arbitrary unordered session-specific names and values, which will last until
the session ends. For example, this table could be useful to store current tasks when working with a
Tarantool queue manager.

Example

tarantool> box.session.peer(box.session.id())

- 127.0.0.1:45129
...
tarantool> box.session.storage.random_memorandum = "Don't forget the eggs"

...
tarantool> box.session.storage.radius_of_mars = 3396

...
tarantool> m = ''

...
tarantool> for k, v in pairs(box.session.storage) do

> m = m .. k .. '='.. v .. ' '
> end

...
tarantool> m

- 'radius_of_mars=3396 random_memorandum=Don''t forget the eggs. '
...

box.session.on_connect(trigger-function[, old-trigger-function])
Define a trigger for execution when a new session is created due to an event such as console.connect.
The trigger function will be the first thing executed after a new session is created. If the trigger
execution fails and raises an error, the error is sent to the client and the connection is closed.

Parameters

• trigger-function (function) – function which will become the trigger function

• old-trigger-function (function) – existing trigger function which will be replaced by
trigger-function

Return nil or function pointer

If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

Details about trigger characteristics are in the triggers section.

6.1. Built-in modules reference 135

https://github.com/tarantool/queue

Tarantool, Release 1.7.4

Example

tarantool> function f ()
> x = x + 1
> end

tarantool> box.session.on_connect(f)

Warning: If a trigger always results in an error, it may become impossible to connect to a server
to reset it.

box.session.on_disconnect(trigger-function[, old-trigger-function])
Define a trigger for execution after a client has disconnected. If the trigger function causes an error,
the error is logged but otherwise is ignored. The trigger is invoked while the session associated with
the client still exists and can access session properties, such as box.session.id.

Parameters

• trigger-function (function) – function which will become the trigger function

• old-trigger-function (function) – existing trigger function which will be replaced by
trigger-function

Return nil or function pointer

If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

Details about trigger characteristics are in the triggers section.

Example #1

tarantool> function f ()
> x = x + 1
> end

tarantool> box.session.on_disconnect(f)

Example #2

After the following series of requests, a Tarantool instance will write a message using the log module
whenever any user connects or disconnects.

function log_connect ()
local log = require('log')
local m = 'Connection. user=' .. box.session.user() .. ' id=' .. box.session.id()
log.info(m)

end

function log_disconnect ()
local log = require('log')
local m = 'Disconnection. user=' .. box.session.user() .. ' id=' .. box.session.id()
log.info(m)

end

box.session.on_connect(log_connect)
box.session.on_disconnect(log_disconnect)

Here is what might appear in the log file in a typical installation:

136 Chapter 6. Reference

Tarantool, Release 1.7.4

2014-12-15 13:21:34.444 [11360] main/103/iproto I>
Connection. user=guest id=3

2014-12-15 13:22:19.289 [11360] main/103/iproto I>
Disconnection. user=guest id=3

box.session.on_auth(trigger-function[, old-trigger-function])
Define a trigger for execution during authentication.

The on_auth trigger function is invoked in these circumstances:

(1) The console.connect function includes an authentication check for all users except ‘guest’. For
this case, the on_auth trigger function is invoked after the on_connect trigger function, if and
only if the connection has succeeded so far.

(2) The binary protocol has a separate authentication packet. For this case, connection and authen-
tication are considered to be separate steps.

Unlike other trigger types, on_auth trigger functions are invoked before the event. Therefore a trigger
function like function auth_function () v = box.session.user(); end will set v to “guest”, the user name
before the authentication is done. To get the user name after the authentication is done, use the special
syntax: function auth_function (user_name) v = user_name; end

If the trigger fails by raising an error, the error is sent to the client and the connection is closed.

Parameters

• trigger-function (function) – function which will become the trigger function

• old-trigger-function (function) – existing trigger function which will be replaced by
trigger-function

Return nil or function pointer

If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

Details about trigger characteristics are in the triggers section.

Example

tarantool> function f ()
> x = x + 1
> end

tarantool> box.session.on_auth(f)

Submodule box.slab

The box.slab submodule provides access to slab allocator statistics. The slab allocator is the main allocator
used to store tuples. This can be used to monitor the total memory usage and memory fragmentation.

box.runtime.info()
Show a memory usage report (in bytes) for the Lua runtime.

Return

• lua is the heap size of the Lua garbage collector;

• maxalloc is the maximal memory quota that can be allocated for Lua;

• used is the current memory size used by Lua.

Rtype table

Example:

6.1. Built-in modules reference 137

Tarantool, Release 1.7.4

tarantool> box.runtime.info()

- lua: 913710
maxalloc: 4398046510080
used: 12582912

...
tarantool> box.runtime.info().used

- used: 12582912
...

box.slab.info()
Show an aggregated memory usage report (in bytes) for the slab allocator.

This report is useful for assessing out-of-memory risks: the risks are high if both arena_used_ratio
and quota_used_ratio are high (90-95%).

If quota_used_ratio is low, then high arena_used_ratio and/or items_used_ratio indicate that the
memory fragmentation is low (i.e. the memory is used efficiently).

If quota_used_ratio is high (approaching 100%), then low arena_used_ratio (50-60%) indicates that
the memory is heavily fragmentized. Most probably, there is no immediate out-of-memory risk in this
case, but generally this is an issue to consider. For example, probable risks are that the entire memory
quota is used for tuples, and there is are no slabs left for a piece of an index. Or that all slabs are
allocated for storing tuples, but in fact all the slabs are half-empty.

Return

• items_size is the total amount of memory (including allocated, but currently free
slabs) used only for tuples, no indexes;

• items_used_ratio = items_used / slab_count * slab_size (these are slabs used only
for tuples, no indexes);

• quota_size is the maximum amount of memory that the slab allocator can use for
both tuples and indexes (as configured in memtx_memory parameter, e.g. the de-
fault is 1 gigabyte = 2^30 bytes = 1,073,741,824 bytes);

• quota_used_ratio = quota_used / quota_size;

• arena_used_ratio = arena_used / arena_size;

• items_used is the efficient amount of memory (omitting allocated, but currently free
slabs) used only for tuples, no indexes;

• quota_used is the amount of memory that is already distributed to the slab allocator;

• arena_size is the total memory used for tuples and indexes together (including allo-
cated, but currently free slabs);

• arena_used is the efficient memory used for storing tuples and indexes together
(omitting allocated, but currently free slabs).

Rtype table

Example:

tarantool> box.slab.info()

- items_size: 228128
items_used_ratio: 1.8%

(continues on next page)

138 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

quota_size: 1073741824
quota_used_ratio: 0.8%
arena_used_ratio: 43.2%
items_used: 4208
quota_used: 8388608
arena_size: 2325176
arena_used: 1003632

...

tarantool> box.slab.info().arena_used

- 1003632
...

box.slab.stats()

Show a detailed memory usage report (in bytes) for the slab allocator. The report is broken
down into groups by data item size as well as by slab size (64-byte, 136-byte, etc). The
report includes the memory allocated for storing both tuples and indexes.

return

• mem_free is the allocated, but currently unused memory;

• mem_used is the memory used for storing data items (tuples and indexes);

• item_count is the number of stored items;

• item_size is the size of each data item;

• slab_count is the number of slabs allocated;

• slab_size is the size of each allocated slab.

rtype table

Example:

Here is a sample report for the first group:

tarantool> box.slab.stats()[1]

- mem_free: 16232
mem_used: 48
item_count: 2
item_size: 24
slab_count: 1
slab_size: 16384

...

This report is saying that there are 2 data items (item_count = 2) stored in one (slab_count
= 1) 24-byte slab (item_size = 24), so mem_used = 2 * 24 = 48 bytes. Also, slab_size is
16384 bytes, of which 16384 - 48 = 16232 bytes are free (mem_free).

A complete report would show memory usage statistics for all groups:

tarantool> box.slab.stats()

- - mem_free: 16232

mem_used: 48

(continues on next page)

6.1. Built-in modules reference 139

Tarantool, Release 1.7.4

(continued from previous page)

item_count: 2
item_size: 24
slab_count: 1
slab_size: 16384

- mem_free: 15720
mem_used: 560
item_count: 14
item_size: 40
slab_count: 1
slab_size: 16384

<...>
- mem_free: 32472
mem_used: 192
item_count: 1
item_size: 192
slab_count: 1
slab_size: 32768

- mem_free: 1097624
mem_used: 999424
item_count: 61
item_size: 16384
slab_count: 1
slab_size: 2097152

...

The total mem_used for all groups in this report equals arena_used in box.slab.info() report.

Submodule box.space

The box.space submodule has the data-manipulation functions select, insert, replace, update, upsert, delete,
get, put. It also has members, such as id, and whether or not a space is enabled. Submodule source code is
available in file src/box/lua/schema.lua.

A list of all box.space functions follows, then comes a list of all box.space members.

The functions and members of box.space

Name Use
space_object:auto_increment() Generate key + Insert a tuple
space_object:bsize() Get count of bytes
space_object:count() Get count of tuples
space_object:create_index() Create an index
space_object:delete() Delete a tuple
space_object:drop() Destroy a space
space_object:get() Select a tuple
space_object:insert() Insert a tuple
space_object:len() Get count of tuples
space_object:on_replace() Create a replace trigger
space_object:pairs() Prepare for iterating
space_object:put() Insert or replace a tuple
space_object:rename() Rename a space
space_object:replace() Insert or replace a tuple
space_object:run_triggers() Enable/disable a replace trigger

Continued on next page

140 Chapter 6. Reference

https://github.com/tarantool/tarantool/blob/1.7/src/box/lua/schema.lua

Tarantool, Release 1.7.4

Table 1 – continued from previous page
Name Use
space_object:select() Select one or more tuples
space_object:truncate() Delete all tuples
space_object:update() Update a tuple
space_object:upsert() Update a tuple
space_object.enabled Flag, true if space is enabled
space_object.field_count Required number of fields
space_object.id Numeric identifier of space
space_object.index Container of space’s indexes
box.space._cluster (Metadata) List of replica sets
box.space._func (Metadata) List of function tuples
box.space._index (Metadata) List of indexes
box.space._priv (Metadata) List of privileges
box.space._schema (Metadata) List of schemas
box.space._space (Metadata) List of spaces
box.space._user (Metadata) List of users

object space_object

space_object:auto_increment(tuple)
Insert a new tuple using an auto-increment primary key. The space specified by space_object
must have an unsigned or integer or numeric primary key index of type TREE. The primary-key
field will be incremented before the insert.

Parameters

• space_object (space_object) – an object reference

• tuple (table/tuple) – tuple’s fields, other than the primary-key field

Return the inserted tuple.

Rtype tuple

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Possible errors: index has wrong type or primary-key indexed field is not a number.

Example:

tarantool> box.space.tester:auto_increment{'Fld#1', 'Fld#2'}

- [1, 'Fld#1', 'Fld#2']
...
tarantool> box.space.tester:auto_increment{'Fld#3'}

- [2, 'Fld#3']
...

space_object:bsize()

Parameters

• space_object (space_object) – an object reference

Return Number of bytes in the space.

Example:

6.1. Built-in modules reference 141

Tarantool, Release 1.7.4

tarantool> box.space.tester:bsize()

- 22
...

Note re storage engine: vinyl does not support bsize().

space_object:count([key][, iterator])
Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – primary-key field values, must be passed as a Lua table if key
is multi-part

• iterator – comparison method

Return Number of tuples.

Example:

tarantool> box.space.tester:count(2, {iterator='GE'})

- 1
...

space_object:create_index(index-name[, options])
Create an index. It is mandatory to create an index for a space before trying to insert tuples into
it, or select tuples from it. The first created index, which will be used as the primary-key index,
must be unique.

Parameters

• space_object (space_object) – an object reference

• index_name (string) – name of index, which should not be a number and should
not contain special characters

• options (table) –

Return index object

Rtype index_object

Options for space_object:create_index:

142 Chapter 6. Reference

Tarantool, Release 1.7.4

Name Effect Type Default
type type of index string (‘HASH’ or ‘TREE’ or ‘BITSET’ or

‘RTREE’)
‘TREE’

id unique identi-
fier

number last index’s id,
+1

unique index is
unique

boolean true

if_not_exists no error if du-
plicate name

boolean false

parts field-numbers
+ types

{field_no, ‘unsigned’ or ‘string’ or ‘integer’
or ‘number’ or ‘array’ or ‘scalar’}

{1, 'un-
signed'}

dimension affects
RTREE
only

number 2

distance affects
RTREE
only

string (‘euclid’ or ‘manhattan’) ‘euclid’

bloom_fpr affects vinyl
only

number vinyl_bloom_fpr

page_size affects vinyl
only

number vinyl_page_size

range_size affects vinyl
only

number vinyl_range_size

run_count_per_levelaffects vinyl
only

number vinyl_run_count_per_level

run_size_ratioaffects vinyl
only

number vinyl_run_size_ratio

Note re storage engine: vinyl has extra options which by default are based on configuration
parameters vinyl_bloom_fpr, vinyl_page_size, vinyl_range_size, vinyl_run_count_per_level,
and vinyl_run_size_ratio – see the description of those parameters. The current values can be
seen by selecting from box.space._index.

Possible errors: too many parts. Index ‘. . . ’ already exists. Primary key must be unique.

tarantool> s = box.space.space55

...
tarantool> s:create_index('primary', {unique = true, parts = {1, 'unsigned', 2, 'string'}})

...

Details about index field types:

The six index field types (unsigned | string | integer | number | array | scalar) differ depending on what
values are allowed, and what index types are allowed.

• unsigned: unsigned integers between 0 and 18446744073709551615, about 18 quintillion. May
also be called ‘uint’ or ‘num’, but ‘num’ is deprecated. Legal in memtx TREE or HASH indexes,
and in vinyl TREE indexes.

• string: any set of octets, up to the maximum length. May also be called ‘str’. Legal in memtx
TREE or HASH or BITSET indexes, and in vinyl TREE indexes.

• integer: integers between -9223372036854775808 and 18446744073709551615. May also be called
‘int’. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

6.1. Built-in modules reference 143

Tarantool, Release 1.7.4

• number: integers between -9223372036854775808 and 18446744073709551615, single-precision
floating point numbers, or double-precision floating point numbers. Legal in memtx TREE or
HASH indexes, and in vinyl TREE indexes.

• array: array of integers between -9223372036854775808 and 9223372036854775807. Legal in
memtx RTREE indexes.

• scalar: null (input with msgpack.NULL or yaml.NULL or json.NULL), booleans (true or false), or
integers between -9223372036854775808 and 18446744073709551615, or single-precision floating
point numbers, or double-precison floating-point numbers, or strings. When there is a mix of
types, the key order is: null, then booleans, then numbers, then strings. Legal in memtx TREE
or HASH indexes, and in vinyl TREE indexes.

Index field types to use in create_index

In-
dex
field
type

What can be in it Where is it legal Exam-
ples

un-
signed

integers between 0 and 18446744073709551615 memtx TREE or
HASH indexes,
vinyl TREE
indexes

123456

string strings – any set of octets memtx TREE or
HASH indexes
vinyl TREE
indexes

‘A B
C’ ‘\65
\66
\67’

inte-
ger

integers between -9223372036854775808 and
18446744073709551615

memtx TREE or
HASH indexes,
vinyl TREE
indexes

-2^63

num-
ber

integers between -9223372036854775808 and
18446744073709551615, single-precision floating point
numbers, double-precision floating point numbers

memtx TREE or
HASH indexes,
vinyl TREE
indexes

1.234
-44
1.447e+44

ar-
ray

array of integers between -9223372036854775808 and
9223372036854775807

memtx RTREE
indexes

{10,
11} {3,
5, 9,
10}

scalar null, booleans (true or false), integers between -
9223372036854775808 and 18446744073709551615, single-
precision floating point numbers, double-precision floating
point numbers, strings

memtx TREE or
HASH indexes,
vinyl TREE
indexes

null
true -1
1.234 ‘’
‘ру’

Note re storage engine: vinyl supports only the TREE index type, and vinyl secondary indexes must
be created before tuples are inserted.

space_object:delete(key)
Delete a tuple identified by a primary key.

Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – primary-key field values, must be passed as a Lua table if key
is multi-part

144 Chapter 6. Reference

Tarantool, Release 1.7.4

Return the deleted tuple

Rtype tuple

Complexity factors: Index size, Index type

Note:

Note re storage engine:

vinyl will return nil, rather than the deleted tuple.

Example:

tarantool> box.space.tester:delete(1)

- [1, 'My first tuple']
...
tarantool> box.space.tester:delete(1)

...
tarantool> box.space.tester:delete('a')

- error: 'Supplied key type of part 0 does not match index part type:
expected unsigned'

...

space_object:drop()
Drop a space.

Parameters

• space_object (space_object) – an object reference

Return nil

Possible errors: If space_object does not exist.

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.space_that_does_not_exist:drop()

space_object:get(key)
Search for a tuple in the given space.

Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – value to be matched against the index key, which may be
multi-part.

Return the tuple whose index key matches key, or nil.

Rtype tuple

Possible errors: If space_object does not exist.

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

The box.space...select function returns a set of tuples as a Lua table; the box.space...get function
returns at most a single tuple. And it is possible to get the first tuple in a space by appending [1].

6.1. Built-in modules reference 145

Tarantool, Release 1.7.4

Therefore box.space.tester:get{1} has the same effect as box.space.tester:select{1}[1], if exactly
one tuple is found.

Example:

box.space.tester:get{1}

space_object:insert(tuple)
Insert a tuple into a space.

Parameters

• space_object (space_object) – an object reference

• tuple (tuple/table) – tuple to be inserted.

Return the inserted tuple

Rtype tuple

Possible errors: If a tuple with the same unique-key value already exists, returns
ER_TUPLE_FOUND.

Example:

tarantool> box.space.tester:insert{5000,'tuple number five thousand'}

- [5000, 'tuple number five thousand']
...

space_object:len()

Parameters

• space_object (space_object) – an object reference

Return Number of tuples in the space.

Example:

tarantool> box.space.tester:len()

- 2
...

Note re storage engine: vinyl does not support len(). One possible workaround is to say #select(.
..).

space_object:on_replace(trigger-function[, old-trigger-function])
Create a “replace trigger”. The trigger-function will be executed whenever a replace() or insert()
or update() or upsert() or delete() happens to a tuple in <space-name>.

Parameters

• trigger-function (function) – function which will become the trigger function

• old-trigger-function (function) – existing trigger function which will be replaced by
trigger-function

Return nil or function pointer

If the parameters are (nil, old-trigger-function), then the old trigger is deleted. Details about
trigger characteristics are in the triggers section.

Example #1:

146 Chapter 6. Reference

Tarantool, Release 1.7.4

tarantool> function f ()
> x = x + 1
> end

tarantool> box.space.X:on_replace(f)

The trigger-function can have two parameters: old tuple, new tuple. For example, the following
code causes nil to be printed when the insert request is processed, and causes [1, ‘Hi’] to be printed
when the delete request is processed:

box.schema.space.create('space_1')
box.space.space_1:create_index('space_1_index',{})
function on_replace_function (old, new) print(old) end
box.space.space_1:on_replace(on_replace_function)
box.space.space_1:insert{1,'Hi'}
box.space.space_1:delete{1}

Example #2:

The following series of requests will create a space, create an index, create a function which
increments a counter, create a trigger, do two inserts, drop the space, and display the counter
value - which is 2, because the function is executed once after each insert.

tarantool> s = box.schema.space.create('space53')
tarantool> s:create_index('primary', {parts = {1, 'unsigned'}})
tarantool> function replace_trigger()

> replace_counter = replace_counter + 1
> end

tarantool> s:on_replace(replace_trigger)
tarantool> replace_counter = 0
tarantool> t = s:insert{1, 'First replace'}
tarantool> t = s:insert{2, 'Second replace'}
tarantool> s:drop()
tarantool> replace_counter

space_object:pairs([key[, iterator]])
Search for a tuple or a set of tuples in the given space, and allow iterating over one tuple at a
time.

Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – value to be matched against the index key, which may be
multi-part

• iterator – see index_object:pairs

Return iterator which can be used in a for/end loop or with totable()

Possible errors: No such space; wrong type.

Complexity factors: Index size, Index type.

For examples of complex pairs requests, where one can specify which index to search and what
condition to use (for example “greater than” instead of “equal to”), see the later section in-
dex_object:pairs.

Example:

6.1. Built-in modules reference 147

https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Release 1.7.4

tarantool> s = box.schema.space.create('space33')

...
tarantool> -- index 'X' has default parts {1, 'unsigned'}
tarantool> s:create_index('X', {})

...
tarantool> s:insert{0, 'Hello my '}, s:insert{1, 'Lua world'}

- [0, 'Hello my ']
- [1, 'Lua world']
...
tarantool> tmp = ''

...
tarantool> for k, v in s:pairs() do

> tmp = tmp .. v[2]
> end

...
tarantool> tmp

- Hello my Lua world
...

space_object:rename(space-name)
Rename a space.

Parameters

• space_object (space_object) – an object reference

• space-name (string) – new name for space

Return nil

Possible errors: space_object does not exist.

Example:

tarantool> box.space.space55:rename('space56')

...
tarantool> box.space.space56:rename('space55')

...

space_object:replace(tuple)
space_object:put(tuple)

Insert a tuple into a space. If a tuple with the same primary key already exists, box.space...
:replace() replaces the existing tuple with a new one. The syntax variants box.space...:replace()
and box.space...:put() have the same effect; the latter is sometimes used to show that the effect
is the converse of box.space...:get().

Parameters

• space_object (space_object) – an object reference

• tuple (table/tuple) – tuple to be inserted

Return the inserted tuple.

148 Chapter 6. Reference

Tarantool, Release 1.7.4

Rtype tuple

Possible errors: If a different tuple with the same unique-key value already exists, returns
ER_TUPLE_FOUND. (This will only happen if there is a unique secondary index.)

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.tester:replace{5000, 'tuple number five thousand'}

space_object:run_triggers(true|false)
At the time that a trigger is defined, it is automatically enabled - that is, it will be executed.
Replace triggers can be disabled with box.space.space-name:run_triggers(false) and re-enabled
with box.space.space-name:run_triggers(true).

Return nil

Example:

The following series of requests will associate an existing function named F with an existing space
named T, associate the function a second time with the same space (so it will be called twice),
disable all triggers of T, and delete each trigger by replacing with nil.

tarantool> box.space.T:on_replace(F)
tarantool> box.space.T:on_replace(F)
tarantool> box.space.T:run_triggers(false)
tarantool> box.space.T:on_replace(nil, F)
tarantool> box.space.T:on_replace(nil, F)

space_object:select([key])
Search for a tuple or a set of tuples in the given space.

Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – value to be matched against the index key, which may be
multi-part.

Return the tuples whose primary-key fields are equal to the fields of the passed key. If
the number of passed fields is less than the number of fields in the primary key, then
only the passed fields are compared, so select{1,2} will match a tuple whose primary
key is {1,2,3}.

Rtype array of tuples

Possible errors: No such space; wrong type.

Complexity factors: Index size, Index type.

Example:

tarantool> s = box.schema.space.create('tmp', {temporary=true})

...
tarantool> s:create_index('primary',{parts = {1,'unsigned', 2, 'string'}})

...
tarantool> s:insert{1,'A'}

- [1, 'A']

(continues on next page)

6.1. Built-in modules reference 149

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool> s:insert{1,'B'}

- [1, 'B']
...
tarantool> s:insert{1,'C'}

- [1, 'C']
...
tarantool> s:insert{2,'D'}

- [2, 'D']
...
tarantool> -- must equal both primary-key fields
tarantool> s:select{1,'B'}

- - [1, 'B']
...
tarantool> -- must equal only one primary-key field
tarantool> s:select{1}

- - [1, 'A']
- [1, 'B']
- [1, 'C']

...
tarantool> -- must equal 0 fields, so returns all tuples
tarantool> s:select{}

- - [1, 'A']
- [1, 'B']
- [1, 'C']
- [2, 'D']

...

For examples of complex select requests, where one can specify which index to search and what
condition to use (for example “greater than” instead of “equal to”) and how many tuples to return,
see the later section index_object:select.

space_object:truncate()
Deletes all tuples.

Parameters

• space_object (space_object) – an object reference

Complexity factors: Index size, Index type, Number of tuples accessed.

Return nil

Note: Note that truncate must be called only by the user who created the space OR un-
der a setuid function created by that user. Read more about setuid functions in reference on
box.schema.func.create().

Example:

150 Chapter 6. Reference

Tarantool, Release 1.7.4

tarantool> box.space.tester:truncate()

...
tarantool> box.space.tester:len()

- 0
...

space_object:update(key, {{operator, field_no, value}, ...})
Update a tuple.

The update function supports operations on fields — assignment, arithmetic (if the field is nu-
meric), cutting and pasting fragments of a field, deleting or inserting a field. Multiple operations
can be combined in a single update request, and in this case they are performed atomically and
sequentially. Each operation requires specification of a field number. When multiple operations
are present, the field number for each operation is assumed to be relative to the most recent
state of the tuple, that is, as if all previous operations in a multi-operation update have already
been applied. In other words, it is always safe to merge multiple update invocations into a single
invocation, with no change in semantics.

Possible operators are:

• + for addition (values must be numeric)

• - for subtraction (values must be numeric)

• & for bitwise AND (values must be unsigned numeric)

• | for bitwise OR (values must be unsigned numeric)

• ^ for bitwise XOR (exclusive OR) (values must be unsigned numeric)

• : for string splice

• ! for insertion

• # for deletion

• = for assignment

For ! and = operations the field number can be -1, meaning the last field in the tuple.

Parameters

• space_object (space_object) – an object reference

• key (scalar/table) – primary-key field values, must be passed as a Lua table if key
is multi-part

• operator (string) – operation type represented in string

• field_no (number) – what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

• value (lua_value) – what value will be applied

Return the updated tuple.

Rtype tuple

Possible errors: it is illegal to modify a primary-key field.

Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

6.1. Built-in modules reference 151

Tarantool, Release 1.7.4

Thus, in the instruction:

s:update(44, {{'+', 1, 55 }, {'=', 3, 'x'}})

the primary-key value is 44, the operators are '+' and '=' meaning add a value to a field and
then assign a value to a field, the first affected field is field 1 and the value which will be added
to it is 55, the second affected field is field 3 and the value which will be assigned to it is 'x'.

Example:

Assume that initially there is a space named tester with a primary-key index whose type is
unsigned. There is one tuple, with field[1] = 999 and field[2] = 'A'.

In the update: box.space.tester:update(999, {{'=', 2, 'B'}}) The first argument is tester, that
is, the affected space is tester. The second argument is 999, that is, the affected tuple is identified
by primary key value = 999. The third argument is =, that is, there is one operation — assignment
to a field. The fourth argument is 2, that is, the affected field is field[2]. The fifth argument is
'B', that is, field[2] contents change to 'B'. Therefore, after this update, field[1] = 999 and
field[2] = 'B'.

In the update: box.space.tester:update({999}, {{'=', 2, 'B'}}) the arguments are the same,
except that the key is passed as a Lua table (inside braces). This is unnecessary when the
primary key has only one field, but would be necessary if the primary key had more than one
field. Therefore, after this update, field[1] = 999 and field[2] = 'B' (no change).

In the update: box.space.tester:update({999}, {{'=', 3, 1}}) the arguments are the same, except
that the fourth argument is 3, that is, the affected field is field[3]. It is okay that, until now, field[3]
has not existed. It gets added. Therefore, after this update, field[1] = 999, field[2] = 'B', field[3]
= 1.

In the update: box.space.tester:update({999}, {{'+', 3, 1}}) the arguments are the same, except
that the third argument is '+', that is, the operation is addition rather than assignment. Since
field[3] previously contained 1, this means we’re adding 1 to 1. Therefore, after this update,
field[1] = 999, field[2] = 'B', field[3] = 2.

In the update: box.space.tester:update({999}, {{'|', 3, 1}, {'=', 2, 'C'}}) the idea is to modify
two fields at once. The formats are '|' and =, that is, there are two operations, OR and
assignment. The fourth and fifth arguments mean that field[3] gets OR’ed with 1. The seventh
and eighth arguments mean that field[2] gets assigned 'C'. Therefore, after this update, field[1]
= 999, field[2] = 'C', field[3] = 3.

In the update: box.space.tester:update({999}, {{'#', 2, 1}, {'-', 2, 3}}) The idea is to delete
field[2], then subtract 3 from field[3]. But after the delete, there is a renumbering, so field[3]
becomes field[2]` before we subtract 3 from it, and that’s why the seventh argument is 2, not 3.
Therefore, after this update, field[1] = 999, field[2] = 0.

In the update: box.space.tester:update({999}, {{'=', 2, 'XYZ'}}) we’re making a long string
so that splice will work in the next example. Therefore, after this update, field[1] = 999, field[2]
= 'XYZ'.

In the update: box.space.tester:update({999}, {{':', 2, 2, 1, '!!'}}) The third argument is ':',
that is, this is the example of splice. The fourth argument is 2 because the change will occur
in field[2]. The fifth argument is 2 because deletion will begin with the second byte. The sixth
argument is 1 because the number of bytes to delete is 1. The seventh argument is '!!', because
'!!' is to be added at this position. Therefore, after this update, field[1] = 999, field[2] = 'X!!Z'.

space_object:upsert(tuple_value, {{operator, field_no, value}, ...})
Update or insert a tuple.

152 Chapter 6. Reference

Tarantool, Release 1.7.4

If there is an existing tuple which matches the key fields of tuple_value, then the request has
the same effect as space_object:update() and the {{operator, field_no, value}, ...} parameter is
used. If there is no existing tuple which matches the key fields of tuple_value, then the request
has the same effect as space_object:insert() and the {tuple_value} parameter is used. However,
unlike insert or update, upsert will not read a tuple and perform error checks before returning –
this is a design feature which enhances throughput but requires more caution on the part of the
user.

Parameters

• space_object (space_object) – an object reference

• tuple (table/tuple) – default tuple to be inserted, if analogue isn’t found

• operator (string) – operation type represented in string

• field_no (number) – what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

• value (lua_value) – what value will be applied

Return null

Possible errors: it is illegal to modify a primary-key field. It is illegal to use upsert with a space
that has a unique secondary index.

Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

Example:

box.space.tester:upsert({12,'c'}, {{'=', 3, 'a'}, {'=', 4, 'b'}})

space_object.enabled
Whether or not this space is enabled. The value is false if the space has no index.

space_object.field_count
The required field count for all tuples in this space. The field_count can be set initially with:
box.schema.space.create(..., {

... ,
field_count = field_count_value ,
...

})
The default value is 0, which means there is no required field count.

Example:

tarantool> box.space.tester.field_count

- 0
...

space_object.id
Ordinal space number. Spaces can be referenced by either name or number. Thus, if space tester
has id = 800, then box.space.tester:insert{0} and box.space[800]:insert{0} are equivalent requests.

Example:

tarantool> box.space.tester.id

(continues on next page)

6.1. Built-in modules reference 153

Tarantool, Release 1.7.4

(continued from previous page)

- 512
...

space_object.index
A container for all defined indexes. There is a Lua object of type box.index with methods to
search tuples and iterate over them in predefined order.

Rtype table

Example:

tarantool> #box.space.tester.index

- 1
...
tarantool> box.space.tester.index.primary.type

- TREE
...

box.space._cluster
_cluster is a system space for support of the replication feature.

box.space._func

_func is a system space with function tuples made by box.schema.func.create().

Tuples in this space contain the following fields:

• the numeric function id, a number,

• the function name,

• flag,

• a language name (optional): ‘LUA’ (default) or ‘C’.

The _func space does not include the function’s body. You continue to create Lua functions
in the usual way, by saying function function_name () ... end, without adding anything in
the _func space. The _func space only exists for storing function tuples so that their names
can be used within grant/revoke functions.

You can:

• Create a _func tuple with box.schema.func.create(),

• Drop a _func tuple with box.schema.func.drop(),

• Check whether a _func tuple exists with box.schema.func.exists().

Example:

In the following example, we create a function named ‘f7’, put it into Tarantool’s _func space and
grant ‘execute’ privilege for this function to ‘guest’ user.

tarantool> function f7()
> box.session.uid()
> end

...
tarantool> box.schema.func.create('f7')

(continues on next page)

154 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool> box.schema.user.grant('guest', 'execute', 'function', 'f7')

...
tarantool> box.schema.user.revoke('guest', 'execute', 'function', 'f7')

...

box.space._index
_index is a system space.

Tuples in this space contain the following fields:

• id (= id of space),

• iid (= index number within space),

• name,

• type,

• opts (e.g. unique option), [tuple-field-no, tuple-field-type . . .].

Here is what _index contains in a typical installation:

tarantool> box.space._index:select{}

- - [272, 0, 'primary', 'tree', {'unique': true}, [[0, 'string']]]
- [280, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [280, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [280, 2, 'name', 'tree', {'unique': true}, [[2, 'string']]]
- [281, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [281, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [281, 2, 'name', 'tree', {'unique': true}, [[2, 'string']]]
- [288, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned'], [1, 'unsigned']]]
- [288, 2, 'name', 'tree', {'unique': true}, [[0, 'unsigned'], [2, 'string']]]
- [289, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned'], [1, 'unsigned']]]
- [289, 2, 'name', 'tree', {'unique': true}, [[0, 'unsigned'], [2, 'string']]]
- [296, 0, 'primary', 'tree', {'unique': true}, [[0, 'unsigned']]]
- [296, 1, 'owner', 'tree', {'unique': false}, [[1, 'unsigned']]]
- [296, 2, 'name', 'tree', {'unique': true}, [[2, 'string']]]

...

box.space._priv
_priv is a system space where privileges are stored.

Tuples in this space contain the following fields:

• the numeric id of the user who gave the privilege (“grantor_id”),

• the numeric id of the user who received the privilege (“grantee_id”),

• the type of object: ‘space’, ‘function’ or ‘universe’,

• the numeric id of the object,

• the type of operation: “read” = 1, “write” = 2, “execute” = 4, or a combination such as
“read,write,execute”.

You can:

6.1. Built-in modules reference 155

Tarantool, Release 1.7.4

• Grant a privilege with box.schema.user.grant().

• Revoke a privilege with box.schema.user.revoke().

Note:

• Generally, privileges are granted or revoked by the owner of the object (the user who created it),
or by the ‘admin’ user.

• Before dropping any objects or users, make sure that all their associated privileges have been
revoked.

• Only the ‘admin’ user can grant privileges for the ‘universe’.

• Only the ‘admin’ user or the creator of a space can drop, alter, or truncate the space.

• Only the ‘admin’ user or the creator of a user can change a different user’s password.

box.space._schema
_schema is a system space.

This space contains the following tuples:

• version tuple with version information for this Tarantool instance,

• cluster tuple with the instance’s replica set ID,

• max_id tuple with the maximal space ID,

• once... tuples that correspond to specific box.once() blocks from the instance’s initialization file.
The first field in these tuples contains the key value from the corresponding box.once() block
prefixed with ‘once’ (e.g. oncehello), so you can easily find a tuple that corresponds to a specific
box.once() block.

Example:

Here is what _schema contains in a typical installation (notice the tuples for two box.once() blocks,
'oncebye' and 'oncehello'):

tarantool> box.space._schema:select{}

- - ['cluster', 'b4e15788-d962-4442-892e-d6c1dd5d13f2']
- ['max_id', 512]
- ['oncebye']
- ['oncehello']
- ['version', 1, 7, 2]

box.space._space
_space is a system space.

Tuples in this space contain the following fields:

• id,

• owner (= id of user who owns the space),

• name, engine, field_count,

• flags (e.g. temporary), format.

These fields are established by space.create().

Example #1:

156 Chapter 6. Reference

Tarantool, Release 1.7.4

The following function will display all simple fields in all tuples of _space.

function example()
local ta = {}
local i, line
for k, v in box.space._space:pairs() do
i = 1
line = ''
while i <= #v do
if type(v[i]) ~= 'table' then
line = line .. v[i] .. ' '

end
i = i + 1
end
table.insert(ta, line)

end
return ta

end

Here is what example() returns in a typical installation:

tarantool> example()

- - '272 1 _schema memtx 0 '
- '280 1 _space memtx 0 '
- '281 1 _vspace sysview 0 '
- '288 1 _index memtx 0 '
- '296 1 _func memtx 0 '
- '304 1 _user memtx 0 '
- '305 1 _vuser sysview 0 '
- '312 1 _priv memtx 0 '
- '313 1 _vpriv sysview 0 '
- '320 1 _cluster memtx 0 '
- '512 1 tester memtx 0 '
- '513 1 origin vinyl 0 '
- '514 1 archive memtx 0 '

...

Example #2:

The following requests will create a space using box.schema.space.create() with a format clause. Then
it retrieves the _space tuple for the new space. This illustrates the typical use of the format clause, it
shows the recommended names and data types for the fields.

tarantool> box.schema.space.create('TM', {
> id = 12345,
> format = {
> [1] = {["name"] = "field_1"},
> [2] = {["type"] = "unsigned"}
> }
> })

- index: []
on_replace: 'function: 0x41c67338'
temporary: false
id: 12345
engine: memtx
enabled: false

(continues on next page)

6.1. Built-in modules reference 157

Tarantool, Release 1.7.4

(continued from previous page)

name: TM
field_count: 0

- created
...
tarantool> box.space._space:select(12345)

- - [12345, 1, 'TM', 'memtx', 0, {}, [{'name': 'field_1'}, {'type': 'unsigned'}]]
...

box.space._user
_user is a system space where user-names and password hashes are stored.

Tuples in this space contain the following fields:

• the numeric id of the tuple (“id”),

• the numeric id of the tuple’s creator,

• the name,

• the type: ‘user’ or ‘role’,

• optional password.

There are four special tuples in the _user space: ‘guest’, ‘admin’, ‘public’ and ‘replication’.

Name ID Type Description
guest 0 user Default user when connecting remotely. Usually an untrusted user with few priv-

ileges.
ad-
min

1 user Default user when using Tarantool as a console. Usually an administrative user
with all privileges.

pub-
lic

2 role Pre-defined role, automatically assigned to new users when they are created
with box.schema.user.create(user-name). Therefore, a convenient way to grant
‘read’ on space ‘t’ to every user that will ever exist is with box.schema.role.
grant('public','read','space','t').

repli-
ca-
tion

3 role Pre-defined role, assigned by the ‘admin’ user to users who need to use replication
features.

To select a tuple from the _user space, use box.space._user:select(). For example, here is what happens
with a select for user id = 0, which is the ‘guest’ user, which by default has no password:

tarantool> box.space._user:select{0}

- - [0, 1, 'guest', 'user']
...

Warning: To change tuples in the _user space, do not use ordinary box.space functions for insert or
update or delete. The _user space is special, so there are special functions which have appropriate
error checking.

To create a new user, use box.schema.user.create():
box.schema.user.create(user-name)
box.schema.user.create(user-name, {if_not_exists = true})
box.schema.user.create(user-name, {password = password})

158 Chapter 6. Reference

Tarantool, Release 1.7.4

To change the user’s password, use box.schema.user.password():
-- To change the current user's password
box.schema.user.passwd(password)

-- To change a different user's password
-- (usually only 'admin' can do it)
box.schema.user.passwd(user-name, password)
To drop a user, use box.schema.user.drop():
box.schema.user.drop(user-name)
To check whether a user exists, use box.schema.user.exists(), which returns true or false:
box.schema.user.exists(user-name)
To find what privileges a user has, use box.schema.user.info():
box.schema.user.info(user-name)

Note: The maximum number of users is 32.

Example:

Here is a session which creates a new user with a strong password, selects a tuple in the _user space,
and then drops the user.

tarantool> box.schema.user.create('JeanMartin', {password = 'Iwtso_6_os$$'})

...
tarantool> box.space._user.index.name:select{'JeanMartin'}

- - [17, 1, 'JeanMartin', 'user', {'chap-sha1': 't3xjUpQdrt857O+YRvGbMY5py8Q='}]
...
tarantool> box.schema.user.drop('JeanMartin')

...

Example: use box.space functions to read _space tuples

This function will illustrate how to look at all the spaces, and for each display: approximately how many
tuples it contains, and the first field of its first tuple. The function uses Tarantool box.space functions len()
and pairs(). The iteration through the spaces is coded as a scan of the _space system space, which contains
metadata. The third field in _space contains the space name, so the key instruction space_name = v[3]
means space_name is the space_name field in the tuple of _space that we’ve just fetched with pairs(). The
function returns a table:

function example()
local tuple_count, space_name, line
local ta = {}
for k, v in box.space._space:pairs() do
space_name = v[3]
if box.space[space_name].index[0] ~= nil then
tuple_count = '1 or more'

else
tuple_count = '0'

end
line = space_name .. ' tuple_count =' .. tuple_count
if tuple_count == '1 or more' then
for k1, v1 in box.space[space_name]:pairs() do

(continues on next page)

6.1. Built-in modules reference 159

Tarantool, Release 1.7.4

(continued from previous page)

line = line .. '. first field in first tuple = ' .. v1[1]
break

end
end
table.insert(ta, line)

end
return ta

end

And here is what happens when one invokes the function:

tarantool> example()

- - _schema tuple_count =1 or more. first field in first tuple = cluster
- _space tuple_count =1 or more. first field in first tuple = 272
- _vspace tuple_count =1 or more. first field in first tuple = 272
- _index tuple_count =1 or more. first field in first tuple = 272
- _vindex tuple_count =1 or more. first field in first tuple = 272
- _func tuple_count =1 or more. first field in first tuple = 1
- _vfunc tuple_count =1 or more. first field in first tuple = 1
- _user tuple_count =1 or more. first field in first tuple = 0
- _vuser tuple_count =1 or more. first field in first tuple = 0
- _priv tuple_count =1 or more. first field in first tuple = 1
- _vpriv tuple_count =1 or more. first field in first tuple = 1
- _cluster tuple_count =1 or more. first field in first tuple = 1

...

Example: use box.space functions to organize a _space tuple

The objective is to display field names and field types of a system space – using metadata to find metadata.

To begin: how can one select the _space tuple that describes _space?

A simple way is to look at the constants in box.schema, which tell us that there is an item named SPACE_ID
== 288, so these statements will retrieve the correct tuple:

box.space._space:select{ 288 }

or

box.space._space:select{ box.schema.SPACE_ID }

Another way is to look at the tuples in box.space._index, which tell us that there is a secondary index named
‘name’ for space number 288, so this statement also will retrieve the correct tuple:

box.space._space.index.name:select{ '_space' }

However, the retrieved tuple is not easy to read:

tarantool> box.space._space.index.name:select{'_space'}

- - [280, 1, '_space', 'memtx', 0, {}, [{'name': 'id', 'type': 'num'}, {'name': 'owner',

'type': 'num'}, {'name': 'name', 'type': 'str'}, {'name': 'engine', 'type': 'str'},
{'name': 'field_count', 'type': 'num'}, {'name': 'flags', 'type': 'str'}, {

(continues on next page)

160 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

'name': 'format', 'type': '*'}]]
...

It looks disorganized because field number 7 has been formatted with recommended names and data types.
How can one get those specific sub-fields? Since it’s visible that field number 7 is an array of maps, this for
loop will do the organizing:

tarantool> do
> local tuple_of_space = box.space._space.index.name:get{'_space'}
> for _, field in ipairs(tuple_of_space[7]) do
> print(field.name .. ', ' .. field.type)
> end
> end

id, num
owner, num
name, str
engine, str
field_count, num
flags, str
format, *

...

Submodule box.stat

The box.stat submodule provides access to request and network statistics. Show the average number of
requests per second, and the total number of requests since startup, broken down by request type and
network events statistics.

tarantool> type(box.stat), type(box.stat.net) -- virtual tables

- table
- table
...
tarantool> box.stat, box.stat.net

- net: &0 []
- *0
...
tarantool> box.stat()

- DELETE:

total: 1873949
rps: 123

SELECT:
total: 1237723
rps: 4099

INSERT:
total: 0
rps: 0

EVAL:
total: 0
rps: 0

CALL:
total: 0

(continues on next page)

6.1. Built-in modules reference 161

Tarantool, Release 1.7.4

(continued from previous page)

rps: 0
REPLACE:
total: 1239123
rps: 7849

UPSERT:
total: 0
rps: 0

AUTH:
total: 0
rps: 0

ERROR:
total: 0
rps: 0

UPDATE:
total: 0
rps: 0

...
tarantool> box.stat().DELETE -- a selected item of the table

- total: 0
rps: 0

...
tarantool> box.stat.net()

- SENT:

total: 0
rps: 0

EVENTS:
total: 2
rps: 0

LOCKS:
total: 6
rps: 0

RECEIVED:
total: 0
rps: 0

...

Function box.snapshot

box.snapshot()
Take a snapshot of all data and store it in memtx_dir/<latest-lsn>.snap. To take a snapshot, Tarantool
first enters the delayed garbage collection mode for all data. In this mode, tuples which were allocated
before the snapshot has started are not freed until the snapshot has finished. To preserve consistency
of the primary key, used to iterate over tuples, a copy-on-write technique is employed. If the master
process changes part of a primary key, the corresponding process page is split, and the snapshot process
obtains an old copy of the page. In effect, the snapshot process uses multi-version concurrency control
in order to avoid copying changes which are superseded while it is running.

Since a snapshot is written sequentially, one can expect a very high write performance (averaging to
80MB/second on modern disks), which means an average database instance gets saved in a matter of
minutes.

Note: As long as there are any changes to the parent index memory through concurrent updates,
there are going to be page splits, and therefore you need to have some extra free memory to run this

162 Chapter 6. Reference

Tarantool, Release 1.7.4

command. 10% of memtx_memory is, on average, sufficient. This statement waits until a snapshot is
taken and returns operation result.

Note: Change notice: Prior to Tarantool version 1.6.6, the snapshot process caused a fork, which could
cause occasional latency spikes. Starting with Tarantool version 1.6.6, the snapshot process creates a
consistent read view and writes this view to the snapshot file from a separate thread.

Although box.snapshot() does not cause a fork, there is a separate fiber which may produce snapshots
at regular intervals – see the discussion of the checkpoint daemon.

Example:

tarantool> box.info.version

- 1.7.0-1216-g73f7154
...
tarantool> box.snapshot()

- ok
...
tarantool> box.snapshot()

- error: can't save snapshot, errno 17 (File exists)
...

Taking a snapshot does not cause the server to start a new write-ahead log. Once a snapshot is taken,
old WALs can be deleted as long as all replicated data is up to date. But the WAL which was current
at the time box.snapshot() started must be kept for recovery, since it still contains log records written
after the start of box.snapshot().

An alternative way to save a snapshot is to send a SIGUSR1 signal to the instance. While this approach
could be handy, it is not recommended for use in automation: a signal provides no way to find out
whether the snapshot was taken successfully or not.

Submodule box.tuple

The box.tuple submodule provides read-only access for the tuple userdata type. It allows, for a single tuple:
selective retrieval of the field contents, retrieval of information about size, iteration over all the fields, and
conversion to a Lua table.

box.tuple.new(value)
Construct a new tuple from either a scalar or a Lua table. Alternatively, one can get new tuples from
tarantool’s select or insert or replace or update requests, which can be regarded as statements that do
new() implicitly.

Parameters

• value (lua-value) – the value that will become the tuple contents.

Return a new tuple

Rtype tuple

In the following example, x will be a new table object containing one tuple and t will be a new tuple
object. Saying t returns the entire tuple t.

Example:

6.1. Built-in modules reference 163

Tarantool, Release 1.7.4

tarantool> x = box.space.tester:insert{
> 33,
> tonumber('1'),
> tonumber64('2')
> }:totable()

...
tarantool> t = box.tuple.new{'abc', 'def', 'ghi', 'abc'}

...
tarantool> t

- ['abc', 'def', 'ghi', 'abc']
...

object tuple_object

#<tuple_object>
The # operator in Lua means “return count of components”. So, if t is a tuple instance, #t will
return the number of fields.

Rtype number

In the following example, a tuple named t is created and then the number of fields in t is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4'}

...
tarantool> #t

- 4
...

tuple_object:bsize()
If t is a tuple instance, t:bsize() will return the number of bytes in the tuple. With the memtx
storage engine the default maximum number is one megabyte. Every field has one or more “length”
bytes preceding the actual contents, so bsize() returns a value which is slightly greater than the
sum of the lengths of the contents.

Return number of bytes

Rtype number

In the following example, a tuple named t is created which has three fields, and for each field it
takes one byte to store the length and three bytes to store the contents, and a bit for overhead,
so bsize() returns 3*(1+3)+1.

tarantool> t = box.tuple.new{'aaa', 'bbb', 'ccc'}

...
tarantool> t:bsize()

- 13
...

<tuple_object>(field-number)
If t is a tuple instance, t[field-number] will return the field numbered field-number in the tuple.
The first field is t[1].

164 Chapter 6. Reference

Tarantool, Release 1.7.4

Return field value.

Rtype lua-value

In the following example, a tuple named t is created and then the second field in t is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4'}

...
tarantool> t[2]

- Fld#2
...

tuple_object:find([field-number], search-value)
tuple_object:findall([field-number], search-value)

If t is a tuple instance, t:find(search-value) will return the number of the first field in t that
matches the search value, and t:findall(search-value [, search-value ...]) will return numbers of all
fields in t that match the search value. Optionally one can put a numeric argument field-number
before the search-value to indicate “start searching at field number field-number.”

Return the number of the field in the tuple.

Rtype number

In the following example, a tuple named t is created and then: the number of the first field in t
which matches ‘a’ is returned, then the numbers of all the fields in t which match ‘a’ are returned,
then the numbers of all the fields in t which match ‘a’ and are at or after the second field are
returned.

tarantool> t = box.tuple.new{'a', 'b', 'c', 'a'}

...
tarantool> t:find('a')

- 1
...
tarantool> t:findall('a')

- 1
- 4
...
tarantool> t:findall(2, 'a')

- 4
...

tuple_object:transform(start-field-number, fields-to-remove[, field-value, ...])
If t is a tuple instance, t:transform(start-field-number,fields-to-remove) will return a tuple where,
starting from field start-field-number, a number of fields (fields-to-remove) are removed. Option-
ally one can add more arguments after fields-to-remove to indicate new values that will replace
what was removed.

Parameters

• start-field-number (integer) – base 1, may be negative

• fields-to-remove (integer) –

• field-value(s) (lua-value) –

6.1. Built-in modules reference 165

Tarantool, Release 1.7.4

Return tuple

Rtype tuple

In the following example, a tuple named t is created and then, starting from the second field, two
fields are removed but one new one is added, then the result is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5'}

...
tarantool> t:transform(2, 2, 'x')

- ['Fld#1', 'x', 'Fld#4', 'Fld#5']
...

tuple_object:unpack([start-field-number[, end-field-number]])
If t is a tuple instance, t:unpack() will return all fields, t:unpack(1) will return all fields starting
with field number 1, t:unpack(1,5) will return all fields between field number 1 and field number
5.

Return field(s) from the tuple.

Rtype lua-value(s)

In the following example, a tuple named t is created and then all its fields are selected, then the
result is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5'}

...
tarantool> t:unpack()

- Fld#1
- Fld#2
- Fld#3
- Fld#4
- Fld#5
...

tuple_object:totable([start-field-number[, end-field-number]])
If t is a tuple instance, t:totable() will return all fields, t:totable(1) will return all fields starting
with field number 1, t:totable(1,5) will return all fields between field number 1 and field number
5. It is preferable to use t:totable() rather than t:unpack().

Return field(s) from the tuple

Rtype lua-table

In the following example, a tuple named t is created, then all its fields are selected, then the result
is returned.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5'}

...
tarantool> t:totable()

- ['Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5']
...

tuple_object:pairs()
In Lua, lua-table-value:pairs() is a method which returns: function, lua-table-value, nil. Tarantool

166 Chapter 6. Reference

Tarantool, Release 1.7.4

has extended this so that tuple-value:pairs() returns: function, tuple-value, nil. It is useful for
Lua iterators, because Lua iterators traverse a value’s components until an end marker is reached.

Return function, tuple-value, nil

Rtype function, lua-value, nil

In the following example, a tuple named t is created and then all its fields are selected using a
Lua for-end loop.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5'}

...
tarantool> tmp = ''

...
tarantool> for k, v in t:pairs() do

> tmp = tmp .. v
> end

...
tarantool> tmp

- Fld#1Fld#2Fld#3Fld#4Fld#5
...

tuple_object:update({{operator, field_no, value}, ...})
Update a tuple.

This function updates a tuple which is not in a space. Compare the function box.space.space-
name:update(key, {{format, field_no, value}, ...}) which updates a tuple in a space.

For details: see the description for operator, field_no, and value in the section box.space.space-
name:update{key, format, {field_number, value}. . .).

Parameters

• operator (string) – operation type represented in string (e.g. ‘=’ for ‘assign new
value’)

• field_no (number) – what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

• value (lua_value) – what value will be applied

Return new tuple

Rtype tuple

In the following example, a tuple named t is created and then its second field is updated to equal
‘B’.

tarantool> t = box.tuple.new{'Fld#1', 'Fld#2', 'Fld#3', 'Fld#4', 'Fld#5'}

...
tarantool> t:update({{'=', 2, 'B'}})

- ['Fld#1', 'B', 'Fld#3', 'Fld#4', 'Fld#5']
...

6.1. Built-in modules reference 167

Tarantool, Release 1.7.4

Example

This function will illustrate how to convert tuples to/from Lua tables and lists of scalars:

tuple = box.tuple.new({scalar1, scalar2, ... scalar_n}) -- scalars to tuple
lua_table = {tuple:unpack()} -- tuple to Lua table
lua_table = tuple:totable() -- tuple to Lua table
scalar1, scalar2, ... scalar_n = tuple:unpack() -- tuple to scalars
tuple = box.tuple.new(lua_table) -- Lua table to tuple

Then it will find the field that contains ‘b’, remove that field from the tuple, and display how many bytes
remain in the tuple. The function uses Tarantool box.tuple functions new(), unpack(), find(), transform(),
bsize().

function example()
local tuple1, tuple2, lua_table_1, scalar1, scalar2, scalar3, field_number
local luatable1 = {}
tuple1 = box.tuple.new({'a', 'b', 'c'})
luatable1 = tuple1:totable()
scalar1, scalar2, scalar3 = tuple1:unpack()
tuple2 = box.tuple.new(luatable1[1],luatable1[2],luatable1[3])
field_number = tuple2:find('b')
tuple2 = tuple2:transform(field_number, 1)
return 'tuple2 = ' , tuple2 , ' # of bytes = ' , tuple2:bsize()

end

. . . And here is what happens when one invokes the function:

tarantool> example()

- tuple2 =
- ['a', 'c']
- ' # of bytes = '
- 5
...

Functions for transaction management

For general information and examples, see section Transaction control.

Observe the following rules when working with transactions:

Rule #1

The requests in a transaction must be sent to a server as a single block. It is not enough to enclose them
between begin and commit or rollback. To ensure they are sent as a single block: put them in a function, or
put them all on one line, or use a delimiter so that multi-line requests are handled together.

Rule #2

All database operations in a transaction should use the same storage engine. It is not safe to access tuple sets
that are defined with {engine='vinyl'} and also access tuple sets that are defined with {engine='memtx'},
in the same transaction.

168 Chapter 6. Reference

Tarantool, Release 1.7.4

box.begin()
Begin the transaction. Disable implicit yields until the transaction ends. Signal that writes to the write-
ahead log will be deferred until the transaction ends. In effect the fiber which executes box.begin() is
starting an “active multi-request transaction”, blocking all other fibers.

box.commit()
End the transaction, and make all its data-change operations permanent.

box.rollback()
End the transaction, but cancel all its data-change operations. An explicit call to functions outside
box.space that always yield, such as fiber.sleep() or fiber.yield(), will have the same effect.

Every submodule contains one or more Lua functions. A few submodules contain members as well as
functions. The functions allow data definition (create alter drop), data manipulation (insert delete update
upsert select replace), and introspection (inspecting contents of spaces, accessing server configuration).

6.1.2 Module clock

The clock module returns time values derived from the Posix / C CLOCK_GETTIME function or equivalent.
Most functions in the module return a number of seconds; functions whose names end in “64” return a 64-bit
number of nanoseconds.

clock.time()
clock.time64()
clock.realtime()
clock.realtime64()

The wall clock time. Derived from C function clock_gettime(CLOCK_REALTIME). This is the best
function for knowing what the official time is, as determined by the system administrator.

Return seconds or nanoseconds since epoch (1970-01-01 00:00:00), adjusted.

Rtype number or number64

Example:

-- This will print an approximate number of years since 1970.
clock = require('clock')
print(clock.time() / (365*24*60*60))

See also fiber.time64 and the standard Lua function os.clock.

clock.monotonic()
clock.monotonic64()

The monotonic time. Derived from C function clock_gettime(CLOCK_MONOTONIC). Monotonic
time is similar to wall clock time but is not affected by changes to or from daylight saving time, or
by changes done by a user. This is the best function to use with benchmarks that need to calculate
elapsed time.

Return seconds or nanoseconds since the last time that the computer was booted.

Rtype number or number64

Example:

-- This will print nanoseconds since the start.
clock = require('clock')
print(clock.monotonic64())

clock.proc()

6.1. Built-in modules reference 169

http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html
http://www.lua.org/manual/5.1/manual.html#pdf-os.clock

Tarantool, Release 1.7.4

clock.proc64()
The processor time. Derived from C function clock_gettime(CLOCK_PROCESS_CPUTIME_ID).
This is the best function to use with benchmarks that need to calculate how much time has been spent
within a CPU.

Return seconds or nanoseconds since processor start.

Rtype number or number64

Example:

-- This will print nanoseconds in the CPU since the start.
clock = require('clock')
print(clock.proc64())

clock.thread()
clock.thread64()

The thread time. Derived from C function clock_gettime(CLOCK_THREAD_CPUTIME_ID). This
is the best function to use with benchmarks that need to calculate how much time has been spent
within a thread within a CPU.

Return seconds or nanoseconds since thread start.

Rtype number or number64

Example:

-- This will print seconds in the thread since the start.
clock = require('clock')
print(clock.thread64())

clock.bench(function[, ...])
The time that a function takes within a processor. This function uses clock.proc(), therefore it calculates
elapsed CPU time. Therefore it is not useful for showing actual elapsed time.

Parameters

• function (function) – function or function reference

• ... – whatever values are required by the function.

Return table. first element - seconds of CPU time, second element - whatever the function
returns.

Example:

-- Benchmark a function which sleeps 10 seconds.
-- NB: bench() will not calculate sleep time.
-- So the returned value will be {a number less than 10, 88}.
clock = require('clock')
fiber = require('fiber')
function f(param)
fiber.sleep(param)
return 88

end
clock.bench(f, 10)

170 Chapter 6. Reference

Tarantool, Release 1.7.4

6.1.3 Module console

The console module allows one Tarantool instance to access another Tarantool instance, and allows one
Tarantool instance to start listening on an admin port.

console.connect(uri)
Connect to the instance at URI, change the prompt from ‘tarantool>’ to ‘uri>’, and act henceforth as
a client until the user ends the session or types control-D.

The console.connect function allows one Tarantool instance, in interactive mode, to access another
Tarantool instance. Subsequent requests will appear to be handled locally, but in reality the requests
are being sent to the remote instance and the local instance is acting as a client. Once connection is
successful, the prompt will change and subsequent requests are sent to, and executed on, the remote
instance. Results are displayed on the local instance. To return to local mode, enter control-D.

If the Tarantool instance at uri requires authentication, the connection might look something like:
console.connect('admin:secretpassword@distanthost.com:3301').

There are no restrictions on the types of requests that can be entered, except those which are due to
privilege restrictions – by default the login to the remote instance is done with user name = ‘guest’. The
remote instance could allow for this by granting at least one privilege: box.schema.user.grant('guest',
'execute','universe').

Parameters

• uri (string) – the URI of the remote instance

Return nil

Possible errors: the connection will fail if the target Tarantool instance was not initiated with box.
cfg{listen=...}.

Example:

tarantool> console = require('console')

...
tarantool> console.connect('198.18.44.44:3301')

...
198.18.44.44:3301> -- prompt is telling us that instance is remote

console.listen(uri)
Listen on URI. The primary way of listening for incoming requests is via the connection-information
string, or URI, specified in box.cfg{listen=...}. The alternative way of listening is via the URI specified
in console.listen(...). This alternative way is called “administrative” or simply “admin port”. The
listening is usually over a local host with a Unix domain socket.

Parameters

• uri (string) – the URI of the local instance

The “admin” address is the URI to listen on. It has no default value, so it must be specified if connections
will occur via an admin port. The parameter is expressed with URI = Universal Resource Identifier
format, for example “/tmpdir/unix_domain_socket.sock”, or a numeric TCP port. Connections are
often made with telnet. A typical port value is 3313.

Example:

6.1. Built-in modules reference 171

Tarantool, Release 1.7.4

tarantool> console = require('console')

...
tarantool> console.listen('unix/:/tmp/X.sock')
... main/103/console/unix/:/tmp/X I> started

- fd: 6
name:
host: unix/
family: AF_UNIX
type: SOCK_STREAM
protocol: 0
port: /tmp/X.sock

...

console.start()
Start the console on the current interactive terminal.

Example:

A special use of console.start() is with initialization files. Normally, if one starts the Tarantool instance
with tarantool initialization file there is no console. This can be remedied by adding these lines at the
end of the initialization file:

local console = require('console')
console.start()

console.ac([true|false])
Set the auto-completion flag. If auto-completion is true, and the user is using Tarantool as a client
or the user is using Tarantool via console.connect(), then hitting the TAB key may cause tarantool to
complete a word automatically. The default auto-completion value is true.

console.delimiter(marker)
Set a custom end-of-request marker for Tarantool console.

The default end-of-request marker is a newline (line feed). Custom markers are not necessary because
Tarantool can tell when a multi-line request has not ended (for example, if it sees that a function
declaration does not have an end keyword). Nonetheless for special needs, or for entering multi-line
requests in older Tarantool versions, you can change the end-of-request marker. As a result, newline
alone is not treated as end of request.

To go back to normal mode, say: console.delimiter('')<marker>

Parameters

• marker (string) – a custom end-of-request marker for Tarantool console

Example:

console = require('console'); console.delimiter('!')
function f ()

statement_1 = 'a'
statement_2 = 'b'

end!
console.delimiter('')!

172 Chapter 6. Reference

Tarantool, Release 1.7.4

6.1.4 Module crypto

“Crypto” is short for “Cryptography”, which generally refers to the production of a digest value from a function
(usually a Cryptographic hash function), applied against a string. Tarantool’s crypto module supports ten
types of cryptographic hash functions (AES, DES, DSS, MD4, MD5, MDC2, RIPEMD, SHA-0, SHA-1,
SHA-2). Some of the crypto functionality is also present in the Module digest module. The functions in
crypto are:

crypto.cipher.{aes128|aes192|aes256|des}.{cbc|cfb|ecb|ofb}.encrypt(string, key, initialization_vector)
crypto.cipher.{aes128|aes192|aes256|des}.{cbc|cfb|ecb|ofb}.decrypt(string, key, initialization_vector)

Pass or return a cipher derived from the string, key, and (optionally, sometimes) initialization vector.
The four choices of algorithms:

• aes128 - aes-128 (with 192-bit binary strings using AES)

• aes192 - aes-192 (with 192-bit binary strings using AES)

• aes256 - aes-256 (with 256-bit binary strings using AES)

• des - des (with 56-bit binary strings using DES, though DES is not recommended)

Four choices of block cipher modes are also available:

• cbc - Cipher Block Chaining

• cfb - Cipher Feedback

• ecb - Electronic Codebook

• ofb - Output Feedback

For more information on, read article about Encryption Modes

Example:

crypto.cipher.aes192.cbc.encrypt('string', 'key', 'initialization')
crypto.cipher.aes256.ecb.decrypt('string', 'key', 'initialization')

crypto.digest.{dss|dss1|md4|md5|mdc2|ripemd160}(string)
crypto.digest.{sha|sha1|sha224|sha256|sha384|sha512}(string)

Pass or return a digest derived from the string. The twelve choices of algorithms:

• dss - dss (using DSS)

• dss1 - dss (using DSS-1)

• md4 - md4 (with 128-bit binary strings using MD4)

• md5 - md5 (with 128-bit binary strings using MD5)

• mdc2 - mdc2 (using MDC2)

• ripemd160 -

• sha - sha (with 160-bit binary strings using SHA-0)

• sha1 - sha-1 (with 160-bit binary strings using SHA-1)

• sha224 - sha-224 (with 224-bit binary strings using SHA-2)

• sha256 - sha-256 (with 256-bit binary strings using SHA-2)

• sha384 - sha-384 (with 384-bit binary strings using SHA-2)

• sha512 - sha-512(with 512-bit binary strings using SHA-2).

Example:

6.1. Built-in modules reference 173

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/MDC-2
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Tarantool, Release 1.7.4

crypto.digest.md4('string')
crypto.digest.sha512('string')

Incremental methods in the crypto module

Suppose that a digest is done for a string ‘A’, then a new part ‘B’ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ‘AB’, but it is faster to take
what was computed before for ‘A’ and apply changes based on the new part ‘B’. This is called multi-step or
“incremental” digesting, which Tarantool supports for all crypto functions..

crypto = require('crypto')

-- print aes-192 digest of 'AB', with one step, then incrementally
print(crypto.cipher.aes192.cbc.encrypt('AB', 'key'))
c = crypto.cipher.aes192.cbc.encrypt.new()
c:init()
c:update('A', 'key')
c:update('B', 'key')
print(c:result())
c:free()

-- print sha-256 digest of 'AB', with one step, then incrementally
print(crypto.digest.sha256('AB'))
c = crypto.digest.sha256.new()
c:init()
c:update('A')
c:update('B')
print(c:result())
c:free()

Getting the same results from digest and crypto modules

The following functions are equivalent. For example, the digest function and the crypto function will both
produce the same result.

crypto.cipher.aes256.cbc.encrypt('string', 'key') == digest.aes256cbc.encrypt('string', 'key')
crypto.digest.md4('string') == digest.md4('string')
crypto.digest.md5('string') == digest.md5('string')
crypto.digest.sha('string') == digest.sha('string')
crypto.digest.sha1('string') == digest.sha1('string')
crypto.digest.sha224('string') == digest.sha224('string')
crypto.digest.sha256('string') == digest.sha256('string')
crypto.digest.sha384('string') == digest.sha384('string')
crypto.digest.sha512('string') == digest.sha512('string')

6.1.5 Module csv

The csv module handles records formatted according to Comma-Separated-Values (CSV) rules.

The default formatting rules are:

• Lua escape sequences such as \n or \10 are legal within strings but not within files,

• Commas designate end-of-field,

174 Chapter 6. Reference

http://www.lua.org/pil/2.4.html

Tarantool, Release 1.7.4

• Line feeds, or line feeds plus carriage returns, designate end-of-record,

• Leading or trailing spaces are ignored,

• Quote marks may enclose fields or parts of fields,

• When enclosed by quote marks, commas and line feeds and spaces are treated as ordinary characters,
and a pair of quote marks “” is treated as a single quote mark.

The possible options which can be passed to csv functions are:

• delimiter = string (default: comma) – single-byte character to designate end-of-field

• quote_char = string (default: quote mark) – single-byte character to designate encloser of string

• chunk_size = number (default: 4096) – number of characters to read at once (usually for file-IO
efficiency)

• skip_head_lines = number (default: 0) – number of lines to skip at the start (usually for a header)

csv.load(readable[, {options}])
Get CSV-formatted input from readable and return a table as output. Usually readable is either a
string or a file opened for reading. Usually options is not specified.

Parameters

• readable (object) – a string, or any object which has a read() method, formatted
according to the CSV rules

• options (table) – see above

Return loaded_value

Rtype table

Example:

Readable string has 3 fields, field#2 has comma and space so use quote marks:

tarantool> csv = require('csv')

...
tarantool> csv.load('a,"b,c ",d')

- - - a

- 'b,c '
- d

...

Readable string contains 2-byte character = Cyrillic Letter Palochka: (This displays a palochka if and
only if character set = UTF-8.)

tarantool> csv.load('a\\211\\128b')

- - - a\211\128b
...

Semicolon instead of comma for the delimiter:

tarantool> csv.load('a,b;c,d', {delimiter = ';'})

- - - a,b

(continues on next page)

6.1. Built-in modules reference 175

Tarantool, Release 1.7.4

(continued from previous page)

- c,d
...

Readable file ./file.csv contains two CSV records. Explanation of fio is in section fio. Source CSV file
and example respectively:

tarantool> -- input in file.csv is:
tarantool> -- a,"b,c ",d
tarantool> -- a\\211\\128b
tarantool> fio = require('fio')

...
tarantool> f = fio.open('./file.csv', {'O_RDONLY'})

...
tarantool> csv.load(f, {chunk_size = 4096})

- - - a

- 'b,c '
- d

- - a\\211\\128b
...
tarantool> f:close()

- true
...

csv.dump(csv-table[, options, writable])
Get table input from csv-table and return a CSV-formatted string as output. Or, get table input from
csv-table and put the output in writable. Usually options is not specified. Usually writable, if specified,
is a file opened for writing. csv.dump() is the reverse of csv.load().

Parameters

• csv-table (table) – a table which can be formatted according to the CSV rules.

• options (table) – optional. see above

• writable (object) – any object which has a write() method

Return dumped_value

Rtype string, which is written to writable if specified

Example:

CSV-table has 3 fields, field#2 has “,” so result has quote marks

tarantool> csv = require('csv')

...
tarantool> csv.dump({'a','b,c ','d'})

- 'a,"b,c ",d

'
...

Round Trip: from string to table and back to string

176 Chapter 6. Reference

Tarantool, Release 1.7.4

tarantool> csv_table = csv.load('a,b,c')

...
tarantool> csv.dump(csv_table)

- 'a,b,c

'
...

csv.iterate(input, {options})
Form a Lua iterator function for going through CSV records one field at a time. Use of an iterator is
strongly recommended if the amount of data is large (ten or more megabytes).

Parameters

• csv-table (table) – a table which can be formatted according to the CSV rules.

• options (table) – see above

Return Lua iterator function

Rtype iterator function

Example:

csv.iterate() is the low level of csv.load() and csv.dump(). To illustrate that, here is a function which
is the same as the csv.load() function, as seen in the Tarantool source code.

tarantool> load = function(readable, opts)
> opts = opts or {}
> local result = {}
> for i, tup in csv.iterate(readable, opts) do
> result[i] = tup
> end
> return result
> end

...
tarantool> load('a,b,c')

- - - a

- b
- c

...

6.1.6 Module digest

A “digest” is a value which is returned by a function (usually a Cryptographic hash function), applied
against a string. Tarantool’s digest module supports several types of cryptographic hash functions (AES,
MD4, MD5, SHA-0, SHA-1, SHA-2) as well as a checksum function (CRC32), two functions for base64, and
two non-cryptographic hash functions (guava, murmur). Some of the digest functionality is also present in
the crypto module.

The functions in digest are:

digest.aes256cbc.encrypt(string, key, iv)
digest.aes256cbc.decrypt(string, key, iv)

Returns 256-bit binary string = digest made with AES.

6.1. Built-in modules reference 177

https://github.com/tarantool/tarantool/blob/1.7/src/lua/csv.lua
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Base64
https://code.google.com/p/guava-libraries/wiki/HashingExplained
https://en.wikipedia.org/wiki/MurmurHash

Tarantool, Release 1.7.4

digest.md4(string)
Returns 128-bit binary string = digest made with MD4.

digest.md4_hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md4.

digest.md5(string)
Returns 128-bit binary string = digest made with MD5.

digest.md5_hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md5.

digest.sha(string)
Returns 160-bit binary string = digest made with SHA-0.|br| Not recommended.

digest.sha_hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with sha.

digest.sha1(string)
Returns 160-bit binary string = digest made with SHA-1.

digest.sha1_hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with sha1.

digest.sha224(string)
Returns 224-bit binary string = digest made with SHA-2.

digest.sha224_hex(string)
Returns 56-byte string = hexadecimal of a digest calculated with sha224.

digest.sha256(string)
Returns 256-bit binary string = digest made with SHA-2.

digest.sha256_hex(string)
Returns 64-byte string = hexadecimal of a digest calculated with sha256.

digest.sha384(string)
Returns 384-bit binary string = digest made with SHA-2.

digest.sha384_hex(string)
Returns 96-byte string = hexadecimal of a digest calculated with sha384.

digest.sha512(string)
Returns 512-bit binary tring = digest made with SHA-2.

digest.sha512_hex(string)
Returns 128-byte string = hexadecimal of a digest calculated with sha512.

digest.base64_encode(string)
Returns base64 encoding from a regular string.

digest.base64_decode(string)
Returns a regular string from a base64 encoding.

digest.urandom(integer)
Returns array of random bytes with length = integer.

digest.crc32(string)
Returns 32-bit checksum made with CRC32.

The crc32 and crc32_update functions use the CRC-32C (Castagnoli) polynomial value: 0x1EDC6F41
/ 4812730177. If it is necessary to be compatible with other checksum functions in other programming
languages, ensure that the other functions use the same polynomial value.

178 Chapter 6. Reference

https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use

Tarantool, Release 1.7.4

For example, in Python, install the crcmod package and say:

>>> import crcmod
>>> fun = crcmod.mkCrcFun('4812730177')
>>> fun('string')
3304160206L

In Perl, install the Digest::CRC module and run the following code:

use Digest::CRC;
$d = Digest::CRC->new(width => 32, poly => 0x1EDC6F41, init => 0xFFFFFFFF, refin => 1, refout␣
→˓=> 1);
$d->add('string');
print $d->digest;

(the expected output is 3304160206).

digest.crc32.new()
Initiates incremental crc32. See incremental methods notes.

digest.guava(state, bucket)
Returns a number made with consistent hash.

The guava function uses the Consistent Hashing algorithm of the Google guava library. The first
parameter should be a hash code; the second parameter should be the number of buckets; the returned
value will be an integer between 0 and the number of buckets. For example,

tarantool> digest.guava(10863919174838991, 11)

- 8
...

digest.murmur(string)
Returns 32-bit binary string = digest made with MurmurHash.

digest.murmur.new([seed])
Initiates incremental MurmurHash. See incremental methods notes.

Incremental methods in the digest module

Suppose that a digest is done for a string ‘A’, then a new part ‘B’ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ‘AB’, but it is faster to take
what was computed before for ‘A’ and apply changes based on the new part ‘B’. This is called multi-step or
“incremental” digesting, which Tarantool supports with crc32 and with murmur. . .

digest = require('digest')

-- print crc32 of 'AB', with one step, then incrementally
print(digest.crc32('AB'))
c = digest.crc32.new()
c:update('A')
c:update('B')
print(c:result())

-- print murmur hash of 'AB', with one step, then incrementally
print(digest.murmur('AB'))
m = digest.murmur.new()

(continues on next page)

6.1. Built-in modules reference 179

https://en.wikipedia.org/wiki/Consistent_hashing

Tarantool, Release 1.7.4

(continued from previous page)

m:update('A')
m:update('B')
print(m:result())

Example

In the following example, the user creates two functions, password_insert() which inserts a SHA-1 digest of
the word “^S^e^c^ret Wordpass” into a tuple set, and password_check() which requires input of a password.

tarantool> digest = require('digest')

...
tarantool> function password_insert()

> box.space.tester:insert{1234, digest.sha1('^S^e^c^ret Wordpass')}
> return 'OK'
> end

...
tarantool> function password_check(password)

> local t = box.space.tester:select{12345}
> if digest.sha1(password) == t[2] then
> return 'Password is valid'
> else
> return 'Password is not valid'
> end
> end

...
tarantool> password_insert()

- 'OK'
...

If a later user calls the password_check() function and enters the wrong password, the result is an error.

tarantool> password_check('Secret Password')

- 'Password is not valid'
...

6.1.7 Module errno

The errno module provides:

• a function strerror(),

• an operator errno(), and

• a metatable with constant error names.

The errno module is typically used within a function or within a Lua program, in association with a module
whose functions can return operating-system errors, such as fio.

errno()
Return an error number for the last operating-system-related function, or 0. To invoke it, simply say
errno(), without the module name.

180 Chapter 6. Reference

https://en.wikipedia.org/wiki/Sha-1
https://www.lua.org/pil/13.html

Tarantool, Release 1.7.4

Rtype integer

errno.strerror([code])
Return a string, given an error number. The string will contain the text of the conventional error
message for the current operating system. If code is not supplied, the error message will be for the
last operating-system-related function, or 0.

Parameters

• code (integer) – number of an operating-system error

Rtype string

Example:

This function displays the result of a call to fio.open() which causes error 2 (errno.ENOENT). The display
includes the error number, the associated error string, and the error name.

tarantool> function f()
> local fio = require('fio')
> local errno = require('errno')
> fio.open('no_such_file')
> print('errno() = ' .. errno())
> print('errno.strerror() = ' .. errno.strerror())
> local t = getmetatable(errno).__index
> for k, v in pairs(t) do
> if v == errno() then
> print('errno() constant = ' .. k)
> end
> end
> end

...

tarantool> f()
errno() = 2
errno.strerror() = No such file or directory
errno() constant = ENOENT

...

To see all possible error names stored in the errno metatable, say getmetatable(errno) (output abridged):

tarantool> getmetatable(errno)

- __newindex: 'function: 0x41666a38'
__call: 'function: 0x41666890'
__index:
ENOLINK: 67
EMSGSIZE: 90
EOVERFLOW: 75
ENOTCONN: 107
EFAULT: 14
EOPNOTSUPP: 95
EEXIST: 17
ENOSR: 63
ENOTSOCK: 88
EDESTADDRREQ: 89
...

...

6.1. Built-in modules reference 181

Tarantool, Release 1.7.4

6.1.8 Submodule box.error

The box.error function is for raising an error. The difference between this function and Lua’s built-in error()
function is that when the error reaches the client, its error code is preserved. In contrast, a Lua error would
always be presented to the client as ER_PROC_LUA.

box.error(reason=string[, code=number])
When called with a Lua-table argument, the code and reason have any user-desired values. The result
will be those values.

Parameters

• code (integer) –

• reason (string) –

box.error()
When called without arguments, box.error() re-throws whatever the last error was.

box.error(code, errtext[, errtext ...])
Emulate a request error, with text based on one of the pre-defined Tarantool errors defined in the file
errcode.h in the source tree. Lua constants which correspond to those Tarantool errors are defined as
members of box.error, for example box.error.NO_SUCH_USER == 45.

Parameters

• code (number) – number of a pre-defined error

• errtext(s) (string) – part of the message which will accompany the error

For example:

the NO_SUCH_USER message is “User '%s' is not found” – it includes one “%s” component which
will be replaced with errtext. Thus a call to box.error(box.error.NO_SUCH_USER, 'joe') or box.
error(45, 'joe') will result in an error with the accompanying message “User 'joe' is not found”.

Except whatever is specified in errcode-number.

Example:

tarantool> box.error{code = 555, reason = 'Arbitrary message'}

- error: Arbitrary message
...
tarantool> box.error()

- error: Arbitrary message
...
tarantool> box.error(box.error.FUNCTION_ACCESS_DENIED, 'A', 'B', 'C')

- error: A access denied for user 'B' to function 'C'
...

box.error.last()
Returns a description of the last error, as a Lua table with five members: “line” (number) Tarantool
source file line number, “code” (number) error’s number, “type”, (string) error’s C++ class, “message”
(string) error’s message, “file” (string) Tarantool source file. Additionally, if the error is a system error
(for example due to a failure in socket or file io), there may be a sixth member: “errno” (number) C
standard error number.

rtype: table

182 Chapter 6. Reference

https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Release 1.7.4

box.error.clear()
Clears the record of errors, so functions like box.error() or box.error.last() will have no effect.

Example:

tarantool> box.error{code = 555, reason = 'Arbitrary message'}

- error: Arbitrary message
...
tarantool> box.schema.space.create('#')

- error: Invalid identifier '#' (expected letters, digits or an underscore)
...
tarantool> box.error.last()

- line: 278
code: 70
type: ClientError
message: Invalid identifier '#' (expected letters, digits or an underscore)
file: /tmp/buildd/tarantool-1.7.0.252.g1654e31~precise/src/box/key_def.cc

...
tarantool> box.error.clear()

...
tarantool> box.error.last()

- null
...

6.1.9 Module fiber

The fiber module allows for creating, running and managing fibers.

A fiber is a set of instructions which are executed with cooperative multitasking. Fibers managed by the
fiber module are associated with a user-supplied function called the fiber function. A fiber has three possible
states: running, suspended or dead. When a fiber is created with fiber.create(), it is running. When a fiber
yields control with fiber.sleep(), it is suspended. When a fiber ends (because the fiber function ends), it is
dead.

All fibers are part of the fiber registry. This registry can be searched with fiber.find() - via fiber id (fid),
which is a numeric identifier.

A runaway fiber can be stopped with fiber_object.cancel. However, fiber_object.cancel is advisory —
it works only if the runaway fiber calls fiber.testcancel() occasionally. Most box.* functions, such as
box.space. . . delete() or box.space. . . update(), do call fiber.testcancel() but box.space. . . select{} does not.
In practice, a runaway fiber can only become unresponsive if it does many computations and does not check
whether it has been cancelled.

The other potential problem comes from fibers which never get scheduled, because they are not subscribed
to any events, or because no relevant events occur. Such morphing fibers can be killed with fiber.kill() at
any time, since fiber.kill() sends an asynchronous wakeup event to the fiber, and fiber.testcancel() is checked
whenever such a wakeup event occurs.

Like all Lua objects, dead fibers are garbage collected. The garbage collector frees pool allocator memory
owned by the fiber, resets all fiber data, and returns the fiber (now called a fiber carcass) to the fiber pool.
The carcass can be reused when another fiber is created.

6.1. Built-in modules reference 183

Tarantool, Release 1.7.4

A fiber has all the features of a Lua coroutine and all the programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

fiber.create(function[, function-arguments])
Create and start a fiber. The fiber is created and begins to run immediately.

Parameters

• function – the function to be associated with the fiber

• function-arguments – what will be passed to function

Return created fiber object

Rtype userdata

Example:

tarantool> fiber = require('fiber')

...
tarantool> function function_name()

> fiber.sleep(1000)
> end

...
tarantool> fiber_object = fiber.create(function_name)

...

fiber.self()

Return fiber object for the currently scheduled fiber.

Rtype userdata

Example:

tarantool> fiber.self()

- status: running
name: interactive
id: 101

...

fiber.find(id)

Parameters

• id – numeric identifier of the fiber.

Return fiber object for the specified fiber.

Rtype userdata

Example:

tarantool> fiber.find(101)

- status: running
name: interactive

(continues on next page)

184 Chapter 6. Reference

http://www.lua.org/pil/contents.html#9

Tarantool, Release 1.7.4

(continued from previous page)

id: 101
...

fiber.sleep(time)
Yield control to the transaction processor thread and sleep for the specified number of seconds. Only
the current fiber can be made to sleep.

Parameters

• time – number of seconds to sleep.

Example:

tarantool> fiber.sleep(1.5)

...

fiber.yield()
Yield control to the scheduler. Equivalent to fiber.sleep(0).

Example:

tarantool> fiber.yield()

...

fiber.status()
Return the status of the current fiber.

Return the status of fiber. One of: “dead”, “suspended”, or “running”.

Rtype string

Example:

tarantool> fiber.status()

- running
...

fiber.info()
Return information about all fibers.

Return number of context switches, backtrace, id, total memory, used memory, name for
each fiber.

Rtype table

Example:

tarantool> fiber.info()

- 101:

csw: 7
backtrace: []
fid: 101
memory:
total: 65776
used: 0

(continues on next page)

6.1. Built-in modules reference 185

Tarantool, Release 1.7.4

(continued from previous page)

name: interactive
...

fiber.kill(id)
Locate a fiber by its numeric id and cancel it. In other words, fiber.kill() combines fiber.find() and
fiber_object:cancel().

Parameters

• id – the id of the fiber to be cancelled.

Exception the specified fiber does not exist or cancel is not permitted.

Example:

tarantool> fiber.kill(fiber.id()) -- kill self, may make program end

- error: fiber is cancelled
...

fiber.testcancel()
Check if the current fiber has been cancelled and throw an exception if this is the case.

Example:

tarantool> fiber.testcancel()

- error: fiber is cancelled
...

object fiber_object

fiber_object:id()

Parameters

• self – fiber object, for example the fiber object returned by fiber.create

Return id of the fiber.

Rtype number

Example:

tarantool> fiber_object = fiber.self()

...
tarantool> fiber_object:id()

- 101
...

fiber_object:name()

Parameters

• self – fiber object, for example the fiber object returned by fiber.create

Return name of the fiber.

Rtype string

186 Chapter 6. Reference

Tarantool, Release 1.7.4

Example:

tarantool> fiber.self():name()

- interactive
...

fiber_object:name(name)
Change the fiber name. By default a Tarantool server’s interactive-mode fiber is named ‘inter-
active’ and new fibers created due to fiber.create are named ‘lua’. Giving fibers distinct names
makes it easier to distinguish them when using fiber.info.

Parameters

• self – fiber object, for example the fiber object returned by fiber.create

• name (string) – the new name of the fiber.

Return nil

Example:

tarantool> fiber.self():name('non-interactive')

...

fiber_object:status()
Return the status of the specified fiber.

Parameters

• self – fiber object, for example the fiber object returned by fiber.create

Return the status of fiber. One of: “dead”, “suspended”, or “running”.

Rtype string

Example:

tarantool> fiber.self():status()

- running
...

fiber_object:cancel()
Cancel a fiber. Running and suspended fibers can be cancelled. After a fiber has been cancelled,
attempts to operate on it will cause errors, for example fiber_object:id() will cause error: the
fiber is dead.

Parameters

• self – fiber object, for example the fiber object returned by fiber.create

Return nil

Possible errors: cancel is not permitted for the specified fiber object.

Example:

tarantool> fiber.self():cancel() -- kill self, may make program send

- error: fiber is cancelled
...

6.1. Built-in modules reference 187

Tarantool, Release 1.7.4

fiber_object.storage
Local storage within the fiber. The storage can contain any number of named values, subject
to memory limitations. Naming may be done with fiber_object.storage.name or fiber_object.
storage['name']. or with a number fiber_object.storage[number]. Values may be either numbers
or strings. The storage is garbage-collected when fiber_object:cancel() happens.

Example:

tarantool> fiber = require('fiber')

...
tarantool> function f () fiber.sleep(1000); end

...
tarantool> fiber_function = fiber:create(f)

- error: '[string "fiber_function = fiber:create(f)"]:1: fiber.create(function, ...):

bad arguments'
...
tarantool> fiber_function = fiber.create(f)

...
tarantool> fiber_function.storage.str1 = 'string'

...
tarantool> fiber_function.storage['str1']

- string
...
tarantool> fiber_function:cancel()

...
tarantool> fiber_function.storage['str1']

- error: '[string "return fiber_function.storage[''str1'']"]:1: the fiber is dead'
...

See also box.session.storage.

fiber.time()

Return current system time (in seconds since the epoch) as a Lua number. The time is
taken from the event loop clock, which makes this call very cheap, but still useful for
constructing artificial tuple keys.

Rtype num

Example:

tarantool> fiber.time(), fiber.time()

- 1448466279.2415
- 1448466279.2415
...

fiber.time64()

Return current system time (in microseconds since the epoch) as a 64-bit integer. The time
is taken from the event loop clock.

Rtype num

188 Chapter 6. Reference

Tarantool, Release 1.7.4

Example:

tarantool> fiber.time(), fiber.time64()

- 1448466351.2708
- 1448466351270762
...

Example Of Fiber Use

Make the function which will be associated with the fiber. This function contains an infinite loop (while 0
== 0 is always true). Each iteration of the loop adds 1 to a global variable named gvar, then goes to sleep
for 2 seconds. The sleep causes an implicit fiber.yield().

tarantool> fiber = require('fiber')
tarantool> function function_x()

> gvar = 0
> while 0 == 0 do
> gvar = gvar + 1
> fiber.sleep(2)
> end
> end

...

Make a fiber, associate function_x with the fiber, and start function_x. It will immediately “detach” so it
will be running independently of the caller.

tarantool> gvar = 0

tarantool> fiber_of_x = fiber.create(function_x)

...

Get the id of the fiber (fid), to be used in later displays.

tarantool> fid = fiber_of_x:id()

...

Pause for a while, while the detached function runs. Then . . . Display the fiber id, the fiber status, and
gvar (gvar will have gone up a bit depending how long the pause lasted). The status is suspended because
the fiber spends almost all its time sleeping or yielding.

tarantool> print('#', fid, '. ', fiber_of_x:status(), '. gvar=', gvar)
102 . suspended . gvar= 399

...

Pause for a while, while the detached function runs. Then . . . Cancel the fiber. Then, once again . . .
Display the fiber id, the fiber status, and gvar (gvar will have gone up a bit more depending how long the
pause lasted). This time the status is dead because the cancel worked.

tarantool> fiber_of_x:cancel()

...

(continues on next page)

6.1. Built-in modules reference 189

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> print('#', fid, '. ', fiber_of_x:status(), '. gvar=', gvar)
102 . dead . gvar= 421

...

6.1.10 Submodule fiber-ipc

The fiber-ipc submodule allows sending and receiving messages between different processes and has a syn-
chronization mechanism for fibers, similar to “Condition Variables” and similar to operating-system functions
such as pthread_cond_wait() plus pthread_cond_signal(). The words “different processes” in this context
mean different connections, different sessions, or different fibers.

Call fiber.channel() to allocate space and get a channel object, which will be called channel for examples
in this section. Call the other fiber-ipc routines, via channel, to send messages, receive messages, or check
ipc status. Message exchange is synchronous. The channel is garbage collected when no one is using it,
as with any other Lua object. Use object-oriented syntax, for example channel:put(message) rather than
fiber.channel.put(message).

Call fiber.cond() to create a named condition variable, which will be called cond for examples in this section.
Call cond:wait() to make a fiber wait for a signal via a condition variable. Call cond:signal() to send a signal
to wake up a single fiber that has executed cond:wait(). Call cond:broadcast() to send a signal to all fibers
that have executed cond:wait().

Channel

fiber.channel([capacity])
Create a new communication channel.

Parameters

• capacity (int) – the maximum number of slots (spaces for channel:put messages) that
can be in use at once. The default is 0.

Return new channel.

Rtype userdata, possibly including the string “channel . . . ”.

object channel_object

channel_object:put(message[, timeout])
Send a message using a channel. If the channel is full, channel:put() waits until there is a free
slot in the channel.

Parameters

• message (lua-value) – what will be sent, usually a string or number or table

• timeout (number) – maximum number of seconds to wait for a slot to become free

Return If timeout is specified, and there is no free slot in the channel for the duration of
the timeout, then the return value is false. If the channel is closed, then the return
value is false. Otherwise, the return value is true, indicating success.

Rtype boolean

190 Chapter 6. Reference

Tarantool, Release 1.7.4

channel_object:close()
Close the channel. All waiters in the channel will stop waiting. All following channel:get()
operations will return nil, and all following channel:put() operations will return false.

channel_object:get([timeout])
Fetch and remove a message from a channel. If the channel is empty, channel:get() waits for a
message.

Parameters

• timeout (number) – maximum number of seconds to wait for a message

Return If timeout is specified, and there is no message in the channel for the duration
of the timeout, then the return value is nil. If the channel is closed, then the return
value is nil. Otherwise, the return value is the message placed on the channel by
channel:put().

Rtype usually string or number or table, as determined by channel:put

channel_object:is_empty()
Check whether the channel is empty (has no messages).

Return true if the channel is empty. Otherwise false.

Rtype boolean

channel_object:count()
Find out how many messages are in the channel.

Return the number of messages.

Rtype number

channel_object:is_full()
Check whether the channel is full.

Return true if the channel is full (the number of messages in the channel equals the
number of slots so there is no room for a new message). Otherwise false.

Rtype boolean

channel_object:has_readers()
Check whether readers are waiting for a message because they have issued channel:get() and the
channel is empty.

Return true if readers are waiting. Otherwise false.

Rtype boolean

channel_object:has_writers()
Check whether writers are waiting because they have issued channel:put() and the channel is full.

Return true if writers are waiting. Otherwise false.

Rtype boolean

channel_object:is_closed()

Return true if the channel is already closed. Otherwise false.

Rtype boolean

6.1. Built-in modules reference 191

Tarantool, Release 1.7.4

Example

This example should give a rough idea of what some functions for fibers should look like. It’s assumed that
the functions would be referenced in fiber.create().

fiber = require('fiber')
channel = fiber.channel(10)
function consumer_fiber()

while true do
local task = channel:get()
...

end
end

function consumer2_fiber()
while true do

-- 10 seconds
local task = channel:get(10)
if task ~= nil then

...
else

-- timeout
end

end
end

function producer_fiber()
while true do

task = box.space...:select{...}
...
if channel:is_empty() then

-- channel is empty
end

if channel:is_full() then
-- channel is full

end

...
if channel:has_readers() then

-- there are some fibers
-- that are waiting for data

end
...

if channel:has_writers() then
-- there are some fibers
-- that are waiting for readers

end
channel:put(task)

end
end

function producer2_fiber()
while true do

task = box.space...select{...}
-- 10 seconds

(continues on next page)

192 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

if channel:put(task, 10) then
...

else
-- timeout

end
end

end

Condition variables

fiber.cond()
Create a new condition variable.

Return new condition variable.

Rtype Lua object

object cond_object

cond_object:wait([timeout])
Make the current fiber go to sleep, waiting until until another fiber invokes the signal() or broad-
cast() method on the cond object. The sleep causes an implicit fiber.yield().

Parameters

• timeout – number of seconds to wait, default = forever.

Return If timeout is provided, and a signal doesn’t happen for the duration of the time-
out, wait() returns false. If a signal or broadcast happens, wait() returns true.

Rtype boolean

cond_object:signal()
Wake up a single fiber that has executed wait() for the same variable.

Rtype nil

cond_object:broadcast()
Wake up all fibers that have executed wait() for the same variable.

Rtype nil

Example

Assume that a tarantool instance is running and listening for connections on localhost port 3301. Assume
that guest users have privileges to connect. We will use the tarantoolctl utility to start two clients.

On terminal #1, say

$ tarantoolctl connect '3301'
tarantool> fiber = require('fiber')
tarantool> cond = fiber.cond()
tarantool> cond:wait()

The job will hang because cond:wait() – without an optional timeout argument – will go to sleep until the
condition variable changes.

On terminal #2, say

6.1. Built-in modules reference 193

Tarantool, Release 1.7.4

$ tarantoolctl connect '3301'
tarantool> cond:signal()

Now look again at terminal #1. It will show that the waiting stopped, and the cond:wait() function returned
true.

This example depended on the use of a global conditional variable with the arbitrary name cond. In real
life, programmers would make sure to use different conditional variable names for different applications.

6.1.11 Module fio

Tarantool supports file input/output with an API that is similar to POSIX syscalls. All operations are
performed asynchronously. Multiple fibers can access the same file simultaneously.

The fio module contains:

• functions for common pathname manipulations,

• functions for common file manipulations, and

• constants which are the same as POSIX flag values (for example fio.c.flag.O_RDONLY = POSIX
O_RDONLY).

Common pathname manipulations

fio.pathjoin(partial-string[, partial-string ...])
Concatenate partial string, separated by ‘/’ to form a path name.

Parameters

• partial-string (string) – one or more strings to be concatenated.

Return path name

Rtype string

Example:

tarantool> fio.pathjoin('/etc', 'default', 'myfile')

- /etc/default/myfile
...

fio.basename(path-name[, suffix])
Given a full path name, remove all but the final part (the file name). Also remove the suffix, if it is
passed.

Parameters

• path-name (string) – path name

• suffix (string) – suffix

Return file name

Rtype string

Example:

194 Chapter 6. Reference

Tarantool, Release 1.7.4

tarantool> fio.basename('/path/to/my.lua', '.lua')

- my
...

fio.dirname(path-name)
Given a full path name, remove the final part (the file name).

Parameters

• path-name (string) – path name

Return directory name, that is, path name except for file name.

Rtype string

Example:

tarantool> fio.dirname('path/to/my.lua')

- 'path/to/'
...

Common file manipulations

fio.umask(mask-bits)
Set the mask bits used when creating files or directories. For a detailed description type “man 2 umask”.

Parameters

• mask-bits (number) – mask bits.

Return previous mask bits.

Rtype number

Example:

tarantool> fio.umask(tonumber('755', 8))

- 493
...

fio.lstat(path-name)
fio.stat(path-name)

Returns information about a file object. For details type “man 2 lstat” or “man 2 stat”.

Parameters

• path-name (string) – path name of file.

Return fields which describe the file’s block size, creation time, size, and other attributes.

Rtype table

Additionally, the result of fio.stat('file-name') will include methods equivalent to POSIX macros:

• is_blk() = POSIX macro S_ISBLK,

• is_chr() = POSIX macro S_ISCHR,

• is_dir() = POSIX macro S_ISDIR,

6.1. Built-in modules reference 195

Tarantool, Release 1.7.4

• is_fifo() = POSIX macro S_ISFIFO,

• is_link() = POSIX macro S_ISLINK,

• is_reg() = POSIX macro S_ISREG,

• is_sock() = POSIX macro S_ISSOCK.

For example, fio.stat('/'):is_dir() will return true.

Example:

tarantool> fio.lstat('/etc')

- inode: 1048577
rdev: 0
size: 12288
atime: 1421340698
mode: 16877
mtime: 1424615337
nlink: 160
uid: 0
blksize: 4096
gid: 0
ctime: 1424615337
dev: 2049
blocks: 24

...

fio.mkdir(path-name[, mode])
fio.rmdir(path-name)

Create or delete a directory. For details type “man 2 mkdir” or “man 2 rmdir”.

Parameters

• path-name (string) – path of directory.

• mode (number) – Mode bits can be passed as a number or as string constants, for
example ‘’S_IWUSR”. Mode bits can be combined by enclosing them in braces.

Return true if success, false if failure.

Rtype boolean

Example:

tarantool> fio.mkdir('/etc')

- false
...

fio.glob(path-name)
Return a list of files that match an input string. The list is constructed with a single flag that controls
the behavior of the function: GLOB_NOESCAPE. For details type “man 3 glob”.

Parameters

• path-name (string) – path-name, which may contain wildcard characters.

Return list of files whose names match the input string

Rtype table

196 Chapter 6. Reference

Tarantool, Release 1.7.4

Possible errors: nil.

Example:

tarantool> fio.glob('/etc/x*')

- - /etc/xdg
- /etc/xml
- /etc/xul-ext

...

fio.tempdir()
Return the name of a directory that can be used to store temporary files.

Example:

tarantool> fio.tempdir()

- /tmp/lG31e7
...

fio.cwd()
Return the name of the current working directory.

Example:

tarantool> fio.cwd()

- /home/username/tarantool_sandbox
...

fio.link(src, dst)
fio.symlink(src, dst)
fio.readlink(src)
fio.unlink(src)

Functions to create and delete links. For details type “man readlink”, “man 2 link”, “man 2 symlink”,
“man 2 unlink”..

Parameters

• src (string) – existing file name.

• dst (string) – linked name.

Return fio.link and fio.symlink and fio.unlink return true if success, false if failure. fio.
readlink returns the link value if success, nil if failure.

Example:

tarantool> fio.link('/home/username/tmp.txt', '/home/username/tmp.txt2')

- true
...
tarantool> fio.unlink('/home/username/tmp.txt2')

- true
...

fio.rename(path-name, new-path-name)
Rename a file or directory. For details type “man 2 rename”.

6.1. Built-in modules reference 197

Tarantool, Release 1.7.4

Parameters

• path-name (string) – original name.

• new-path-name (string) – new name.

Return true if success, false if failure.

Rtype boolean

Example:

tarantool> fio.rename('/home/username/tmp.txt', '/home/username/tmp.txt2')

- true
...

fio.chown(path-name, owner-user, owner-group)
fio.chmod(path-name, new-rights)

Manage the rights to file objects, or ownership of file objects. For details type “man 2 chown” or “man
2 chmod”.

Parameters

• owner-user (string) – new user uid.

• owner-group (string) – new group uid.

• new-rights (number) – new permissions

Example:

tarantool> fio.chmod('/home/username/tmp.txt', tonumber('0755', 8))

- true
...
tarantool> fio.chown('/home/username/tmp.txt', 'username', 'username')

- true
...

fio.truncate(path-name, new-size)
Reduce file size to a specified value. For details type “man 2 truncate”.

Parameters

• path-name (string) –

• new-size (number) –

Return true if success, false if failure.

Rtype boolean

Example:

tarantool> fio.truncate('/home/username/tmp.txt', 99999)

- true
...

fio.sync()
Ensure that changes are written to disk. For details type “man 2 sync”.

198 Chapter 6. Reference

Tarantool, Release 1.7.4

Return true if success, false if failure.

Rtype boolean

Example:

tarantool> fio.sync()

- true
...

fio.open(path-name[, flags[, mode]])
Open a file in preparation for reading or writing or seeking.

Parameters

• path-name (string) –

• flags (number) – Flags can be passed as a number or as string constants, for example
‘O_RDONLY’, ‘O_WRONLY’, ‘O_RDWR’. Flags can be combined by enclosing
them in braces.

• mode (number) – Mode bits can be passed as a number or as string constants,
for example ‘’S_IWUSR”. Mode bits are significant if flags include O_CREAT or
O_TMPFILE. Mode bits can be combined by enclosing them in braces.

Return file handle (later - fh)

Rtype userdata

Possible errors: nil.

Example:

tarantool> fh = fio.open('/home/username/tmp.txt', {'O_RDWR', 'O_APPEND'})

...
tarantool> fh -- display file handle returned by fio.open

- fh: 11
...

object file-handle

file-handle:close()
Close a file that was opened with fio.open. For details type “man 2 close”.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

Return true if success, false on failure.

Rtype boolean

Example:

tarantool> fh:close() -- where fh = file-handle

- true
...

file-handle:pread(count, offset)

6.1. Built-in modules reference 199

Tarantool, Release 1.7.4

file-handle:pwrite(new-string, offset)
Perform read/write random-access operation on a file, without affecting the current seek position
of the file. For details type “man 2 pread” or “man 2 pwrite”.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

• count (number) – number of bytes to read

• new-string (string) – value to write

• offset (number) – offset within file where reading or writing begins

Return fh:pwrite returns true if success, false if failure. fh:pread returns the data that
was read, or nil if failure.

Example:

tarantool> fh:pread(25, 25)

- |
elete from t8//
insert in

...

file-handle:read(count)
file-handle:write(new-string)

Perform non-random-access read or write on a file. For details type “man 2 read” or “man 2 write”.

Note: fh:read and fh:write affect the seek position within the file, and this must be taken into
account when working on the same file from multiple fibers. It is possible to limit or prevent file
access from other fibers with fiber.ipc.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

• count (number) – number of bytes to read

• new-string (string) – value to write

Return fh:write returns true if success, false if failure. fh:read returns the data that was
read, or nil if failure.

Example:

tarantool> fh:write('new data')

- true
...

file-handle:truncate(new-size)
Change the size of an open file. Differs from fio.truncate, which changes the size of a closed file.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

Return true if success, false if failure.

200 Chapter 6. Reference

Tarantool, Release 1.7.4

Rtype boolean

Example:

tarantool> fh:truncate(0)

- true
...

file-handle:seek(position[, offset-from])
Shift position in the file to the specified position. For details type “man 2 seek”.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

• position (number) – position to seek to

• offset-from (string) – ‘SEEK_END’ = end of file, ‘SEEK_CUR’ = current position,
‘SEEK_SET’ = start of file.

Return the new position if success

Rtype number

Possible errors: nil.

Example:

tarantool> fh:seek(20, 'SEEK_SET')

- 20
...

file-handle:stat()
Return statistics about an open file. This differs from fio.stat which return statistics about a
closed file. For details type “man 2 stat”.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

Return details about the file.

Rtype table

Example:

tarantool> fh:stat()

- inode: 729866
rdev: 0
size: 100
atime: 140942855
mode: 33261
mtime: 1409430660
nlink: 1
uid: 1000
blksize: 4096
gid: 1000
ctime: 1409430660
dev: 2049

(continues on next page)

6.1. Built-in modules reference 201

Tarantool, Release 1.7.4

(continued from previous page)

blocks: 8
...

file-handle:fsync()
file-handle:fdatasync()

Ensure that file changes are written to disk, for an open file. Compare fio.sync, which is for all
files. For details type “man 2 fsync” or “man 2 fdatasync”.

Parameters

• fh (userdata) – file-handle as returned by fio.open().

Return true if success, false if failure.

Example:

tarantool> fh:fsync()

- true
...

FIO constants

fio.c
Table with constants which are the same as POSIX flag values on the target platform (see man 2 stat).

Example:

tarantool> fio.c

- seek:

SEEK_SET: 0
SEEK_END: 2
SEEK_CUR: 1

mode:
S_IWGRP: 16
S_IXGRP: 8
S_IROTH: 4
S_IXOTH: 1
S_IRUSR: 256
S_IXUSR: 64
S_IRWXU: 448
S_IRWXG: 56
S_IWOTH: 2
S_IRWXO: 7
S_IWUSR: 128
S_IRGRP: 32

flag:
O_EXCL: 2048
O_NONBLOCK: 4
O_RDONLY: 0
<...>

...

202 Chapter 6. Reference

Tarantool, Release 1.7.4

6.1.12 Module fun

Luafun, also known as the Lua Functional Library, takes advantage of the features of LuaJIT to help users
create complex functions. Inside the module are “sequence processors” such as map, filter, reduce, zip –
they take a user-written function as an argument and run it against every element in a sequence, which can
be faster or more convenient than a user-written loop. Inside the module are “generators” such as range,
tabulate, and rands – they return a bounded or boundless series of values. Within the module are “reducers”,
“filters”, “composers” . . . or, in short, all the important features found in languages like Standard ML,
Haskell, or Erlang.

The full documentation is On the luafun section of github. However, the first chapter can be skipped because
installation is already done, it’s inside Tarantool. All that is needed is the usual require request. After that,
all the operations described in the Lua fun manual will work, provided they are preceded by the name
returned by the require request. For example:

tarantool> fun = require('fun')

...
tarantool> for _k, a in fun.range(3) do

> print(a)
> end

1
2
3

...

6.1.13 Module http

The http module, specifically the http.client submodule, provides the functionality of an HTTP client with
support for HTTPS and keepalive. It uses routines in the libcurl library.

http.client.new([options])
Construct a new HTTP client instance.

Parameters

• options (table) – the maximum number of entries in the connection cache.

Return a new HTTP client instance

Rtype userdata

Example:

tarantool> http_client = require('http.client').new({5})

...

object client_object

client_object:request(method, url, body, opts)
If http_client is an HTTP client instance, http_client:request() will perform an HTTP request
and, if there is a successful connection, will return a table with connection information.

Parameters

• method (string) – HTTP method, for example ‘GET’ or ‘POST’ or ‘PUT’

6.1. Built-in modules reference 203

http://rtsisyk.github.io/luafun
https://curl.haxx.se/libcurl/

Tarantool, Release 1.7.4

• url (string) – location, for example ‘https://tarantool.org/doc’

• body (string) – optional initial message, for example ‘My text string!’

• opts (table) – table of connection options, with any of these components:

– timeout - number of seconds to wait for a curl API read request before timing
out

– ca_path - path to a directory holding one or more certificates to verify the peer
with

– ca_file - path to an SSL certificate file to verify the peer with

– headers - table of HTTP headers

– keepalive_idle - delay, in seconds, that the operating system will wait while
the connection is idle before sending keepalive probes. See also CUR-
LOPT_TCP_KEEPALIVE

– keepalive_interval - the interval, in seconds, that the operating system will wait
between sending keepalive probes. See also CURLOPT_TCP_KEEPALIVE

– low_speed_time - set the “low speed time” – the time that the transfer speed
should be below the “low speed limit” for the library to consider it too slow and
abort. See also CURLOPT_LOW_SPEED_TIME

– low_speed_limit - set the “low speed limit” – the average transfer speed in
bytes per second that the transfer should be below during “low speed time”
seconds for the library to consider it to be too slow and abort. See also CUR-
LOPT_LOW_SPEED_LIMIT

– verbose - set on/off verbose mode

Return connection information, with all of these components:

• status - HTTP response status

• reason - HTTP response status text

• headers - a Lua table with normalized HTTP headers

• body - response body

• proto - protocol version

Rtype table

The following “shortcuts” exist for requests:

• http_client:get(url, options) - shortcut for http_client:request("GET", url, nil, opts)

• http_client:post (url, body, options) - shortcut for http_client:request("POST", url, body,
opts)

• http_client:put(url, body, options) - shortcut for http_client:request("POST", url, body,
opts)

• http_client:patch(url, body, options) - shortcut for http_client:request("PATCH", url, body,
opts)

• http_client:options(url, options) - shortcut for http_client:request("OPTIONS", url, nil,
opts)

• http_client:head(url, options) - shortcut for http_client:request("HEAD", url, nil, opts)

• http_client:delete(url, options) - shortcut for http_client:request("DELETE", url, nil, opts)

204 Chapter 6. Reference

https://tarantool.org/doc
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_TIME.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html

Tarantool, Release 1.7.4

• http_client:trace(url, options) - shortcut for http_client:request("TRACE", url, nil, opts)

• http_client:connect:(url, options) - shortcut for http_client:request("CONNECT", url, nil,
opts)

client_object:stat()
The http_client:stat() function returns a table with statistics:

• active_requests - number of currently executing requests

• sockets_added - total number of sockets added into an event loop

• sockets_deleted - total number of sockets sockets from an event loop

• total_requests - total number of requests

• http_200_responses - total number of requests which have returned code HTTP 200

• http_other_responses - total number of requests which have not returned code HTTP 200

• failed_requests - total number of requests which have failed including system errors, curl
errors, and HTTP errors

Example:

Connect to an HTTP server, look at the size of the response for a ‘GET’ request, and look at the
statistics for the session.

tarantool> http_client = require('http.client').new()

...
tarantool> r = http_client:request('GET','http://tarantool.org')

...
tarantool> string.len(r.body)

- 21725
...
tarantool> http_client:stat()

- total_requests: 1
sockets_deleted: 2
failed_requests: 0
active_requests: 0
http_other_responses: 0
http_200_responses: 1
sockets_added: 2

6.1.14 Module json

The json module provides JSON manipulation routines. It is based on the Lua-CJSON module by Mark
Pulford. For a complete manual on Lua-CJSON please read the official documentation.

json.encode(lua-value)
Convert a Lua object to a JSON string.

Parameters

• lua_value – either a scalar value or a Lua table value.

Return the original value reformatted as a JSON string.

6.1. Built-in modules reference 205

http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson-manual.html

Tarantool, Release 1.7.4

Rtype string

Example:

tarantool> json=require('json')

...
tarantool> json.encode(123)

- '123'
...
tarantool> json.encode({123})

- '[123]'
...
tarantool> json.encode({123, 234, 345})

- '[123,234,345]'
...
tarantool> json.encode({abc = 234, cde = 345})

- '{"cde":345,"abc":234}'
...
tarantool> json.encode({hello = {'world'}})

- '{"hello":["world"]}'
...

json.decode(string)
Convert a JSON string to a Lua object.

Parameters

• string (string) – a string formatted as JSON.

Return the original contents formatted as a Lua table.

Rtype table

Example:

tarantool> json = require('json')

...
tarantool> json.decode('123')

- 123
...
tarantool> json.decode('[123, "hello"]')

- [123, 'hello']
...
tarantool> json.decode('{"hello": "world"}').hello

- world
...

json.NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a tuple.

Example:

206 Chapter 6. Reference

Tarantool, Release 1.7.4

-- When nil is assigned to a Lua-table field, the field is null
tarantool> {nil, 'a', 'b'}

- - null
- a
- b

...
-- When json.NULL is assigned to a Lua-table field, the field is json.NULL
tarantool> {json.NULL, 'a', 'b'}

- - null
- a
- b

...
-- When json.NULL is assigned to a JSON field, the field is null
tarantool> json.encode({field2 = json.NULL, field1 = 'a', field3 = 'c'})

- '{"field2":null,"field1":"a","field3":"c"}'
...

The JSON output structure can be specified with __serialize:

• __serialize="seq" for an array

• __serialize="map" for a map

Serializing ‘A’ and ‘B’ with different __serialize values causes different results:

tarantool> json.encode(setmetatable({'A', 'B'}, { __serialize="seq"}))

- '["A","B"]'
...
tarantool> json.encode(setmetatable({'A', 'B'}, { __serialize="map"}))

- '{"1":"A","2":"B"}'
...
tarantool> json.encode({setmetatable({f1 = 'A', f2 = 'B'}, { __serialize="map"})})

- '[{"f2":"B","f1":"A"}]'
...
tarantool> json.encode({setmetatable({f1 = 'A', f2 = 'B'}, { __serialize="seq"})})

- '[[]]'
...

Configuration settings

There are configuration settings which affect the way that Tarantool encodes invalid numbers or types. They
are all boolean true/false values

• cfg.encode_invalid_numbers (default is true) – allow nan and inf

• cfg.encode_use_tostring (default is false) – use tostring for unrecognizable types

• cfg.encode_invalid_as_nil (default is false) – use null for all unrecognizable types

• cfg.encode_load_metatables (default is false) – load metatables

6.1. Built-in modules reference 207

Tarantool, Release 1.7.4

For example, the following code will interpret 0/0 (which is “not a number”) and 1/0 (which is “infinity”) as
special values rather than nulls or errors:

json = require('json')
json.cfg{encode_invalid_numbers = true}
x = 0/0
y = 1/0
json.encode({1, x, y, 2})

The result of the json.encode request will look like this:

tarantool> json.encode({1, x, y, 2})

- '[1,nan,inf,2]
...

The same configuration settings exist for json, for MsgPack, and for YAML.

6.1.15 Module log

The Tarantool server puts all diagnostic messages in a log file specified by the log configuration parameter.
Diagnostic messages may be either system-generated by the server’s internal code, or user-generated with
the log.log_level function.

log.error(message)
log.warn(message)
log.info(message)
log.verbose(message)
log.debug(message)

Output a user-generated message to the log file, given log_level_function_name = error or warn or
info or verbose or debug.

Parameters

• message (string) – The actual output will be a line containing the current
timestamp, a module name, ‘E’ or ‘W’ or ‘I’ or ‘V’ or ‘D’ or ‘R’ depend-
ing on log_level_function_name, and message. Output will not occur if
log_level_function_name is for a type greater than log_level. Messages may con-
tain C-style format specifiers %d or %s, so log.error('...%d...%s', x, y) will work if
x is a number and y is a string.

Return nil

log.logger_pid()

log.rotate()

Example

$ tarantool
tarantool> box.cfg{log_level=3, logger='tarantool.txt'}
tarantool> log = require('log')
tarantool> log.error('Error')
tarantool> log.info('Info %s', box.info.version)
tarantool> os.exit()

208 Chapter 6. Reference

Tarantool, Release 1.7.4

$ less tarantool.txt

2...0 [5257] main/101/interactive C> version 1.7.0-355-ga4f762d
2...1 [5257] main/101/interactive C> log level 3
2...0 [5257] main/101/interactive [C]:-1 E> Error

The ‘Error’ line is visible in tarantool.txt preceded by the letter E.

The ‘Info’ line is not present because the log_level is 3.

6.1.16 Module msgpack

The msgpack module takes strings in MsgPack format and decodes them, or takes a series of non-MsgPack
values and encodes them.

msgpack.encode(lua_value)
Convert a Lua object to a MsgPack string.

Parameters

• lua_value – either a scalar value or a Lua table value.

Return the original value reformatted as a MsgPack string.

Rtype string

msgpack.decode(string)
Convert a MsgPack string to a Lua object.

Parameters

• string – a string formatted as MsgPack.

• the original contents formatted as a Lua table;

• the number of bytes that were decoded.

Rtype lua object

msgpack.NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a tuple.

Example

tarantool> msgpack = require('msgpack')

...
tarantool> y = msgpack.encode({'a',1,'b',2})

...
tarantool> z = msgpack.decode(y)

...
tarantool> z[1], z[2], z[3], z[4]

- a
- 1

(continues on next page)

6.1. Built-in modules reference 209

http://msgpack.org/

Tarantool, Release 1.7.4

(continued from previous page)

- b
- 2
...
tarantool> box.space.tester:insert{20, msgpack.NULL, 20}

- [20, null, 20]
...

The MsgPack output structure can be specified with __serialize:

• __serialize = "seq" or "sequence" for an array

• __serialize = "map" or "mapping" for a map

Serializing ‘A’ and ‘B’ with different __serialize values causes different results. To show this, here is a
routine which encodes {‘A’,’B’} both as an array and as a map, then displays each result in hexadecimal.

function hexdump(bytes)
local result = ''
for i = 1, #bytes do

result = result .. string.format("%x", string.byte(bytes, i)) .. ' '
end
return result

end

msgpack = require('msgpack')
m1 = msgpack.encode(setmetatable({'A', 'B'}, {

__serialize = "seq"
}))

m2 = msgpack.encode(setmetatable({'A', 'B'}, {
__serialize = "map"

}))
print('array encoding: ', hexdump(m1))
print('map encoding: ', hexdump(m2))

Result:

array encoding: 92 a1 41 a1 42
map encoding: 82 01 a1 41 02 a1 42

The MsgPack Specification page explains that the first encoding means:

fixarray(2), fixstr(1), "A", fixstr(1), "B"

and the second encoding means:

fixmap(2), key(1), fixstr(1), "A", key(2), fixstr(2), "B".

Here are examples for all the common types, with the Lua-table representation on the left, with the MsgPack
format name and encoding on the right.

Common Types and MsgPack Encodings

210 Chapter 6. Reference

http://github.com/msgpack/msgpack/blob/master/spec.md

Tarantool, Release 1.7.4

{} ‘fixmap’ if metatable is ‘map’ = 80 otherwise ‘fixarray’ = 90
‘a’ ‘fixstr’ = a1 61
false ‘false’ = c2
true ‘true’ = c3
127 ‘positive fixint’ = 7f
65535 ‘uint 16’ = cd ff ff
4294967295 ‘uint 32’ = ce ff ff ff ff
nil ‘nil’ = c0
msg-
pack.NULL

same as nil

[0] = 5 ‘fixmap(1)’ + ‘positive fixint’ (for the key) + ‘positive fixint’ (for the value) = 81 00 05
[0] = nil ‘fixmap(0)’ = 80 – nil is not stored when it is a missing map value
1.5 ‘float 64’ = cb 3f f8 00 00 00 00 00 00

Also, some MsgPack configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

6.1.17 Module net.box

The net.box module contains connectors to remote database systems. One variant, to be discussed later, is
connecting to MySQL or MariaDB or PostgreSQL (see SQL DBMS modules reference). The other variant,
which is discussed in this section, is connecting to Tarantool server instances via a network using the built-in
net.box module.

You can call the following methods:

• require('net.box') to get a net.box object (named net_box for examples in this section),

• net_box.connect() to connect and get a connection object (named conn for examples in this section),

• other net.box() routines, passing conn:, to execute requests on a remote box,

• conn:close to disconnect.

All net.box methods are fiber-safe, that is, it is safe to share and use the same connection object across
multiple concurrent fibers. In fact, it’s perhaps the best programming practice with Tarantool. When
multiple fibers use the same connection, all requests are pipelined through the same network socket, but
each fiber gets back a correct response. Reducing the number of active sockets lowers the overhead of system
calls and increases the overall server performance. There are, however, cases when a single connection is not
enough — for example, when it’s necessary to prioritize requests or to use different authentication IDs.

The diagram below shows possible connection states and transitions:

On this diagram:

• The state machine starts in the ‘initial’ state.

• net_box.connect() method changes the state to ‘connecting’ and spawns a worker fiber.

• If authentication and schema upload are required, it’s possible later on to re-enter the ‘fetch_schema’
state from ‘active’ if a request fails due to a schema version mismatch error, so schema reload is
triggered.

• conn.close() method sets the state to ‘closed’ and kills the worker. If the transport is already in the
‘error’ state, close() does nothing.

net_box.connect(URI[, {option[s]}])

6.1. Built-in modules reference 211

Tarantool, Release 1.7.4

net_box.new(URI[, {option[s]}])

Note: The names connect() and new() are synonymous with the only difference that connect() is the
preferred name, while new() is retained for backward compatibility.

Create a new connection. The connection is established on demand, at the time of the first request.
It can be re-established automatically after a disconnect (see reconnect_after option below). The
returned conn object supports methods for making remote requests, such as select, update or delete.

For a local Tarantool server, there is a pre-created always-established connection object named
net_box.self. Its purpose is to make polymorphic use of the net_box API easier. Therefore conn
= net_box.connect('localhost:3301') can be replaced by conn = net_box.self. However, there is an
important difference between the embedded connection and a remote one. With the embedded con-
nection, requests which do not modify data do not yield. When using a remote connection, due to
the implicit rules any request can yield, and database state may have changed by the time it regains
control.

Possible options:

• wait_connected: by default, connection creation is blocked until the connection is established,
but passing wait_connected=false makes it return immediately. Also, passing a timeout makes
it wait before returning (e.g. wait_connected=1.5 makes it wait at most 1.5 secs).

Note: In the presence of reconnect_after, wait_connected ignores transient failures. The wait
completes once the connection is established or is closed explicitly.

• reconnect_after: a net.box instance automatically reconnects any time the connection is broken
or if a connection attempt fails. This makes transient network failures become transparent to
the application. Reconnect happens automatically in the background, so queries/requests that
suffered due to connectivity loss are transparently retried. The number of retries is unlimited,
connection attempts are done over the specified timeout (e.g. reconnect_after=5 for 5 secs). Once
a connection is explicitly closed (or garbage-collected), reconnects stop.

• call_16: [since 1.7.2] by default, net.box connections comply with a new binary protocol com-
mand for CALL, which is not backward compatible with previous versions. The new CALL no
longer restricts a function to returning an array of tuples and allows returning an arbitrary Ms-
gPack/JSON result, including scalars, nil and void (nothing). The old CALL is left intact for
backward compatibility. It will be removed in the next major release. All programming language
drivers will be gradually changed to use the new CALL. To connect to a Tarantool instance that
uses the old CALL, specify call_16=true.

• console: depending on the option’s value, the connection supports different methods (as if in-
stances of different classes were returned). With console = true, you can use conn methods
close(), is_connected(), wait_state(), eval() (in this case, both binary and Lua console network
protocols are supported). With console = false (default), you can also use conn database methods
(in this case, only the binary protocol is supported).

Parameters

• URI (string) – the URI of the target for the connection

• options – possible options are wait_connected, reconnect_after, call_16 and console

Return conn object

212 Chapter 6. Reference

Tarantool, Release 1.7.4

Rtype userdata

Example:

conn = net_box.connect('localhost:3301')
conn = net_box.connect('127.0.0.1:3302', {wait_connected = false})
conn = net_box.connect('127.0.0.1:3303', {reconnect_after = 5, call_16 = true})

object conn

conn:ping()
Execute a PING command.

Return true on success, false on error

Rtype boolean

Example:

net_box.self:ping()

conn:wait_connected([timeout])
Wait for connection to be active or closed.

Parameters

• timeout (number) – in seconds

Return true when connected, false on failure.

Rtype boolean

Example:

net_box.self:wait_connected()

conn:is_connected()
Show whether connection is active or closed.

Return true if connected, false on failure.

Rtype boolean

Example:

net_box.self:is_connected()

conn:wait_state(state[s][, timeout])
[since 1.7.2] Wait for a target state.

Parameters

• states (string) – target states

• timeout (number) – in seconds

Return true when a target state is reached, false on timeout or connection closure

Rtype boolean

Example:

6.1. Built-in modules reference 213

Tarantool, Release 1.7.4

-- wait infinitely for 'active' state:
conn:wait_state('active')

-- wait for 1.5 secs at most:
conn:wait_state('active', 1.5)

-- wait infinitely for either `active` or `fetch_schema` state:
conn:wait_state({active=true, fetch_schema=true})

conn:close()
Close a connection.

Connection objects are garbage collected just like any other objects in Lua, so an explicit destruc-
tion is not mandatory. However, since close() is a system call, it is good programming practice
to close a connection explicitly when it is no longer needed, to avoid lengthy stalls of the garbage
collector.

Example:

conn:close()

conn.space.<space-name>:select{field-value, ...}
conn.space.space-name:select{...} is the remote-call equivalent of the local call box.space.space-
name:select{...}.

Note: Due to the implicit yield rules a local box.space.space-name:select{...} does not yield, but
a remote conn.space.space-name:select{...} call does yield, so global variables or database tuples
data may change when a remote conn.space.space-name:select{...} occurs.

conn.space.<space-name>:get{field-value, ...}
conn.space.space-name:get(...) is the remote-call equivalent of the local call box.space.space-
name:get(...).

conn.space.<space-name>:insert{field-value, ...}
conn.space.space-name:insert(...) is the remote-call equivalent of the local call box.space.space-
name:insert(...).

conn.space.<space-name>:replace{field-value, ...}
conn.space.space-name:replace(...) is the remote-call equivalent of the local call box.space.space-
name:replace(...).

conn.space.<space-name>:update{field-value, ...}
conn.space.space-name:update(...) is the remote-call equivalent of the local call box.space.space-
name:update(...).

conn.space.<space-name>:upsert{field-value, ...}
conn.space.space-name:upsert(...) is the remote-call equivalent of the local call box.space.space-
name:upsert(...).

conn.space.<space-name>:delete{field-value, ...}
conn.space.space-name:delete(...) is the remote-call equivalent of the local call box.space.space-
name:delete(...).

conn:call(function-name[, arguments])
conn:call('func', '1', '2', '3') is the remote-call equivalent of func('1', '2', '3'). That is,
conn:call is a remote stored-procedure call.

Example:

214 Chapter 6. Reference

Tarantool, Release 1.7.4

conn:call('function5')

conn:eval(Lua-string)
conn:eval(Lua-string) evaluates and executes the expression in Lua-string, which may be any
statement or series of statements. An execute privilege is required; if the user does not have it,
an administrator may grant it with box.schema.user.grant(username, 'execute', 'universe').

Example:

conn:eval('return 5+5')

conn:timeout(timeout)
timeout(...) is a wrapper which sets a timeout for the request that follows it.

Example:

conn:timeout(0.5).space.tester:update({1}, {{'=', 2, 15}})

All remote calls support execution timeouts. Using a wrapper object makes the remote connection
API compatible with the local one, removing the need for a separate timeout argument, which
the local version would ignore. Once a request is sent, it cannot be revoked from the remote
server even if a timeout expires: the timeout expiration only aborts the wait for the remote server
response, not the request itself.

Example

This example shows the use of most of the net.box methods.

The sandbox configuration for this example assumes that:

• the Tarantool instance is running on localhost 127.0.0.1:3301,

• there is a space named tester with a numeric primary key and with a tuple that contains a key value
= 800,

• the current user has read, write and execute privileges.

Here are commands for a quick sandbox setup:

box.cfg{listen = 3301}
s = box.schema.space.create('tester')
s:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
t = s:insert({800, 'TEST'})
box.schema.user.grant('guest', 'read,write,execute', 'universe')

And here starts the example:

tarantool> net_box = require('net.box')

...
tarantool> function example()

> local conn, wtuple
> if net_box.self:ping() then
> table.insert(ta, 'self:ping() succeeded')
> table.insert(ta, ' (no surprise -- self connection is pre-established)')
> end
> if box.cfg.listen == '3301' then
> table.insert(ta,'The local server listen address = 3301')

(continues on next page)

6.1. Built-in modules reference 215

Tarantool, Release 1.7.4

(continued from previous page)

> else
> table.insert(ta, 'The local server listen address is not 3301')
> table.insert(ta, '((maybe box.cfg{...listen="3301"...} was not stated)')
> table.insert(ta, '((so connect will fail)')
> end
> conn = net_box.connect('127.0.0.1:3301')
> conn.space.tester:delete{800}
> table.insert(ta, 'conn delete done on tester.')
> conn.space.tester:insert{800, 'data'}
> table.insert(ta, 'conn insert done on tester, index 0')
> table.insert(ta, ' primary key value = 800.')
> wtuple = conn.space.tester:select{800}
> table.insert(ta, 'conn select done on tester, index 0')
> table.insert(ta, ' number of fields = ' .. #wtuple)
> conn.space.tester:delete{800}
> table.insert(ta, 'conn delete done on tester')
> conn.space.tester:replace{800, 'New data', 'Extra data'}
> table.insert(ta, 'conn:replace done on tester')
> conn:timeout(0.5).space.tester:update({800}, {{'=', 2, 'Fld#1'}})
> table.insert(ta, 'conn update done on tester')
> conn:close()
> table.insert(ta, 'conn close done')
> end

...
tarantool> ta = {}

...
tarantool> example()

...
tarantool> ta

- - self:ping() succeeded
- ' (no surprise -- self connection is pre-established)'
- The local server listen address = 3301
- conn delete done on tester.
- conn insert done on tester, index 0
- ' primary key value = 800.'
- conn select done on tester, index 0
- ' number of fields = 1'
- conn delete done on tester
- conn:replace done on tester
- conn update done on tester
- conn close done

...

6.1.18 Module os

The os module contains the functions execute(), rename(), getenv(), remove(), date(), exit(), time(), clock(),
tmpname(), environ(), setenv(), setlocale(), difftime(). Most of these functions are described in the Lua
manual Chapter 22 The Operating System Library.

os.execute(shell-command)
Execute by passing to the shell.

216 Chapter 6. Reference

https://www.lua.org/pil/contents.html#22

Tarantool, Release 1.7.4

Parameters

• shell-command (string) – what to execute.

Example:

tarantool> os.execute('ls -l /usr')
total 200
drwxr-xr-x 2 root root 65536 Apr 22 15:49 bin
drwxr-xr-x 59 root root 20480 Apr 18 07:58 include
drwxr-xr-x 210 root root 65536 Apr 18 07:59 lib
drwxr-xr-x 12 root root 4096 Apr 22 15:49 local
drwxr-xr-x 2 root root 12288 Jan 31 09:50 sbin

...

os.rename(old-name, new-name)
Rename a file or directory.

Parameters

• old-name (string) – name of existing file or directory,

• new-name (string) – changed name of file or directory.

Example:

tarantool> os.rename('local','foreign')

- null
- 'local: No such file or directory'
- 2
...

os.getenv(variable-name)
Get environment variable.

Parameters: (string) variable-name = environment variable name.

Example:

tarantool> os.getenv('PATH')

- /usr/local/sbin:/usr/local/bin:/usr/sbin
...

os.remove(name)
Remove file or directory.

Parameters: (string) name = name of file or directory which will be removed.

Example:

tarantool> os.remove('file')

- true
...

os.date(format-string[, time-since-epoch])
Return a formatted date.

6.1. Built-in modules reference 217

Tarantool, Release 1.7.4

Parameters: (string) format-string = instructions; (string) time-since-epoch = number of seconds since
1970-01-01. If time-since-epoch is omitted, it is assumed to be the current time.

Example:

tarantool> os.date("%A %B %d")

- Sunday April 24
...

os.exit()
Exit the program. If this is done on a server instance, then the instance stops.

Example:

tarantool> os.exit()
user@user-shell:~/tarantool_sandbox$

os.time()
Return the number of seconds since the epoch.

Example:

tarantool> os.time()

- 1461516945
...

os.clock()
Return the number of CPU seconds since the program start.

Example:

tarantool> os.clock()

- 0.05
...

os.tmpname()
Return a name for a temporary file.

Example:

tarantool> os.tmpname()

- /tmp/lua_7SW1m2
...

os.environ()
Return a table containing all environment variables.

Example:

tarantool> os.environ()['TERM']..os.environ()['SHELL']

- xterm/bin/bash
...

os.setenv(variable-name, variable-value)
Set an environment variable.

218 Chapter 6. Reference

Tarantool, Release 1.7.4

Example:

tarantool> os.setenv('VERSION','99')

-
...

os.setlocale([new-locale-string])
Change the locale. If new-locale-string is not specified, return the current locale.

Example:

tarantool> require('string').sub(os.setlocale(),1,20)

- LC_CTYPE=en_US.UTF-8
...

os.difftime(time1, time2)
Return the number of seconds between two times.

Example:

tarantool> os.difftime(os.time() - 0)

- 1486594859
...

6.1.19 Module pickle

pickle.pack(format, argument[, argument ...])
To use Tarantool binary protocol primitives from Lua, it’s necessary to convert Lua variables to binary
format. The pickle.pack() helper function is prototyped after Perl ‘pack’.

Format specifiers

b,
B

converts Lua variable to a 1-byte integer, and stores the integer in the resulting string

s, S converts Lua variable to a 2-byte integer, and stores the integer in the resulting string, low
byte first

i, I converts Lua variable to a 4-byte integer, and stores the integer in the resulting string, low
byte first

l, L converts Lua variable to an 8-byte integer, and stores the integer in the resulting string, low
byte first

n converts Lua variable to a 2-byte integer, and stores the integer in the resulting string, big
endian,

N converts Lua variable to a 4-byte integer, and stores the integer in the resulting string, big
q,
Q

converts Lua variable to an 8-byte integer, and stores the integer in the resulting string, big
endian,

f converts Lua variable to a 4-byte float, and stores the float in the resulting string
d converts Lua variable to a 8-byte double, and stores the double in the resulting string
a,
A

converts Lua variable to a sequence of bytes, and stores the sequence in the resulting string

Parameters

6.1. Built-in modules reference 219

http://perldoc.perl.org/functions/pack.html

Tarantool, Release 1.7.4

• format (string) – string containing format specifiers

• argument(s) (scalar-value) – scalar values to be formatted

Return a binary string containing all arguments, packed according to the format specifiers.

Rtype string

Possible errors: unknown format specifier.

Example:

tarantool> pickle = require('pickle')

...
tarantool> box.space.tester:insert{0, 'hello world'}

- [0, 'hello world']
...
tarantool> box.space.tester:update({0}, {{'=', 2, 'bye world'}})

- [0, 'bye world']
...
tarantool> box.space.tester:update({0}, {

> {'=', 2, pickle.pack('iiA', 0, 3, 'hello')}
> })

- [0, "\0\0\0\0\x03\0\0\0hello"]
...
tarantool> box.space.tester:update({0}, {{'=', 2, 4}})

- [0, 4]
...
tarantool> box.space.tester:update({0}, {{'+', 2, 4}})

- [0, 8]
...
tarantool> box.space.tester:update({0}, {{'^', 2, 4}})

- [0, 12]
...

pickle.unpack(format, binary-string)
Counterpart to pickle.pack(). Warning: if format specifier ‘A’ is used, it must be the last item.

Parameters

• format (string) –

• binary-string (string) –

Return A list of strings or numbers.

Rtype table

Example:

tarantool> pickle = require('pickle')

...
tarantool> tuple = box.space.tester:replace{0}

(continues on next page)

220 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool> string.len(tuple[1])

- 1
...
tarantool> pickle.unpack('b', tuple[1])

- 48
...
tarantool> pickle.unpack('bsi', pickle.pack('bsi', 255, 65535, 4294967295))

- 255
- 65535
- 4294967295
...
tarantool> pickle.unpack('ls', pickle.pack('ls', tonumber64('18446744073709551615'), 65535))

...
tarantool> num, num64, str = pickle.unpack('slA', pickle.pack('slA', 666,

> tonumber64('666666666666666'), 'string'))

...

6.1.20 Module socket

The socket module allows exchanging data via BSD sockets with a local or remote host in connection-oriented
(TCP) or datagram-oriented (UDP) mode. Semantics of the calls in the socket API closely follow semantics
of the corresponding POSIX calls. Function names and signatures are mostly compatible with luasocket.

The functions for setting up and connecting are socket, sysconnect, tcp_connect. The functions for sending
data are send, sendto, write, syswrite. The functions for receiving data are recv, recvfrom, read. The
functions for waiting before sending/receiving data are wait, readable, writable. The functions for setting
flags are nonblock, setsockopt. The functions for stopping and disconnecting are shutdown, close. The
functions for error checking are errno, error.

Socket functions

6.1. Built-in modules reference 221

https://github.com/diegonehab/luasocket

Tarantool, Release 1.7.4

Purposes Names
setup socket()
“” socket.tcp_connect()
“” socket.tcp_server()
“” socket_object:sysconnect()
“” socket_object:send()
sending socket_object:sendto()
“” socket_object:write()
“” socket_object:syswrite()
receiving socket_object:recv()
“” socket_object:recvfrom()
“” socket_object:read()
flag setting socket_object:nonblock()
“” socket_object:setsockopt()
“” socket_object:linger()
client/server socket_object:listen()
“” socket_object:accept()
teardown socket_object:shutdown()
“” socket_object:close()
error checking socket_object:error()
“” socket_object:errno()
information socket.getaddrinfo()
“” socket_object:getsockopt()
“” socket_object:peer()
“” socket_object:name()
state checking socket_object:readable()
“” socket_object:writable()
“” socket_object:wait()
“” socket.iowait()

Typically a socket session will begin with the setup functions, will set one or more flags, will have a loop
with sending and receiving functions, will end with the teardown functions – as an example at the end of
this section will show. Throughout, there may be error-checking and waiting functions for synchronization.
To prevent a fiber containing socket functions from “blocking” other fibers, the implicit yield rules will cause
a yield so that other processes may take over, as is the norm for cooperative multitasking.

For all examples in this section the socket name will be sock and the function invocations will look like
sock:function_name(...).

socket.__call(domain, type, protocol)
Create a new TCP or UDP socket. The argument values are the same as in the Linux socket(2) man
page.

Return an unconnected socket, or nil.

Rtype userdata

Example:

socket('AF_INET', 'SOCK_STREAM', 'tcp')

socket.tcp_connect(host[, port[, timeout]])
Connect a socket to a remote host.

Parameters

222 Chapter 6. Reference

http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html

Tarantool, Release 1.7.4

• host (string) – URL or IP address

• port (number) – port number

• timeout (number) – timeout

Return a connected socket, if no error.

Rtype userdata

Example:

socket.tcp_connect('127.0.0.1', 3301)

socket.getaddrinfo(host, type[, {option-list}])
The socket.getaddrinfo() function is useful for finding information about a remote site so that the
correct arguments for sock:sysconnect() can be passed.

Return A table containing these fields: “host”, “family”, “type”, “protocol”, “port”.

Rtype table

Example:

socket.getaddrinfo('tarantool.org', 'http') will return variable information such as

- - host: 188.93.56.70

family: AF_INET
type: SOCK_STREAM
protocol: tcp
port: 80

- host: 188.93.56.70
family: AF_INET
type: SOCK_DGRAM
protocol: udp
port: 80

...

socket.tcp_server(host, port, handler-function[, timeout])
The socket.tcp_server() function makes Tarantool act as a server that can accept connections. Usually
the same objective is accomplished with box.cfg{listen=. . . }.

Parameters

• host (string) – host name or IP

• port (number) – host port, may be 0

• handler (function/table) – what to execute when a connection occurs

• timeout (number) – number of seconds to wait before timing out

The handler-function parameter may be a function name (for example function_55), a function decla-
ration (for example function () print('!') end), or a table including handler = function (for example
{handler=function_55, name='A'}).

Example:

socket.tcp_server('localhost', 3302, function () end)

object socket_object

6.1. Built-in modules reference 223

Tarantool, Release 1.7.4

socket_object:sysconnect(host, port)
Connect an existing socket to a remote host. The argument values are the same as in
tcp_connect(). The host must be an IP address.

Parameters:

• Either:

– host - a string representation of an IPv4 address or an IPv6 address;

– port - a number.

• Or:

– host - a string containing “unix/”;

– port - a string containing a path to a unix socket.

• Or:

– host - a number, 0 (zero), meaning “all local interfaces”;

– port - a number. If a port number is 0 (zero), the socket will be bound to a random
local port.

Return the socket object value may change if sysconnect() succeeds.

Rtype boolean

Example:

socket = require('socket')
sock = socket('AF_INET', 'SOCK_STREAM', 'tcp')
sock:sysconnect(0, 3301)

socket_object:send(data)
socket_object:write(data)

Send data over a connected socket.

Parameters

• data (string) –

Return the number of bytes sent.

Rtype number

Possible errors: nil on error.

socket_object:syswrite(size)
Write as much as possible data to the socket buffer if non-blocking. Rarely used. For details see
this description.

socket_object:recv(size)
Read size bytes from a connected socket. An internal read-ahead buffer is used to reduce the cost
of this call.

Parameters

• size (integer) –

Return a string of the requested length on success.

Rtype string

224 Chapter 6. Reference

https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Release 1.7.4

Possible errors: On error, returns an empty string, followed by status, errno, errstr. In case the
writing side has closed its end, returns the remainder read from the socket (possibly an empty
string), followed by “eof” status.

socket_object:read(limit[, timeout])
socket_object:read(delimiter[, timeout])
socket_object:read({limit=limit}[, timeout])
socket_object:read({delimiter=delimiter}[, timeout])
socket_object:read({limit=limit, delimiter=delimiter}[, timeout])

Read from a connected socket until some condition is true, and return the bytes that were read.
Reading goes on until limit bytes have been read, or a delimiter has been read, or a timeout has
expired.

Parameters

• limit (integer) – maximum number of bytes to read, for example 50 means “stop
after 50 bytes”

• delimiter (string) – separator for example ‘?’ means “stop after a question mark”

• timeout (number) – maximum number of seconds to wait for example 50 means
“stop after 50 seconds”.

Return an empty string if there is nothing more to read, or a nil value if error, or a
string up to limit bytes long, which may include the bytes that matched the delimiter
expression.

Rtype string

socket_object:sysread(size)
Return data from the socket buffer if non-blocking. In case the socket is blocking, sysread() can
block the calling process. Rarely used. For details, see also this description.

Parameters

• size (integer) – maximum number of bytes to read, for example 50 means “stop
after 50 bytes”

Return an empty string if there is nothing more to read, or a nil value if error, or a string
up to size bytes long.

Rtype string

socket_object:bind(host[, port])
Bind a socket to the given host/port. A UDP socket after binding can be used to receive data
(see socket_object.recvfrom). A TCP socket can be used to accept new connections, after it has
been put in listen mode.

Parameters

• host –

• port –

Return a socket object on success

Rtype userdata

Possible errors: Returns nil, status, errno, errstr on error.

socket_object:listen(backlog)
Start listening for incoming connections.

6.1. Built-in modules reference 225

https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Release 1.7.4

Parameters

• backlog – On Linux the listen backlog backlog may be from
/proc/sys/net/core/somaxconn, on BSD the backlog may be SOMAXCONN.

Return true for success, false for error.

Rtype boolean.

socket_object:accept()
Accept a new client connection and create a new connected socket. It is good practice to set the
socket’s blocking mode explicitly after accepting.

Return new socket if success.

Rtype userdata

Possible errors: nil.

socket_object:sendto(host, port, data)
Send a message on a UDP socket to a specified host.

Parameters

• host (string) –

• port (number) –

• data (string) –

Return the number of bytes sent.

Rtype number

Possible errors: on error, returns status, errno, errstr.

socket_object:recvfrom(limit)
Receive a message on a UDP socket.

Parameters

• limit (integer) –

Return message, a table containing “host”, “family” and “port” fields.

Rtype string, table

Possible errors: on error, returns status, errno, errstr.

Example:

After message_content, message_sender = recvfrom(1) the value of message_content might be
a string containing ‘X’ and the value of message_sender might be a table containing

message_sender.host = '18.44.0.1'
message_sender.family = 'AF_INET'
message_sender.port = 43065

socket_object:shutdown(how)
Shutdown a reading end, a writing end, or both ends of a socket.

Parameters

• how – socket.SHUT_RD, socket.SHUT_WR, or socket.SHUT_RDWR.

Return true or false.

Rtype boolean

226 Chapter 6. Reference

Tarantool, Release 1.7.4

socket_object:close()
Close (destroy) a socket. A closed socket should not be used any more. A socket is closed
automatically when its userdata is garbage collected by Lua.

Return true on success, false on error. For example, if sock is already closed, sock:close()
returns false.

Rtype boolean

socket_object:error()
socket_object:errno()

Retrieve information about the last error that occurred on a socket, if any. Errors do not cause
throwing of exceptions so these functions are usually necessary.

Return result for sock:errno(), result for sock:error(). If there is no error, then
sock:errno() will return 0 and sock:error().

Rtype number, string

socket_object:setsockopt(level, name, value)
Set socket flags. The argument values are the same as in the Linux getsockopt(2) man page. The
ones that Tarantool accepts are:

• SO_ACCEPTCONN

• SO_BINDTODEVICE

• SO_BROADCAST

• SO_DEBUG

• SO_DOMAIN

• SO_ERROR

• SO_DONTROUTE

• SO_KEEPALIVE

• SO_MARK

• SO_OOBINLINE

• SO_PASSCRED

• SO_PEERCRED

• SO_PRIORITY

• SO_PROTOCOL

• SO_RCVBUF

• SO_RCVBUFFORCE

• SO_RCVLOWAT

• SO_SNDLOWAT

• SO_RCVTIMEO

• SO_SNDTIMEO

• SO_REUSEADDR

• SO_SNDBUF

• SO_SNDBUFFORCE

6.1. Built-in modules reference 227

http://man7.org/linux/man-pages/man2/setsockopt.2.html

Tarantool, Release 1.7.4

• SO_TIMESTAMP

• SO_TYPE

Setting SO_LINGER is done with sock:linger(active).

socket_object:getsockopt(level, name)
Get socket flags. For a list of possible flags see sock:setsockopt().

socket_object:linger([active])
Set or clear the SO_LINGER flag. For a description of the flag, see the Linux man page.

Parameters

• active (boolean) –

Return new active and timeout values.

socket_object:nonblock([flag])
• sock:nonblock() returns the current flag value.

• sock:nonblock(false) sets the flag to false and returns false.

• sock:nonblock(true) sets the flag to true and returns true.

This function may be useful before invoking a function which might otherwise block indefinitely.

socket_object:readable([timeout])
Wait until something is readable, or until a timeout value expires.

Return true if the socket is now readable, false if timeout expired;

socket_object:writable([timeout])
Wait until something is writable, or until a timeout value expires.

Return true if the socket is now writable, false if timeout expired;

socket_object:wait([timeout])
Wait until something is either readable or writable, or until a timeout value expires.

Return ‘R’ if the socket is now readable, ‘W’ if the socket is now writable, ‘RW’ if the
socket is now both readable and writable, ‘’ (empty string) if timeout expired;

socket_object:name()
The sock:name() function is used to get information about the near side of the connection. If
a socket was bound to xyz.com:45, then sock:name will return information about [host:xyz.com,
port:45]. The equivalent POSIX function is getsockname().

Return A table containing these fields: “host”, “family”, “type”, “protocol”, “port”.

Rtype table

socket_object:peer()
The sock:peer() function is used to get information about the far side of a connection. If a TCP
connection has been made to a distant host tarantool.org:80, sock:peer() will return information
about [host:tarantool.org, port:80]. The equivalent POSIX function is getpeername().

Return A table containing these fields: “host”, “family”, “type”, “protocol”, “port”.

Rtype table

socket.iowait(fd, read-or-write-flags[, timeout])
The socket.iowait() function is used to wait until read-or-write activity occurs for a file descriptor.

Parameters

228 Chapter 6. Reference

http://man7.org/linux/man-pages/man1/loginctl.1.html

Tarantool, Release 1.7.4

• fd – file descriptor

• read-or-write-flags – ‘R’ or 1 = read, ‘W’ or 2 = write, ‘RW’ or 3 = read|write.

• timeout – number of seconds to wait

If the fd parameter is nil, then there will be a sleep until the timeout. If the timeout parameter is nil
or unspecified, then timeout is infinite.

Ordinarily the return value is the activity that occurred (‘R’ or ‘W’ or ‘RW’ or 1 or 2 or 3). If the
timeout period goes by without any reading or writing, the return is an error = ETIMEDOUT.

Example: socket.iowait(sock:fd(), 'r', 1.11)

Examples

Use of a TCP socket over the Internet

In this example a connection is made over the internet between a Tarantool instance and tarantool.org, then
an HTTP “head” message is sent, and a response is received: “HTTP/1.1 200 OK” or something else if the
site has moved. This is not a useful way to communicate with this particular site, but shows that the system
works.

tarantool> socket = require('socket')

...
tarantool> sock = socket.tcp_connect('tarantool.org', 80)

...
tarantool> type(sock)

- table
...
tarantool> sock:error()

- null
...
tarantool> sock:send("HEAD / HTTP/1.0\r\nHost: tarantool.org\r\n\r\n")

- 40
...
tarantool> sock:read(17)

- HTTP/1.1 302 Move
...
tarantool> sock:close()

- true
...

Use of a UDP socket on localhost

Here is an example with datagrams. Set up two connections on 127.0.0.1 (localhost): sock_1 and sock_2.
Using sock_2, send a message to sock_1. Using sock_1, receive a message. Display the received message.
Close both connections. This is not a useful way for a computer to communicate with itself, but shows that
the system works.

6.1. Built-in modules reference 229

Tarantool, Release 1.7.4

tarantool> socket = require('socket')

...
tarantool> sock_1 = socket('AF_INET', 'SOCK_DGRAM', 'udp')

...
tarantool> sock_1:bind('127.0.0.1')

- true
...
tarantool> sock_2 = socket('AF_INET', 'SOCK_DGRAM', 'udp')

...
tarantool> sock_2:sendto('127.0.0.1', sock_1:name().port,'X')

- true
...
tarantool> message = sock_1:recvfrom()

...
tarantool> message

- X
...
tarantool> sock_1:close()

- true
...
tarantool> sock_2:close()

- true
...

Use tcp_server to accept file contents sent with socat

Here is an example of the tcp_server function, reading strings from the client and printing them. On the
client side, the Linux socat utility will be used to ship a whole file for the tcp_server function to read.

Start two shells. The first shell will be a server instance. The second shell will be the client.

On the first shell, start Tarantool and say:

box.cfg{}
socket = require('socket')
socket.tcp_server('0.0.0.0', 3302, function(s)

while true do
local request
request = s:read("\n");
if request == "" or request == nil then
break

end
print(request)

end
end)

The above code means: use tcp_server() to wait for a connection from any host on port 3302. When it
happens, enter a loop that reads on the socket and prints what it reads. The “delimiter” for the read function

230 Chapter 6. Reference

Tarantool, Release 1.7.4

is “\n” so each read() will read a string as far as the next line feed, including the line feed.

On the second shell, create a file that contains a few lines. The contents don’t matter. Suppose the first line
contains A, the second line contains B, the third line contains C. Call this file “tmp.txt”.

On the second shell, use the socat utility to ship the tmp.txt file to the server instance’s host and port:

$ socat TCP:localhost:3302 ./tmp.txt

Now watch what happens on the first shell. The strings “A”, “B”, “C” are printed.

6.1.21 Module strict

The strict module has functions for turning “strict mode” on or off. When strict mode is on, an attempt to
use an undeclared global variable will cause an error. A global variable is considered “undeclared” if it has
never had a value assigned to it. Often this is an indication of a programming error.

By default strict mode is off, unless tarantool was built with the -DCMAKE_BUILD_TYPE=Debug option
– see the description of build options in section building-from-source.

Example:

tarantool> strict = require('strict')

...
tarantool> strict.on()

...
tarantool> a = b -- strict mode is on so this will cause an error

- error: ... variable ''b'' is not declared'
...
tarantool> strict.off()

...
tarantool> a = b -- strict mode is off so this will not cause an error

...

6.1.22 Module tap

The tap module streamlines the testing of other modules. It allows writing of tests in the TAP protocol.
The results from the tests can be parsed by standard TAP-analyzers so they can be passed to utilities such
as prove. Thus one can run tests and then use the results for statistics, decision-making, and so on.

tap.test(test-name)
Initialize.

The result of tap.test is an object, which will be called taptest in the rest of this discussion, which is
necessary for taptest:plan() and all the other methods.

Parameters

• test-name (string) – an arbitrary name to give for the test outputs.

Return taptest

Rtype userdata

6.1. Built-in modules reference 231

https://en.wikipedia.org/wiki/Test_Anything_Protocol
https://metacpan.org/pod/distribution/Test-Harness/bin/prove

Tarantool, Release 1.7.4

tap = require('tap')
taptest = tap.test('test-name')

object taptest

taptest:plan(count)
Indicate how many tests will be performed.

Parameters

• count (number) –

Return nil

taptest:check()
Checks the number of tests performed. This check should only be done after all planned tests are
complete, so ordinarily taptest:check() will only appear at the end of a script.

Will display # bad plan: ... if the number of completed tests is not equal to the number of tests
specified by taptest:plan(...).

Return nil

taptest:diag(message)
Display a diagnostic message.

Parameters

• message (string) – the message to be displayed.

Return nil

taptest:ok(condition, test-name)
This is a basic function which is used by other functions. Depending on the value of condition,
print ‘ok’ or ‘not ok’ along with debugging information. Displays the message.

Parameters

• condition (boolean) – an expression which is true or false

• test-name (string) – name of test

Return true or false.

Rtype boolean

Example:

tarantool> taptest:ok(true, 'x')
ok - x

- true
...
tarantool> tap = require('tap')

...
tarantool> taptest = tap.test('test-name')
TAP version 13

...
tarantool> taptest:ok(1 + 1 == 2, 'X')
ok - X

(continues on next page)

232 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

- true
...

taptest:fail(test-name)
taptest:fail('x') is equivalent to taptest:ok(false, 'x'). Displays the message.

Parameters

• test-name (string) – name of test

Return true or false.

Rtype boolean

taptest:skip(message)
taptest:skip('x') is equivalent to taptest:ok(true, 'x' .. '# skip'). Displays the message.

Parameters

• test-name (string) – name of test

Return nil

Example:

tarantool> taptest:skip('message')
ok - message # skip

- true
...

taptest:is(got, expected, test-name)
Check whether the first argument equals the second argument. Displays extensive message if the
result is false.

Parameters

• got (number) – actual result

• expected (number) – expected result

• test-name (string) – name of test

Return true or false.

Rtype boolean

taptest:isnt(got, expected, test-name)
This is the negation of taptest:is(...).

Parameters

• got (number) – actual result

• expected (number) – expected result

• test-name (string) – name of test

Return true or false.

Rtype boolean

taptest:isnil(value, test-name)
taptest:isstring(value, test-name)

6.1. Built-in modules reference 233

Tarantool, Release 1.7.4

taptest:isnumber(value, test-name)
taptest:istable(value, test-name)
taptest:isboolean(value, test-name)
taptest:isudata(value, test-name)
taptest:iscdata(value, test-name)

Test whether a value has a particular type. Displays a long message if the value is not of the
specified type.

Parameters

• value (lua-value) –

• test-name (string) – name of test

Return true or false.

Rtype boolean

taptest:is_deeply(got, expected, test-name)
Recursive version of taptest:is(...), which can be be used to compare tables as well as scalar values.

Return true or false.

Rtype boolean

Parameters

• got (lua-value) – actual result

• expected (lua-value) – expected result

• test-name (string) – name of test

Example

To run this example: put the script in a file named ./tap.lua, then make tap.lua executable by saying chmod
a+x ./tap.lua, then execute using Tarantool as a script processor by saying ./tap.lua.

#!/usr/bin/tarantool
local tap = require('tap')
test = tap.test("my test name")
test:plan(2)
test:ok(2 * 2 == 4, "2 * 2 is 4")
test:test("some subtests for test2", function(test)

test:plan(2)
test:is(2 + 2, 4, "2 + 2 is 4")
test:isnt(2 + 3, 4, "2 + 3 is not 4")

end)
test:check()

The output from the above script will look approximately like this:

TAP version 13
1..2
ok - 2 * 2 is 4

Some subtests for test2
1..2
ok - 2 + 2 is 4,
ok - 2 + 3 is not 4
Some subtests for test2: end

ok - some subtests for test2

234 Chapter 6. Reference

Tarantool, Release 1.7.4

6.1.23 Module tarantool

By saying require('tarantool'), one can answer some questions about how the tarantool server was built,
such as “what flags were used”, or “what was the version of the compiler”.

Additionally one can see the uptime and the server version and the process id. Those information items can
also be accessed with box.info() but use of the tarantool module is recommended.

Example:

tarantool> tarantool = require('tarantool')

...
tarantool> tarantool

- build:

target: Linux-x86_64-RelWithDebInfo
options: cmake . -DCMAKE_INSTALL_PREFIX=/usr -DENABLE_BACKTRACE=ON
mod_format: so
flags: ' -fno-common -fno-omit-frame-pointer -fno-stack-protector -fexceptions
-funwind-tables -fopenmp -msse2 -std=c11 -Wall -Wextra -Wno-sign-compare -Wno-strict-aliasing
-fno-gnu89-inline'

compiler: /usr/bin/x86_64-linux-gnu-gcc /usr/bin/x86_64-linux-gnu-g++
uptime: 'function: 0x408668e0'
version: 1.7.0-66-g9093daa
pid: 'function: 0x40866900'

...
tarantool> tarantool.pid()

- 30155
...
tarantool> tarantool.uptime()

- 108.64641499519
...

6.1.24 Module uuid

A “UUID” is a Universally unique identifier. If an application requires that a value be unique only within
a single computer or on a single database, then a simple counter is better than a UUID, because getting a
UUID is time-consuming (it requires a syscall). For clusters of computers, or widely distributed applications,
UUIDs are better.

The functions that can return a UUID are:

• uuid()

• uuid.bin()

• uuid.str()

The functions that can convert between different types of UUID are:

• uuid_object:bin()

• uuid_object:str()

• uuid.fromstr()

• uuid.frombin()

6.1. Built-in modules reference 235

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Syscall

Tarantool, Release 1.7.4

The function that can determine whether a UUID is an all-zero value is:

• uuid_object:isnil()

uuid.nil
A nil object

uuid.__call()

Return a UUID

Rtype cdata

uuid.bin()

Return a UUID

Rtype 16-byte string

uuid.str()

Return a UUID

Rtype 36-byte binary string

uuid.fromstr(uuid_str)

Parameters

• uuid_str – UUID in 36-byte hexadecimal string

Return converted UUID

Rtype cdata

uuid.frombin(uuid_bin)

Parameters

• uuid_str – UUID in 16-byte binary string

Return converted UUID

Rtype cdata

object uuid_object

uuid_object:bin([byte-order])
byte-order can be one of next flags:

• ‘l’ - little-endian,

• ‘b’ - big-endian,

• ‘h’ - endianness depends on host (default),

• ‘n’ - endianness depends on network

Parameters

• byte-order (string) – one of 'l', 'b', 'h' or 'n'.

Return UUID converted from cdata input value.

Rtype 16-byte binary string

uuid_object:str()

236 Chapter 6. Reference

Tarantool, Release 1.7.4

Return UUID converted from cdata input value.

Rtype 36-byte hexadecimal string

uuid_object:isnil()
The all-zero UUID value can be expressed as uuid.NULL, or as uuid.fromstr('00000000-0000-
0000-0000-000000000000'). The comparison with an all-zero value can also be expressed as
uuid_with_type_cdata == uuid.NULL.

Return true if the value is all zero, otherwise false.

Rtype bool

Example

tarantool> uuid = require('uuid')

...
tarantool> uuid(), uuid.bin(), uuid.str()

- 16ffedc8-cbae-4f93-a05e-349f3ab70baa
- !!binary FvG+Vy1MfUC6kIyeM81DYw==
- 67c999d2-5dce-4e58-be16-ac1bcb93160f
...
tarantool> uu = uuid()

...
tarantool> #uu:bin(), #uu:str(), type(uu), uu:isnil()

- 16
- 36
- cdata
- false
...

6.1.25 Module uri

A “URI” is a “Uniform Resource Identifier”. The IETF standard says a URI string looks like
this: [scheme:]scheme-specific-part[#fragment] A common type, a hierarchical URI, looks like this:
[scheme:][//authority][path][?query][#fragment] For example the string ‘https://tarantool.org/x.html#y’
has three components: https is the scheme, tarantool.org/x.html is the path, and y is the fragment. Taran-
tool’s URI module provides routines which convert URI strings into their components, or turn components
into URI strings.

uri.parse(URI-string)

Parameters

• URI-string – a Uniform Resource Identifier

Returns URI-components-table. Possible components are fragment, host, login, password,
path, query, scheme, service.

Rtype Table

Example:

6.1. Built-in modules reference 237

https://www.ietf.org/rfc/rfc2396.txt

Tarantool, Release 1.7.4

tarantool> uri = require('uri')

...

tarantool> uri.parse('http://x.html#y')

- host: x.html
scheme: http
fragment: y

...

uri.format(URI-components-table)

Parameters

• URI-components-table – a series of name:value pairs, one for each component

Returns URI-string. Thus uri.format() is the reverse of uri.parse().

Rtype string

Example:

tarantool> uri.format({host = 'x.html', scheme = 'http', fragment = 'y'})

- http://x.html#y
...

6.1.26 Module xlog

The xlog module contains one function: pairs(). It can be used to read Tarantool’s snapshot files or write-
ahead-log (WAL) files. A description of the file format is in section Data persistence and the WAL file
format.

xlog.pairs([file-name])
Open a file, and allow iterating over one file entry at a time.

Returns iterator which can be used in a for/end loop.

Rtype iterator

Possible errors: File does not contain properly formatted snapshot or write-ahead-log information.

Example:

This will read the first write-ahead-log (WAL) file that was created in the wal_dir directory in our
“Getting started” exercises.

Each result from pairs() is formatted with MsgPack so its structure can be specified with __serialize.

xlog = require('xlog')
t = {}
for k, v in xlog.pairs('00000000000000000000.xlog') do
table.insert(t, setmetatable(v, { __serialize = "map"}))

end
return t

The first lines of the result will look like:

238 Chapter 6. Reference

https://www.lua.org/pil/7.1.html

Tarantool, Release 1.7.4

(...)

- - {'BODY': {'space_id': 272, 'index_base': 1, 'key': ['max_id'],

'tuple': [['+', 2, 1]]},
'HEADER': {'type': 'UPDATE', 'timestamp': 1477846870.8541,

'lsn': 1, 'server_id': 1}}
- {'BODY': {'space_id': 280,

'tuple': [512, 1, 'tester', 'memtx', 0, {}, []]},
'HEADER': {'type': 'INSERT', 'timestamp': 1477846870.8597,

'lsn': 2, 'server_id': 1}}

6.1.27 Module yaml

The yaml module takes strings in YAML format and decodes them, or takes a series of non-YAML values
and encodes them.

yaml.encode(lua_value)
Convert a Lua object to a YAML string.

Parameters

• lua_value – either a scalar value or a Lua table value.

Return the original value reformatted as a YAML string.

Rtype string

yaml.decode(string)
Convert a YAML string to a Lua object.

Parameters

• string – a string formatted as YAML.

Return the original contents formatted as a Lua table.

Rtype table

yaml.NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a tuple.

Example

tarantool> yaml = require('yaml')

...
tarantool> y = yaml.encode({'a', 1, 'b', 2})

...
tarantool> z = yaml.decode(y)

...
tarantool> z[1], z[2], z[3], z[4]

- a
- 1
- b
- 2

(continues on next page)

6.1. Built-in modules reference 239

http://yaml.org/

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool> if yaml.NULL == nil then print('hi') end
hi

...

The YAML collection style can be specified with __serialize:

• __serialize="sequence" for a Block Sequence array,

• __serialize="seq" for a Flow Sequence array,

• __serialize="mapping" for a Block Mapping map,

• __serialize="map" for a Flow Mapping map.

Serializing ‘A’ and ‘B’ with different __serialize values causes different results:

tarantool> yaml = require('yaml')

...
tarantool> yaml.encode(setmetatable({'A', 'B'}, { __serialize="sequence"}))

- |

- A
- B
...

...
tarantool> yaml.encode(setmetatable({'A', 'B'}, { __serialize="seq"}))

- |

['A', 'B']
...

...
tarantool> yaml.encode({setmetatable({f1 = 'A', f2 = 'B'}, { __serialize="map"})})

- |

- {'f2': 'B', 'f1': 'A'}
...

...
tarantool> yaml.encode({setmetatable({f1 = 'A', f2 = 'B'}, { __serialize="mapping"})})

- |

- f2: B
f1: A

...
...

Also, some YAML configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

240 Chapter 6. Reference

http://yaml.org/spec/1.1/#id930798

Tarantool, Release 1.7.4

6.1.28 Miscellaneous

tonumber64(value)
Convert a string or a Lua number to a 64-bit integer. The input value can be expressed in decimal,
binary (for example 0b1010), or hexadecimal (for example -0xffff). The result can be used in arithmetic,
and the arithmetic will be 64-bit integer arithmetic rather than floating-point arithmetic. (Operations
on an unconverted Lua number use floating-point arithmetic.) The tonumber64() function is added by
Tarantool; the name is global.

Example:

tarantool> type(123456789012345), type(tonumber64(123456789012345))

- number
- number
...
tarantool> i = tonumber64('1000000000')

...
tarantool> type(i), i / 2, i - 2, i * 2, i + 2, i % 2, i ^ 2

- number
- 500000000
- 999999998
- 2000000000
- 1000000002
- 0
- 1000000000000000000
...

dostring(lua-chunk-string[, lua-chunk-string-argument ...])
Parse and execute an arbitrary chunk of Lua code. This function is mainly useful to define and run
Lua code without having to introduce changes to the global Lua environment.

Parameters

• lua-chunk-string (string) – Lua code

• lua-chunk-string-argument (lua-value) – zero or more scalar values which will be
appended to, or substitute for, items in the Lua chunk.

Return whatever is returned by the Lua code chunk.

Possible errors: If there is a compilation error, it is raised as a Lua error.

Example:

tarantool> dostring('abc')

error: '[string "abc"]:1: ''='' expected near ''<eof>'''
...
tarantool> dostring('return 1')

- 1
...
tarantool> dostring('return ...', 'hello', 'world')

- hello
- world

(continues on next page)

6.1. Built-in modules reference 241

Tarantool, Release 1.7.4

(continued from previous page)

...
tarantool> dostring([[

> local f = function(key)
> local t = box.space.tester:select{key}
> if t ~= nil then
> return t[1]
> else
> return nil
> end
> end
> return f(...)]], 1)

- null
...

6.1.29 Database error codes

In the current version of the binary protocol, error messages, which are normally more descriptive than error
codes, are not present in server responses. The actual message may contain a file name, a detailed reason
or operating system error code. All such messages, however, are logged in the error log. Below are general
descriptions of some popular codes. A complete list of errors can be found in file errcode.h in the source
tree.

List of error codes

ER_NONMASTER(In replication) A server instance cannot modify data unless it is a master.
ER_ILLEGAL_PARAMSIllegal parameters. Malformed protocol message.
ER_MEMORY_ISSUEOut of memory: memtx_memory limit has been reached.
ER_WAL_IO Failed to write to disk. May mean: failed to record a change in the write-ahead log.

Some sort of disk error.
ER_KEY_PART_COUNTKey part count is not the same as index part count
ER_NO_SUCH_SPACEThe specified space does not exist.
ER_NO_SUCH_INDEXThe specified index in the specified space does not exist.
ER_PROC_LUA An error occurred inside a Lua procedure.
ER_FIBER_STACKThe recursion limit was reached when creating a new fiber. This usually indicates

that a stored procedure is recursively invoking itself too often.
ER_UPDATE_FIELDAn error occurred during update of a field.
ER_TUPLE_FOUNDA duplicate key exists in a unique index.

6.1.30 Handling errors

Here are some procedures that can make Lua functions more robust when there are errors, particularly
database errors.

1. Invoke with pcall.

Take advantage of Lua’s mechanisms for “Error handling and exceptions”, particularly pcall. That is,
instead of simply invoking with

box.space.space-name:function-name()

say

242 Chapter 6. Reference

https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h
http://www.lua.org/pil/8.4.html

Tarantool, Release 1.7.4

if pcall(box.space.space-name.function-name, box.space.space-name) ...

For some Tarantool box functions, pcall also returns error details including a file-name and
line-number within Tarantool’s source code. This can be seen by unpacking. For example:

x, y = pcall(function() box.schema.space.create('') end)

y:unpack()

See the tutorial Sum a JSON field for all tuples to see how pcall can fit in an application.

2. Examine and raise with box.error.

To make a new error and pass it on, the box.error module provides box.error(code, errtext [, errtext
. . .]).

To find the last error, the box.error module provides box.error.last(). (There is also a way to find the
text of the last operating-system error for certain functions – errno.strerror([code]).)

3. Log.

Put messages in a log using the log module.

And filter messages that are automatically generated, with the log configuration parameter.

Generally, for Tarantool built-in functions which are designed to return objects: the result will be an object,
or nil, or a Lua error. For example consider the fio_read.lua program in our cookbook:

#!/usr/bin/env tarantool

local fio = require('fio')
local errno = require('errno')
local f = fio.open('/tmp/xxxx.txt', {'O_RDONLY' })
if not f then

error("Failed to open file: "..errno.strerror())
end
local data = f:read(4096)
f:close()
print(data)

After a function call that might fail, like fio.open() above, it is common to see syntax like if not f then ...
or if f == nil then ..., which check for common failures. But if there had been a syntax error, for example
fio.opex instead of fio.open, then there would have been a Lua error and f would not have been changed. If
checking for such an obvious error had been a concern, the programmer would probably have used pcall().

All functions in Tarantool modules should work this way, unless the manual explicitly says otherwise.

6.2 Rocks reference

This reference covers third-party Lua modules for Tarantool.

6.2.1 SQL DBMS Modules

The discussion here in the reference is about incorporating and using two modules that have already been
created: the “SQL DBMS rocks” for MySQL and PostgreSQL.

6.2. Rocks reference 243

https://www.lua.org/pil/8.3.html

Tarantool, Release 1.7.4

To call another DBMS from Tarantool, the essential requirements are: another DBMS, and Tarantool. The
module which connects Tarantool to another DBMS may be called a “connector”. Within the module there
is a shared library which may be called a “driver”.

Tarantool supplies DBMS connector modules with the module manager for Lua, LuaRocks. So the connector
modules may be called “rocks”.

The Tarantool rocks allow for connecting to SQL servers and executing SQL statements the same way that
a MySQL or PostgreSQL client does. The SQL statements are visible as Lua methods. Thus Tarantool
can serve as a “MySQL Lua Connector” or “PostgreSQL Lua Connector”, which would be useful even if
that was all Tarantool could do. But of course Tarantool is also a DBMS, so the module also is useful for
any operations, such as database copying and accelerating, which work best when the application can work
on both SQL and Tarantool inside the same Lua routine. The methods for connect/select/insert/etc. are
similar to the ones in the net.box module.

From a user’s point of view the MySQL and PostgreSQL rocks are very similar, so the following sections –
“MySQL Example” and “PostgreSQL Example” – contain some redundancy.

MySQL Example

This example assumes that MySQL 5.5 or MySQL 5.6 or MySQL 5.7 has been installed. Recent MariaDB
versions will also work, the MariaDB C connector is used. The package that matters most is the MySQL
client developer package, typically named something like libmysqlclient-dev. The file that matters most from
this package is libmysqlclient.so or a similar name. One can use find or whereis to see what directories these
files are installed in.

It will be necessary to install Tarantool’s MySQL driver shared library, load it, and use it to connect to a
MySQL server instance. After that, one can pass any MySQL statement to the server instance and receive
results, including multiple result sets.

Installation

Check the instructions for downloading and installing a binary package that apply for the environment where
Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on Ubuntu,
add the line:

sudo apt-get install tarantool-dev

Now, for the MySQL driver shared library, there are two ways to install:

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the in-
structions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

luarocks install mysql [MYSQL_LIBDIR = path]
[MYSQL_INCDIR = path]
[--local]

For example:

luarocks install mysql MYSQL_LIBDIR=/usr/local/mysql/lib

244 Chapter 6. Reference

http://tarantool.org/download.html
http://rocks.tarantool.org/

Tarantool, Release 1.7.4

With GitHub

Go the site github.com/tarantool/mysql. Follow the instructions there, saying:

git clone https://github.com/tarantool/mysql.git
cd mysql && cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo
make
make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the mysql driver. We will assume that the name is mysql in further
examples.

mysql = require('mysql')

Now, say:

connection_name = mysql.connect(connection options)

The connection-options parameter is a table. Possible options are:

• host = host-name - string, default value = ‘localhost’

• port = port-number - number, default value = 3306

• user = user-name - string, default value is operating-system user name

• password = password - string, default value is blank

• db = database-name - string, default value is blank

• raise = true|false - boolean, default value is false

The option names, except for raise, are similar to the names that MySQL’s mysql client uses, for details see
the MySQL manual at dev.mysql.com/doc/refman/5.6/en/connecting.html. The raise option should be set
to true if errors should be raised when encountered. To connect with a Unix socket rather than with TCP,
specify host = 'unix/' and port = socket-name.

Example, using a table literal enclosed in {braces}:

conn = mysql.connect({
host = '127.0.0.1',
port = 3306,
user = 'p',
password = 'p',
db = 'test',
raise = true

})
-- OR
conn = mysql.connect({

host = 'unix/',
port = '/var/run/mysqld/mysqld.sock'

})

Example, creating a function which sets each option in a separate line:

6.2. Rocks reference 245

https://github.com/tarantool/mysql
https://dev.mysql.com/doc/refman/5.6/en/connecting.html

Tarantool, Release 1.7.4

tarantool> -- Connection function. Usage: conn = mysql_connect()
tarantool> function mysql_connection()

> local p = {}
> p.host = 'widgets.com'
> p.db = 'test'
> conn = mysql.connect(p)
> return conn
> end

...
tarantool> conn = mysql_connect()

...

We will assume that the name is ‘conn’ in further examples.

How to ping

To ensure that a connection is working, the request is:

connection-name:ping()

Example:

tarantool> conn:ping()

- true
...

Executing a statement

For all MySQL statements, the request is:

connection-name:execute(sql-statement [, parameters])

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks (“?”s) in the SQL statement.

Example:

tarantool> conn:execute('select table_name from information_schema.tables')

- - table_name: ALL_PLUGINS
- table_name: APPLICABLE_ROLES
- table_name: CHARACTER_SETS
<...>

- 78
...

Closing connection

To end a session that began with mysql.connect, the request is:

connection-name:close()

246 Chapter 6. Reference

Tarantool, Release 1.7.4

Example:

tarantool> conn:close()

...

For further information, including examples of rarely-used requests, see the README.md file at
github.com/tarantool/mysql.

Example

The example was run on an Ubuntu 12.04 (“precise”) machine where tarantool had been installed in a /usr
subdirectory, and a copy of MySQL had been installed on ~/mysql-5.5. The mysqld server instance is already
running on the local host 127.0.0.1.

$ export TMDIR=~/mysql-5.5
$ # Check that the include subdirectory exists by looking
$ # for .../include/mysql.h. (If this fails, there's a chance
$ # that it's in .../include/mysql/mysql.h instead.)
$ [-f $TMDIR/include/mysql.h] && echo "OK" || echo "Error"
OK

$ # Check that the library subdirectory exists and has the
$ # necessary .so file.
$ [-f $TMDIR/lib/libmysqlclient.so] && echo "OK" || echo "Error"
OK

$ # Check that the mysql client can connect using some factory
$ # defaults: port = 3306, user = 'root', user password = '',
$ # database = 'test'. These can be changed, provided one uses
$ # the changed values in all places.
$ $TMDIR/bin/mysql --port=3306 -h 127.0.0.1 --user=root \

--password= --database=test
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25
Server version: 5.5.35 MySQL Community Server (GPL)
...
Type 'help;' or '\h' for help. Type '\c' to clear ...

$ # Insert a row in database test, and quit.
mysql> CREATE TABLE IF NOT EXISTS test (s1 INT, s2 VARCHAR(50));
Query OK, 0 rows affected (0.13 sec)
mysql> INSERT INTO test.test VALUES (1,'MySQL row');
Query OK, 1 row affected (0.02 sec)
mysql> QUIT
Bye

$ # Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting up|already"
Setting up luarocks (2.0.8-2) ...

$ # Set up the Tarantool rock list in ~/.luarocks,
$ # following instructions at rocks.tarantool.org
$ mkdir ~/.luarocks
$ echo "rocks_servers = {[[http://rocks.tarantool.org/]]}" >> \

~/.luarocks/config.lua

(continues on next page)

6.2. Rocks reference 247

https://github.com/tarantool/mysql

Tarantool, Release 1.7.4

(continued from previous page)

$ # Ensure that the next "install" will get files from Tarantool
$ # master repository. The resultant display is normal for Ubuntu
$ # 12.04 precise
$ cat /etc/apt/sources.list.d/tarantool.list
deb http://tarantool.org/dist/1.7/ubuntu/ precise main
deb-src http://tarantool.org/dist/1.7/ubuntu/ precise main

$ # Install tarantool-dev. The displayed line should show version = 1.6
$ sudo apt-get -y install tarantool-dev | grep -E "Setting up|already"
Setting up tarantool-dev (1.6.6.222.g48b98bb~precise-1) ...
$

$ # Use luarocks to install locally, that is, relative to $HOME
$ luarocks install mysql MYSQL_LIBDIR=/usr/local/mysql/lib --local
Installing http://rocks.tarantool.org/mysql-scm-1.rockspec...
... (more info about building the Tarantool/MySQL driver appears here)
mysql scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at
$ find ~/.luarocks -name "driver.so"
~/.luarocks/lib/lua/5.1/mysql/driver.so

$ # Change directory to a directory which can be used for
$ # temporary tests. For this example we assume that the name
$ # of this directory is /home/pgulutzan/tarantool_sandbox.
$ # (Change "/home/pgulutzan" to whatever is the user's actual
$ # home directory for the machine that's used for this test.)
$ cd /home/pgulutzan/tarantool_sandbox

$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool
tarantool: version 1.7.0-222-g48b98bb
type 'help' for interactive help
tarantool>

Configure tarantool and load mysql module. Make sure that tarantool doesn’t reply “error” for the call to
“require()”.

tarantool> box.cfg{}
...
tarantool> mysql = require('mysql')

...

Create a Lua function that will connect to the MySQL server instance, (using some factory default values for
the port and user and password), retrieve one row, and display the row. For explanations of the statement
types used here, read the Lua tutorial earlier in the Tarantool user manual.

tarantool> function mysql_select ()
> local conn = mysql.connect({
> host = '127.0.0.1',
> port = 3306,
> user = 'root',

(continues on next page)

248 Chapter 6. Reference

Tarantool, Release 1.7.4

(continued from previous page)

> db = 'test'
> })
> local test = conn:execute('SELECT * FROM test WHERE s1 = 1')
> local row = ''
> for i, card in pairs(test) do
> row = row .. card.s2 .. ' '
> end
> conn:close()
> return row
> end

...
tarantool> mysql_select()

- 'MySQL row '
...

Observe the result. It contains “MySQL row”. So this is the row that was inserted into the MySQL database.
And now it’s been selected with the Tarantool client.

PostgreSQL Example

This example assumes that PostgreSQL 8 or PostgreSQL 9 has been installed. More recent versions should
also work. The package that matters most is the PostgreSQL developer package, typically named something
like libpq-dev. On Ubuntu this can be installed with:

sudo apt-get install libpq-dev

However, because not all platforms are alike, for this example the assumption is that the user must check
that the appropriate PostgreSQL files are present and must explicitly state where they are when building
the Tarantool/PostgreSQL driver. One can use find or whereis to see what directories PostgreSQL files are
installed in.

It will be necessary to install Tarantool’s PostgreSQL driver shared library, load it, and use it to connect to
a PostgreSQL server instance. After that, one can pass any PostgreSQL statement to the server instance
and receive results.

Installation

Check the instructions for downloading and installing a binary package that apply for the environment where
Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on Ubuntu,
add the line:

sudo apt-get install tarantool-dev

Now, for the PostgreSQL driver shared library, there are two ways to install:

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the in-
structions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

6.2. Rocks reference 249

http://tarantool.org/download.html
http://rocks.tarantool.org/

Tarantool, Release 1.7.4

luarocks install pg [POSTGRESQL_LIBDIR = path]
[POSTGRESQL_INCDIR = path]
[--local]

For example:

luarocks install pg POSTGRESQL_LIBDIR=/usr/local/postgresql/lib

With GitHub

Go the site github.com/tarantool/pg. Follow the instructions there, saying:

git clone https://github.com/tarantool/pg.git
cd pg && cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo
make
make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the pg driver. We will assume that the name is pg in further examples.

pg = require('pg')

Now, say:

connection_name = pg.connect(connection options)

The connection-options parameter is a table. Possible options are:

• host = host-name - string, default value = ‘localhost’

• port = port-number - number, default value = 3306

• user = user-name - string, default value is operating-system user name

• pass = password or password = password - string, default value is blank

• db = database-name - string, default value is blank

The names are similar to the names that PostgreSQL itself uses.

Example, using a table literal enclosed in {braces}:

conn = pg.connect({
host = '127.0.0.1',
port = 5432,
user = 'p',
password = 'p',
db = 'test'

})

Example, creating a function which sets each option in a separate line:

250 Chapter 6. Reference

https://github.com/tarantool/pg

Tarantool, Release 1.7.4

tarantool> function pg_connect()
> local p = {}
> p.host = 'widgets.com'
> p.db = 'test'
> p.user = 'postgres'
> p.password = 'postgres'
> local conn = pg.connect(p)
> return conn
> end

...
tarantool> conn = pg_connect()

...

We will assume that the name is ‘conn’ in further examples.

How to ping

To ensure that a connection is working, the request is:

connection-name:ping()

Example:

tarantool> conn:ping()

- true
...

Executing a statement

For all PostgreSQL statements, the request is:

connection-name:execute(sql-statement [, parameters])

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks (“?”s) in the SQL statement.

Example:

tarantool> conn:execute('select tablename from pg_tables')

- - tablename: pg_statistic
- tablename: pg_type
- tablename: pg_authid
<...>

...

Closing connection

To end a session that began with pg.connect, the request is:

connection-name:close()

6.2. Rocks reference 251

Tarantool, Release 1.7.4

Example:

tarantool> conn:close()

...

For further information, including examples of rarely-used requests, see the README.md file at
github.com/tarantool/pg.

Example

The example was run on an Ubuntu 12.04 (“precise”) machine where tarantool had been installed in a /usr
subdirectory, and a copy of PostgreSQL had been installed on /usr. The PostgreSQL server instance is
already running on the local host 127.0.0.1.

$ # Check that the include subdirectory exists
$ # by looking for /usr/include/postgresql/libpq-fe-h.
$ [-f /usr/include/postgresql/libpq-fe.h] && echo "OK" || echo "Error"
OK

$ # Check that the library subdirectory exists and has the necessary .so file.
$ [-f /usr/lib/x86_64-linux-gnu/libpq.so] && echo "OK" || echo "Error"
OK

$ # Check that the psql client can connect using some factory defaults:
$ # port = 5432, user = 'postgres', user password = 'postgres',
$ # database = 'postgres'. These can be changed, provided one changes
$ # them in all places. Insert a row in database postgres, and quit.
$ psql -h 127.0.0.1 -p 5432 -U postgres -d postgres
Password for user postgres:
psql (9.3.10)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=# CREATE TABLE test (s1 INT, s2 VARCHAR(50));
CREATE TABLE
postgres=# INSERT INTO test VALUES (1,'PostgreSQL row');
INSERT 0 1
postgres=# \q
$

$ # Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting up|already"
Setting up luarocks (2.0.8-2) ...

$ # Set up the Tarantool rock list in ~/.luarocks,
$ # following instructions at rocks.tarantool.org
$ mkdir ~/.luarocks
$ echo "rocks_servers = {[[http://rocks.tarantool.org/]]}" >> \

~/.luarocks/config.lua

$ # Ensure that the next "install" will get files from Tarantool master
$ # repository. The resultant display is normal for Ubuntu 12.04 precise
$ cat /etc/apt/sources.list.d/tarantool.list
deb http://tarantool.org/dist/1.7/ubuntu/ precise main
deb-src http://tarantool.org/dist/1.7/ubuntu/ precise main

(continues on next page)

252 Chapter 6. Reference

https://github.com/tarantool/pg

Tarantool, Release 1.7.4

(continued from previous page)

$ # Install tarantool-dev. The displayed line should show version = 1.7
$ sudo apt-get -y install tarantool-dev | grep -E "Setting up|already"
Setting up tarantool-dev (1.7.0.222.g48b98bb~precise-1) ...
$

$ # Use luarocks to install locally, that is, relative to $HOME
$ luarocks install pg POSTGRESQL_LIBDIR=/usr/lib/x86_64-linux-gnu --local
Installing http://rocks.tarantool.org/pg-scm-1.rockspec...
... (more info about building the Tarantool/PostgreSQL driver appears here)
pg scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at
$ find ~/.luarocks -name "driver.so"
~/.luarocks/lib/lua/5.1/pg/driver.so

$ # Change directory to a directory which can be used for
$ # temporary tests. For this example we assume that the
$ # name of this directory is $HOME/tarantool_sandbox.
$ # (Change "$HOME" to whatever is the user's actual
$ # home directory for the machine that's used for this test.)
cd $HOME/tarantool_sandbox

$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool
tarantool: version 1.7.0-412-g803b15c
type 'help' for interactive help
tarantool>

Configure tarantool and load pg module. Make sure that tarantool doesn’t reply “error” for the call to
“require()”.

tarantool> box.cfg{}
...
tarantool> pg = require('pg')

...

Create a Lua function that will connect to a PostgreSQL server, (using some factory default values for the
port and user and password), retrieve one row, and display the row. For explanations of the statement types
used here, read the Lua tutorial earlier in the Tarantool user manual.

tarantool> function pg_select ()
> local conn = pg.connect({
> host = '127.0.0.1',
> port = 5432,
> user = 'postgres',
> password = 'postgres',
> db = 'postgres'
> })
> local test = conn:execute('SELECT * FROM test WHERE s1 = 1')
> local row = ''
> for i, card in pairs(test) do
> row = row .. card.s2 .. ' '

(continues on next page)

6.2. Rocks reference 253

Tarantool, Release 1.7.4

(continued from previous page)

> end
> conn:close()
> return row
> end

...
tarantool> pg_select()

- 'PostgreSQL row '
...

Observe the result. It contains “PostgreSQL row”. So this is the row that was inserted into the PostgreSQL
database. And now it’s been selected with the Tarantool client.

6.2.2 Module expirationd

For a commercial-grade example of a Lua rock that works with Tarantool, let us look at expirationd, which
Tarantool supplies on GitHub with an Artistic license. The expirationd.lua program is lengthy (about 500
lines), so here we will only highlight the matters that will be enhanced by studying the full source later.

task.worker_fiber = fiber.create(worker_loop, task)
log.info("expiration: task %q restarted", task.name)
...
fiber.sleep(expirationd.constants.check_interval)
...

Whenever one hears “daemon” in Tarantool, one should suspect it’s being done with a fiber. The program
is making a fiber and turning control over to it so it runs occasionally, goes to sleep, then comes back for
more.

for _, tuple in scan_space.index[0]:pairs(nil, {iterator = box.index.ALL}) do
...

if task.is_tuple_expired(task.args, tuple) then
task.expired_tuples_count = task.expired_tuples_count + 1
task.process_expired_tuple(task.space_id, task.args, tuple)

...

The “for” instruction can be translated as “iterate through the index of the space that is being scanned”,
and within it, if the tuple is “expired” (for example, if the tuple has a timestamp field which is less than the
current time), process the tuple as an expired tuple.

-- default process_expired_tuple function
local function default_tuple_drop(space_id, args, tuple)

local key = fun.map(
function(x) return tuple[x.fieldno] end,
box.space[space_id].index[0].parts

):totable()
box.space[space_id]:delete(key)

end

Ultimately the tuple-expiry process leads to default_tuple_drop() which does a “delete” of a tuple from
its original space. First the fun fun module is used, specifically fun.map. Remembering that index[0] is
always the space’s primary key, and index[0].parts[N].fieldno is always the field number for key part N,
fun.map() is creating a table from the primary-key values of the tuple. The result of fun.map() is passed to
space_object:delete().

254 Chapter 6. Reference

https://github.com/tarantool/expirationd/blob/master/expirationd.lua
http://rtsisyk.github.io/luafun/transformations.html#fun.map

Tarantool, Release 1.7.4

local function expirationd_run_task(name, space_id, is_tuple_expired, options)
...

At this point, if the above explanation is worthwhile, it’s clear that expirationd.lua starts a background
routine (fiber) which iterates through all the tuples in a space, sleeps cooperatively so that other fibers can
operate at the same time, and - whenever it finds a tuple that has expired - deletes it from this space. Now
the “expirationd_run_task()” function can be used in a test which creates sample data, lets the daemon run
for a while, and prints results.

For those who like to see things run, here are the exact steps to get expirationd through the test.

1. Get expirationd.lua. There are standard ways - it is after all part of a standard rock - but for this
purpose just copy the contents of expirationd.lua to a default directory.

2. Start the Tarantool server as described before.

3. Execute these requests:

fiber = require('fiber')
expd = require('expirationd')
box.cfg{}
e = box.schema.space.create('expirationd_test')
e:create_index('primary', {type = 'hash', parts = {1, 'unsigned'}})
e:replace{1, fiber.time() + 3}
e:replace{2, fiber.time() + 30}
function is_tuple_expired(args, tuple)
if (tuple[2] < fiber.time()) then return true end
return false
end

expd.run_task('expirationd_test', e.id, is_tuple_expired)
retval = {}
fiber.sleep(2)
expd.task_stats()
fiber.sleep(2)
expd.task_stats()
expd.kill_task('expirationd_test')
e:drop()
os.exit()

The database-specific requests (cfg, space.create, create_index) should already be familiar.

The function which will be supplied to expirationd is is_tuple_expired, which is saying “if the second field
of the tuple is less than the current time , then return true, otherwise return false”.

The key for getting the rock rolling is expd = require('expirationd'). The “require” function is what reads
in the program; it will appear in many later examples in this manual, when it’s necessary to get a module
that’s not part of the Tarantool kernel. After the Lua variable expd has been assigned the value of the
expirationd module, it’s possible to invoke the module’s run_task() function.

After sleeping for two seconds, when the task has had time to do its iterations through the spaces, expd.
task_stats() will print out a report showing how many tuples have expired – “expired_count: 0”. After
sleeping for two more seconds, expd.task_stats() will print out a report showing how many tuples have
expired – “expired_count: 1”. This shows that the is_tuple_expired() function eventually returned “true”
for one of the tuples, because its timestamp field was more than three seconds old.

Of course, expirationd can be customized to do different things by passing different parameters, which will
be evident after looking in more detail at the source code.

6.2. Rocks reference 255

https://luarocks.org/modules/rtsisyk/expirationd
https://github.com/tarantool/expirationd/blob/master/expirationd.lua

Tarantool, Release 1.7.4

6.2.3 Module shard

With sharding, the tuples of a tuple set are distributed to multiple nodes, with a Tarantool database server
instance on each node. With this arrangement, each instance is handling only a subset of the total data, so
larger loads can be handled by simply adding more computers to a network.

The Tarantool shard module has facilities for creating shards, as well as analogues for the data-manipulation
functions of the box library (select, insert, replace, update, delete).

First some terminology:

Consistent Hash The shard module distributes according to a hash algorithm, that is, it applies a hash
function to a tuple’s primary-key value in order to decide which shard the tuple belongs to. The hash
function is consistent so that changing the number of servers will not affect results for many keys. The
specific hash function that the shard module uses is digest.guava in the digest module.

Instance A currently-running in-memory copy of the Tarantool server, sometimes called a “server instance”.
Usually each shard is associated with one instance, or, if both sharding and replicating are going on,
each shard is associated with one replica set.

Queue A temporary list of recent update requests. Sometimes called “batching”. Since updates to a sharded
database can be slow, it may speed up throughput to send requests to a queue rather than wait for
the update to finish on every node. The shard module has functions for adding requests to the queue,
which it will process without further intervention. Queuing is optional.

Redundancy The number of replicated data copies in each shard.

Replica An instance which is part of a replica set.

Replica set Often a single shard is associated with a single instance; however, often the shard is replicated.
When a shard is replicated, the multiple instances (“replicas”), which handle the shard’s replicated
data, are a “replica set”.

Replicated data A complete copy of the data. The shard module handles both sharding and replication.
One shard can contain one or more replicated data copies. When a write occurs, the write is attempted
on every replicated data copy in turn. The shard module does not use the built-in replication feature.

Shard A subset of the tuples in the database partitioned according to the value returned by the consistent
hash function. Usually each shard is on a separate node, or a separate set of nodes (for example if
redundancy = 3 then the shard will be on three nodes).

Zone A physical location where the nodes are closely connected, with the same security and backup and
access points. The simplest example of a zone is a single computer with a single Tarantool-server
instance. A shard’s replicated data copies should be in different zones.

The shard package is distributed separately from the main tarantool package. To acquire it, do a separate
install. For example on Ubuntu say:

sudo apt-get install tarantool-shard

Or, download from github tarantool/shard and tarantool/connpool and use the Lua files as described in the
README. Then, before using the module, say shard = require('shard')

The most important function is:

shard.init(shard-configuration)

This must be called for every shard. The shard-configuration is a table with these fields:

• servers (a list of URIs of nodes and the zones the nodes are in)

• login (the user name which applies for accessing via the shard module)

256 Chapter 6. Reference

https://en.wikipedia.org/wiki/Consistent_hashing

Tarantool, Release 1.7.4

• password (the password for the login)

• redundancy (a number, minimum 1)

• binary (a port number that this host is listening on, on the current host) (distinguishable from the
‘listen’ port specified by box.cfg)

Possible Errors: Redundancy should not be greater than the number of servers; the servers must be alive;
two replicated data copies of the same shard should not be in the same zone.

Example: shard.init syntax for one shard

The number of replicated data copies per shard (redundancy) is 3. The number of instances is 3. The shard
module will conclude that there is only one shard.

tarantool> cfg = {
> servers = {
> { uri = 'localhost:33131', zone = '1' },
> { uri = 'localhost:33132', zone = '2' },
> { uri = 'localhost:33133', zone = '3' }
> },
> login = 'tester',
> password = 'pass',
> redundancy = '3',
> binary = 33131,
> }

...
tarantool> shard.init(cfg)

...

Example: shard.init syntax for three shards

This describes three shards. Each shard has two replicated data copies. Since the number of servers is 7,
and the number of replicated data copies per shard is 2, and dividing 7 / 2 leaves a remainder of 1, one of
the servers will not be used. This is not necessarily an error, because perhaps one of the servers in the list
is not alive.

tarantool> cfg = {
> servers = {
> { uri = 'host1:33131', zone = '1' },
> { uri = 'host2:33131', zone = '2' },
> { uri = 'host3:33131', zone = '3' },
> { uri = 'host4:33131', zone = '4' },
> { uri = 'host5:33131', zone = '5' },
> { uri = 'host6:33131', zone = '6' },
> { uri = 'host7:33131', zone = '7' }
> },
> login = 'tester',
> password = 'pass',
> redundancy = '2',
> binary = 33131,
> }

...

(continues on next page)

6.2. Rocks reference 257

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> shard.init(cfg)

...

shard[space-name].insert{...}
shard[space-name].replace{...}
shard[space-name].delete{...}
shard[space-name].select{...}
shard[space-name].update{...}
shard[space-name].auto_increment{...}

Every data-access function in the box module has an analogue in the shard module, so (for example) to
insert in table T in a sharded database one simply says shard.T:insert{...} instead of box.space.T:insert{...}.
A shard.T:select{} request without a primary key will search all shards.

shard[space-name].q_insert{...}
shard[space-name].q_replace{...}
shard[space-name].q_delete{...}
shard[space-name].q_select{...}
shard[space-name].q_update{...}
shard[space-name].q_auto_increment{...}

Every queued data-access function has an analogue in the shard module. The user must add an operation_id.
The details of queued data-access functions, and of maintenance-related functions, are on the shard section
of github.

Example: Shard, Minimal Configuration

There is only one shard, and that shard contains only one replicated data copy. So this isn’t illustrating the
features of either replication or sharding, it’s only illustrating what the syntax is, and what the messages
look like, that anyone could duplicate in a minute or two with the magic of cut-and-paste.

$ mkdir ~/tarantool_sandbox_1
$ cd ~/tarantool_sandbox_1
$ rm -r *.snap
$ rm -r *.xlog
$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3301}
tarantool> box.schema.space.create('tester')
tarantool> box.space.tester:create_index('primary', {})
tarantool> box.schema.user.passwd('admin', 'password')
tarantool> cfg = {

> servers = {
> { uri = 'localhost:3301', zone = '1' },
> },
> login = 'admin';
> password = 'password';
> redundancy = 1;
> binary = 3301;
> }

tarantool> shard = require('shard')
tarantool> shard.init(cfg)
tarantool> -- Now put something in ...
tarantool> shard.tester:insert{1,'Tuple #1'}

258 Chapter 6. Reference

https://github.com/tarantool/shard
https://github.com/tarantool/shard

Tarantool, Release 1.7.4

If one cuts and pastes the above, then the result, showing only the requests and responses for shard.init and
shard.tester, should look approximately like this:

tarantool> shard.init(cfg)
2015-08-09 ... I> Sharding initialization started...
2015-08-09 ... I> establishing connection to cluster servers...
2015-08-09 ... I> - localhost:3301 - connecting...
2015-08-09 ... I> - localhost:3301 - connected
2015-08-09 ... I> connected to all servers
2015-08-09 ... I> started
2015-08-09 ... I> redundancy = 1
2015-08-09 ... I> Zone len=1 THERE
2015-08-09 ... I> Adding localhost:3301 to shard 1
2015-08-09 ... I> Zone len=1 THERE
2015-08-09 ... I> shards = 1
2015-08-09 ... I> Done

- true
...
tarantool> -- Now put something in ...

...
tarantool> shard.tester:insert{1,'Tuple #1'}

- - [1, 'Tuple #1']
...

Example: Shard, Scaling Out

There are two shards, and each shard contains one replicated data copy. This requires two nodes. In real life
the two nodes would be two computers, but for this illustration the requirement is merely: start two shells,
which we’ll call Terminal#1 and Terminal #2.

On Terminal #1, say:

$ mkdir ~/tarantool_sandbox_1
$ cd ~/tarantool_sandbox_1
$ rm -r *.snap
$ rm -r *.xlog
$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3301}
tarantool> box.schema.space.create('tester')
tarantool> box.space.tester:create_index('primary', {})
tarantool> box.schema.user.passwd('admin', 'password')
tarantool> console = require('console')
tarantool> cfg = {

> servers = {
> { uri = 'localhost:3301', zone = '1' },
> { uri = 'localhost:3302', zone = '2' },
> },
> login = 'admin',
> password = 'password',
> redundancy = 1,
> binary = 3301,
> }

tarantool> shard = require('shard')
(continues on next page)

6.2. Rocks reference 259

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> shard.init(cfg)
tarantool> -- Now put something in ...
tarantool> shard.tester:insert{1,'Tuple #1'}

On Terminal #2, say:

$ mkdir ~/tarantool_sandbox_2
$ cd ~/tarantool_sandbox_2
$ rm -r *.snap
$ rm -r *.xlog
$ ~/tarantool-1.7/src/tarantool

tarantool> box.cfg{listen = 3302}
tarantool> box.schema.space.create('tester')
tarantool> box.space.tester:create_index('primary', {})
tarantool> box.schema.user.passwd('admin', 'password')
tarantool> console = require('console')
tarantool> cfg = {

> servers = {
> { uri = 'localhost:3301', zone = '1' };
> { uri = 'localhost:3302', zone = '2' };
> };
> login = 'admin';
> password = 'password';
> redundancy = 1;
> binary = 3302;
> }

tarantool> shard = require('shard')
tarantool> shard.init(cfg)
tarantool> -- Now get something out ...
tarantool> shard.tester:select{1}

What will appear on Terminal #1 is: a loop of error messages saying “Connection refused” and “server check
failure”. This is normal. It will go on until Terminal #2 process starts.

What will appear on Terminal #2, at the end, should look like this:

tarantool> shard.tester:select{1}

- - - [1, 'Tuple #1']
...

This shows that what was inserted by Terminal #1 can be selected by Terminal #2, via the shard module.

Details are on the shard section of github.

6.2.4 Module tdb

The Tarantool Debugger (abbreviation = tdb) can be used with any Lua program. The operational features
include: setting breakpoints, examining variables, going forward one line at a time, backtracing, and showing
information about fibers. The display features include: using different colors for different situations, including
line numbers, and adding hints.

It is not supplied as part of the Tarantool repository; it must be installed separately. Here is the usual way:

260 Chapter 6. Reference

https://github.com/tarantool/shard

Tarantool, Release 1.7.4

git clone --recursive https://github.com/Sulverus/tdb
cd tdb
make
sudo make install prefix=/usr/share/tarantool/

To initiate tdb within a Lua program and set a breakpoint, edit the program to include these lines:

tdb = require('tdb')
tdb.start()

To start the debugging session, execute the Lua program. Execution will stop at the breakpoint, and it will
be possible to enter debugging commands.

Debugger Commands

bt Backtrace – show the stack (in red), with program/function names and line numbers of whatever has
been invoked to reach the current line.

c Continue till next breakpoint or till program ends.

e Enter evaluation mode. When the program is in evaluation mode, one can execute certain Lua statements
that would be valid in the context. This is particularly useful for displaying the values of the program’s
variables. Other debugger commands will not work until one exits evaluation mode by typing -e.

-e Exit evaluation mode.

f Display the fiber id, the program name, and the percentage of memory used, as a table.

n Go to the next line, skipping over any function calls.

globals Display names of variables or functions which are defined as global.

h Display a list of debugger commands.

locals Display names and values of variables, for example the control variables of a Lua “for” statement.

q Quit immediately.

Example Session

Put the following program in a default directory and call it “example.lua”:

tdb = require('tdb')
tdb.start()
i = 1
j = 'a' .. i
print('end of program')

Now start Tarantool, using example.lua as the initialization file

$ tarantool example.lua

The screen should now look like this:

$ tarantool example.lua
(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua
(TDB) [example.lua]
(TDB) 3: i = 1

6.2. Rocks reference 261

Tarantool, Release 1.7.4

(TDB)>

Debugger prompts are blue, debugger hints and information are green, and the current line – line 3 of
example.lua – is the default color. Now enter six debugger commands:

n -- go to next line
n -- go to next line
e -- enter evaluation mode
j -- display j
-e -- exit evaluation mode
q -- quit

The screen should now look like this:

$ tarantool example.lua
(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua
(TDB) [example.lua]
(TDB) 3: i = 1
(TDB)> n
(TDB) 4: j = 'a' .. i
(TDB)> n
(TDB) 5: print('end of program')
(TDB)> e
(TDB) Eval mode ON
(TDB)> j
j a1
(TDB)> -e
(TDB) Eval mode OFF
(TDB)> q

Another debugger example can be found here.

6.3 Configuration reference

This reference covers all options and parameters which can be set for Tarantool on the command line or in
an initialization file.

Tarantool is started by entering the following command:

$ tarantool
OR
$ tarantool options
OR
$ tarantool lua-initialization-file [arguments]

6.3.1 Command options

-h, --help
Print an annotated list of all available options and exit.

-V, --version
Print product name and version, for example:

262 Chapter 6. Reference

https://github.com/sulverus/tdb

Tarantool, Release 1.7.4

$./tarantool --version
Tarantool 1.7.0-1216-g73f7154
Target: Linux-x86_64-Debug
...

In this example:

“Tarantool” is the name of the reusable asynchronous networking programming framework.

The 3-number version follows the standard <major>-<minor>-<patch> scheme, in which <major>
number is changed only rarely, <minor> is incremented for each new milestone and indicates possible
incompatible changes, and <patch> stands for the number of bug fix releases made after the start of
the milestone. For non-released versions only, there may be a commit number and commit SHA1 to
indicate how much this particular build has diverged from the last release.

“Target” is the platform tarantool was built on. Some platform-specific details may follow this line.

Note: Tarantool uses git describe to produce its version id, and this id can be used at any time to
check out the corresponding source from our git repository.

6.3.2 URI

Some configuration parameters and some functions depend on a URI, or “Universal Resource Identifier”. The
URI string format is similar to the generic syntax for a URI schema. So it may contain (in order) a user name
for login, a password, a host name or host IP address, and a port number. Only the port number is always
mandatory. The password is mandatory if the user name is specified, unless the user name is ‘guest’. So,
formally, the URI syntax is [host:]port or [username:password@]host:port. If host is omitted, then ‘0.0.0.0’
or ‘[::]’ is assumed, meaning respectively any IPv4 address or any IPv6 address, on the local machine. If
username:password is omitted, then ‘guest’ is assumed. Some examples:

URI fragment Example
port 3301
host:port 127.0.0.1:3301
username:password@host:port notguest:sesame@mail.ru:3301

In certain circumstances a Unix domain socket may be used where a URI is expected, for example
“unix/:/tmp/unix_domain_socket.sock” or simply “/tmp/unix_domain_socket.sock”.

A method for parsing URIs is illustrated in Module uri.

6.3.3 Initialization file

If the command to start Tarantool includes lua-initialization-file, then Tarantool begins by invoking the
Lua program in the file, which by convention may have the name “script.lua”. The Lua program may get
further arguments from the command line or may use operating-system functions, such as getenv(). The
Lua program almost always begins by invoking box.cfg(), if the database server will be used or if ports need
to be opened. For example, suppose script.lua contains the lines

#!/usr/bin/env tarantool
box.cfg{

listen = os.getenv("LISTEN_URI"),

(continues on next page)

6.3. Configuration reference 263

http://www.kernel.org/pub/software/scm/git/docs/git-describe.html
http://github.com/tarantool/tarantool.git
http://en.wikipedia.org/wiki/URI_scheme#Generic_syntax

Tarantool, Release 1.7.4

(continued from previous page)

slab_alloc_arena = 0.1,
pid_file = "tarantool.pid",
rows_per_wal = 50

}
print('Starting ', arg[1])

and suppose the environment variable LISTEN_URI contains 3301, and suppose the command line is ~/
tarantool/src/tarantool script.lua ARG. Then the screen might look like this:

$ export LISTEN_URI=3301
$ ~/tarantool/src/tarantool script.lua ARG
... main/101/script.lua C> version 1.7.0-1216-g73f7154
... main/101/script.lua C> log level 5
... main/101/script.lua I> mapping 107374184 bytes for a shared arena...
... main/101/script.lua I> recovery start
... main/101/script.lua I> recovering from './00000000000000000000.snap'
... main/101/script.lua I> primary: bound to 0.0.0.0:3301
... main/102/leave_local_hot_standby I> ready to accept requests
Starting ARG
... main C> entering the event loop

If you wish to start an interactive session on the same terminal after initialization is complete, you can use
console.start().

6.3.4 Configuration parameters

Configuration parameters have the form:

box.cfg{[key = value [, key = value . . .]]}

Since box.cfg may contain many configuration parameters and since some of the parameters (such as direc-
tory addresses) are semi-permanent, it’s best to keep box.cfg in a Lua file. Typically this Lua file is the
initialization file which is specified on the tarantool command line.

Most configuration parameters are for allocating resources, opening ports, and specifying database behavior.
All parameters are optional. A few parameters are dynamic, that is, they can be changed at runtime by
calling box.cfg{} a second time.

To see all the non-null parameters, say box.cfg (no parentheses). To see a particular parameter, for example
the listen address, say box.cfg.listen.

The following sections describe all parameters for basic operation, for storage, for binary logging and snap-
shots, for replication, for networking, and for logging.

Basic parameters

• background

• custom_proc_title

• listen

• memtx_dir

• pid_file

• read_only

264 Chapter 6. Reference

Tarantool, Release 1.7.4

• vinyl_dir

• vinyl_timeout

• username

• wal_dir

• work_dir

background
Run the server as a background task. The log and pid_file parameters must be non-null for this to
work.

Type: boolean

Default: false

Dynamic: no

custom_proc_title
Add the given string to the server’s process title (what’s shown in the COMMAND column for ps -ef
and top -c commands).

For example, ordinarily ps -ef shows the Tarantool server process thus:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:13 tarantool <running>

But if the configuration parameters include custom_proc_title='sessions' then the output looks like:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:16 tarantool <running>: sessions

Type: string

Default: null

Dynamic: yes

listen
The read/write data port number or URI (Universal Resource Identifier) string. Has no default value,
so must be specified if connections will occur from remote clients that do not use the “admin port”.
Connections made with listen = URI are called “binary port” or “binary protocol” connections.

A typical value is 3301.

Note: A replica also binds to this port, and accepts connections, but these connections can only serve
reads until the replica becomes a master.

Type: integer or string

Default: null

Dynamic: yes

6.3. Configuration reference 265

Tarantool, Release 1.7.4

memtx_dir
A directory where memtx stores snapshot (.snap) files. Can be relative to work_dir. If not specified,
defaults to work_dir. See also wal_dir.

Type: string

Default: “.”

Dynamic: no

pid_file
Store the process id in this file. Can be relative to work_dir. A typical value is “tarantool.pid”.

Type: string

Default: null

Dynamic: no

read_only
Say box.cfg{read_only=true...} to put the server instance in read-only mode. After this, any requests
that try to change persistent data will fail with error ER_READONLY. Read-only mode should be
used for master-replica replication. Read-only mode does not affect data-change requests for spaces
defined as temporary. Although read-only mode prevents the server from writing to the WAL, it does
not prevent writing diagnostics with the log module.

Type: boolean

Default: false

Dynamic: yes

vinyl_dir
A directory where vinyl files or subdirectories will be stored. Can be relative to work_dir. If not
specified, defaults to work_dir.

Type: string

Default: “.”

Dynamic: no

vinyl_timeout
The vinyl storage engine has a scheduler which does compaction. When vinyl is low on available
memory, the compaction scheduler may be unable to keep up with incoming update requests. In that
situation, queries may time out after vinyl_timeout seconds. This should rarely occur, since normally
vinyl would throttle inserts when it is running low on compaction bandwidth.

Type: float

Default: 60

Dynamic: yes

266 Chapter 6. Reference

Tarantool, Release 1.7.4

username
UNIX user name to switch to after start.

Type: string

Default: null

Dynamic: no

wal_dir
A directory where write-ahead log (.xlog) files are stored. Can be relative to work_dir. Sometimes
wal_dir and memtx_dir are specified with different values, so that write-ahead log files and snapshot
files can be stored on different disks. If not specified, defaults to work_dir.

Type: string

Default: “.”

Dynamic: no

work_dir
A directory where database working files will be stored. The server instance switches to work_dir with
chdir(2) after start. Can be relative to the current directory. If not specified, defaults to the current
directory. Other directory parameters may be relative to work_dir, for example:

box.cfg{
work_dir = '/home/user/A',
wal_dir = 'B',
memtx_dir = 'C'

}

will put xlog files in /home/user/A/B, snapshot files in /home/user/A/C, and all other files or subdi-
rectories in /home/user/A.

Type: string

Default: null

Dynamic: no

Configuring the storage

• memtx_memory

• memtx_max_tuple_size

• memtx_min_tuple_size

• vinyl_bloom_fpr

• vinyl_cache

• vinyl_memory

• vinyl_page_size

• vinyl_range_size

6.3. Configuration reference 267

Tarantool, Release 1.7.4

• vinyl_run_count_per_level

• vinyl_run_size_ratio

• vinyl_read_threads

• vinyl_write_threads

memtx_memory
How much memory Tarantool allocates to actually store tuples, in bytes. When the limit is reached,
INSERT or UPDATE requests begin failing with error ER_MEMORY_ISSUE. While the server does
not go beyond the defined limit to allocate tuples, there is additional memory used to store indexes
and connection information. Depending on actual configuration and workload, Tarantool can consume
up to 20% more than the limit set here.

Type: float

Default: 256 * 1024 * 1024 = 268435456

Dynamic: no

memtx_max_tuple_size
Size of the largest allocation unit, in bytes. It can be increased if it is necessary to store large tuples.

Type: integer

Default: 1024 * 1024 = 1048576

Dynamic: no

memtx_min_tuple_size
Size of the smallest allocation unit, in bytes. It can be decreased if most of the tuples are very small.
The value must be between 8 and 1048280 inclusive.

Type: integer

Default: 16

Dynamic: no

vinyl_bloom_fpr
Bloom filter false positive rate – the suitable probability of the bloom filter to give a wrong result.
This can be overridden by a create_index option.

Type: float

Default = 0.05

Dynamic: no

vinyl_cache
The maximal cache size for vinyl, in bytes.

Type: integer

268 Chapter 6. Reference

Tarantool, Release 1.7.4

Default = 128 * 1024 * 1024 = 134217728

Dynamic: no

vinyl_memory
The maximum number of in-memory bytes that vinyl uses.

Type: integer

Default = 128 * 1024 * 1024 = 134217728

Dynamic: no

vinyl_page_size
Page size, in bytes. Page is a R/W unit for vinyl disk operations. This can be overridden by a
create_index option.

Type: integer

Default = 8 * 1024

Dynamic: no

vinyl_range_size
The maximal range size for vinyl, in bytes. This can be overridden by a create_index option.

Type: integer

Default = 1024 * 1024 * 1024

Dynamic: no

vinyl_run_count_per_level
The maximal number of runs per level in vinyl LSM tree. If this number is exceeded, a new level is
created. This can be overridden by a create_index option.

Type: integer

Default = 2

Dynamic: no

vinyl_run_size_ratio
Ratio between the sizes of different levels in the LSM tree. This can be overridden by a create_index
option.

Type: float

Default = 3.5

Dynamic: no

6.3. Configuration reference 269

Tarantool, Release 1.7.4

vinyl_read_threads
The maximum number of read threads that vinyl can use for some concurrent operations, such as I/O
and compression.

Type: integer

Default = 1

Dynamic: no

vinyl_write_threads
The maximum number of write threads that vinyl can use for some concurrent operations, such as I/O
and compression.

Type: integer

Default = 2

Dynamic: no

Checkpoint daemon

• checkpoint_count

• checkpoint_interval

The checkpoint daemon is a fiber which is constantly running. At intervals, it may make new snapshot
(.snap) files and then may delete old snapshot files. If the checkpoint daemon deletes an old snapshot file,
then it will also delete any write-ahead log (.xlog) files which are older than the snapshot file and which
contain information that is present in the snapshot file. It will also delete obsolete vinyl .run files.

Exceptions: the checkpoint daemon will not delete a file if a backup is ongoing and the file has not been
backed up (see “Hot backup”), or if replication is ongoing and the file has not been relayed to a replica (see
“Replication architecture”), or if a replica is connecting.

The checkpoint_interval and checkpoint_count configuration settings determine how long the intervals are,
and how many snapshots should exist before deletions occur.

checkpoint_interval
The interval between actions by the checkpoint daemon, in seconds. If checkpoint_interval is set to a
value greater than zero, and there is activity which causes change to a database, then the checkpoint
daemon will call box.snapshot every checkpoint_interval seconds, creating a new snapshot file each
time. If checkpoint_interval is set to zero, then the checkpoint daemon is disabled.

For example:

box.cfg{checkpoint_interval=60}

will cause the checkpoint daemon to create a new database snapshot once per minute, if there is activity.

Type: integer

Default: 3600 (one hour)

Dynamic: yes

270 Chapter 6. Reference

Tarantool, Release 1.7.4

checkpoint_count
The maximum number of snapshots that may exist on the memtx_dir directory before the checkpoint
daemon will delete old snapshots. If checkpoint_count equals zero, then the checkpoint daemon does
not delete old snapshots. For example:

box.cfg{
checkpoint_interval = 3600,
checkpoint_count = 10

}

will cause the checkpoint daemon to create a new snapshot each hour until it has created ten snapshots.
After that, it will delete the oldest snapshot (and any associated write-ahead-log files) after creating a
new one.

Type: integer

Default: 2

Dynamic: yes

Binary logging and snapshots

• force_recovery,

• rows_per_wal,

• snap_io_rate_limit,

• wal_mode,

• wal_dir_rescan_delay

force_recovery
If there is an error while reading a snapshot file (at server instance start) or a write-ahead log file (at
server instance start or to relay to a replica), abort.

Type: boolean

Default: true

Dynamic: no

rows_per_wal
How many log records to store in a single write-ahead log file. When this limit is reached, Tarantool
creates another WAL file named <first-lsn-in-wal>.xlog. This can be useful for simple rsync-based
backups.

Type: integer

Default: 500000

Dynamic: no

snap_io_rate_limit
Reduce the throttling effect of box.snapshot on INSERT/UPDATE/DELETE performance by setting

6.3. Configuration reference 271

Tarantool, Release 1.7.4

a limit on how many megabytes per second it can write to disk. The same can be achieved by splitting
wal_dir and memtx_dir locations and moving snapshots to a separate disk.

Type: float

Default: null

Dynamic: yes

wal_mode
Specify fiber-WAL-disk synchronization mode as:

• none: write-ahead log is not maintained;

• write: fibers wait for their data to be written to the write-ahead log (no fsync(2));

• fsync: fibers wait for their data, fsync(2) follows each write(2);

Type: string

Default: “write”

Dynamic: yes

wal_dir_rescan_delay
Number of seconds between periodic scans of the write-ahead-log file directory, when checking for
changes to write-ahead-log files for the sake of replication or hot standby.

Type: float

Default: 2

Dynamic: no

Hot standby

hot_standby
Whether to start the server in hot standby mode.

Hot standby is a feature which provides a simple form of failover without replication.

The expectation is that there will be two instances of the server using the same configuration. The
first one to start will be the “primary” instance. The second one to start will be the “standby” instance.

To initiate the standby instance, start a second instance of the Tarantool server on the same computer
with the same box.cfg configuration settings – including the same directories and same non-null URIs
– and with the additional parameter hot_standby = true. Expect to see a notification ending with
the words I> Entering hot standby mode. This is fine. It means that the standby instance is ready to
take over if the primary instance goes down.

The standby instance will initialize and will try to take a lock on wal_dir, but will fail because the
primary instance has made a lock on wal_dir. So the standby instance goes into a loop, reading the
write ahead log which the primary instance is writing (so the two instances are always in synch), and
trying to take the lock. If the primary instance goes down for any reason, the lock will be released. in
this case, the standby instance will succeed in taking the lock, will connect on listen address and will

272 Chapter 6. Reference

Tarantool, Release 1.7.4

become the primary instance. Expect to see a notification ending with the words I> ready to accept
requests.

Thus there is no noticeable downtime if the primary instance goes down.

Hot standby feature has no effect:

• if wal_dir_rescan_delay = a large number (on Mac OS and FreeBSD); on these platforms, it is
designed so that the loop repeats every wal_dir_rescan_delay seconds.

• if wal_mode = ‘none’; it is designed to work with wal_mode = 'write' or wal_mode = 'fsync'.

• for spaces created with engine = ‘vinyl’; it is designed to work for spaces created with engine =
'memtx'.

Type: boolean

Default: false

Dynamic: no

Replication

• replication

replication
If replication is not an empty string, the instance is considered to be a Tarantool replica. The replica
will try to connect to the master specified in replication with a URI (Universal Resource Identifier),
for example:

konstantin:secret_password@tarantool.org:3301

If there is more than one replication source in a replica set, specify an array of URIs, for example:
(replace ‘uri’ and ‘uri2’ in this example with valid URIs):

box.cfg{ replication = { ‘uri1’, ‘uri2’ } }

If one of the URIs is “self” – that is, if one of the URIs is for the instance where box.cfg{} is being
executed on – then it is ignored. Thus it is possible to use the same replication specification on multiple
servers.

The default user name is ‘guest’. A replica does not accept data-change requests on the listen port.
The replication parameter is dynamic, that is, to enter master mode, simply set replication to an empty
string and issue:

box.cfg{ replication = new-value }

Type: string

Default: null

Dynamic: yes

Networking

• io_collect_interval,

• readahead

6.3. Configuration reference 273

Tarantool, Release 1.7.4

io_collect_interval
The instance will sleep for io_collect_interval seconds between iterations of the event loop. Can be
used to reduce CPU load in deployments in which the number of client connections is large, but requests
are not so frequent (for example, each connection issues just a handful of requests per second).

Type: float

Default: null

Dynamic: yes

readahead
The size of the read-ahead buffer associated with a client connection. The larger the buffer, the more
memory an active connection consumes and the more requests can be read from the operating system
buffer in a single system call. The rule of thumb is to make sure the buffer can contain at least a
few dozen requests. Therefore, if a typical tuple in a request is large, e.g. a few kilobytes or even
megabytes, the read-ahead buffer size should be increased. If batched request processing is not used,
it’s prudent to leave this setting at its default.

Type: integer

Default: 16320

Dynamic: yes

Logging

• log_level

• log

• log_nonblock

• too_long_threshold

log_level
What level of detail the log will have. There are seven levels:

• 1 – SYSERROR

• 2 – ERROR

• 3 – CRITICAL

• 4 – WARNING

• 5 – INFO

• 6 – VERBOSE

• 7 – DEBUG

By setting log_level, one can enable logging of all classes below or equal to the given level. Tarantool
prints its logs to the standard error stream by default, but this can be changed with the log configuration
parameter.

Type: integer

Default: 5

274 Chapter 6. Reference

Tarantool, Release 1.7.4

Dynamic: yes

Warning: prior to Tarantool 1.7.5 there were only six levels and DEBUG was level 6. Starting with
Tarantool 1.7.5 VERBOSE is level 6 and DEBUG is level 7. VERBOSE is a new level for monitoring
repetitive events which would cause too much log writing if INFO were used instead.

log
By default, Tarantool sends the log to the standard error stream (stderr). If log is specified, Tarantool
sends the log to a file, or to a pipe, or to the system logger.

Example setting:

box.cfg{log = 'tarantool.log'}
-- or
box.cfg{log = 'file: tarantool.log'}

This will open the file tarantool.log for output on the server’s default directory. If the log string has
no prefix or has the prefix “file:”, then the string is interpreted as a file path.

Example setting:

box.cfg{log = '| cronolog tarantool.log'}
-- or
box.cfg{log = 'pipe: cronolog tarantool.log'}'

This will start the program cronolog when the server starts, and will send all log messages to the
standard input (stdin) of cronolog. If the log string begins with ‘|’ or has the prefix “pipe:”, then the
string is interpreted as a Unix pipeline.

Example setting:

box.cfg{log = 'syslog:identity=tarantool'}
-- or
box.cfg{log = 'syslog:facility=user'}
-- or
box.cfg{log = 'syslog:identity=tarantool,facility=user'}

If the log string has the prefix “syslog:”, then the string is interpreted as a message for the syslogd
program which normally is running in the background of any Unix-like platform. One can optionally
specify an identity, a facility, or both. The identity is an arbitrary string, default value = tarantool,
which will be placed at the beginning of all messages. The facility is an abbreviation for the name of
one of the syslog facilities, default value = user, which tell syslogd where the message should go.

Possible values for facility are: auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, security, syslog,
user, uucp, local0, local1, local2, local3, local4, local5, local6, local7.

The facility setting is currently ignored but will be used in the future.

When logging to a file, Tarantool reopens the log on SIGHUP. When log is a program, its pid is saved
in the log.logger_pid variable. You need to send it a signal to rotate logs.

Type: string

Default: null

Dynamic: no

6.3. Configuration reference 275

https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
http://www.rfc-base.org/txt/rfc-5424.txt
https://en.wikipedia.org/wiki/Syslog

Tarantool, Release 1.7.4

log_nonblock
If log_nonblock equals true, Tarantool does not block on the log file descriptor when it’s not ready
for write, and drops the message instead. If log_level is high, and a lot of messages go to the log
file, setting log_nonblock to true may improve logging performance at the cost of some log messages
getting lost.

Type: boolean

Default: true

Dynamic: no

too_long_threshold
If processing a request takes longer than the given value (in seconds), warn about it in the log. Has
effect only if log_level is more than or equal to 4 (WARNING).

Type: float

Default: 0.5

Dynamic: yes

Logging example

This will illustrate how “rotation” works, that is, what happens when the server instance is writing to a log
and signals are used when archiving it.

Start with two terminal shells, Terminal #1 and Terminal #2.

On Terminal #1: start an interactive Tarantool session, then say the logging will go to Log_file, then put
a message “Log Line #1” in the log file:

box.cfg{log='Log_file'}
log = require('log')
log.info('Log Line #1')

On Terminal #2: use mv so the log file is now named Log_file.bak. The result of this is: the next log
message will go to Log_file.bak.

mv Log_file Log_file.bak

On Terminal #1: put a message “Log Line #2” in the log file.

log.info('Log Line #2')

On Terminal #2: use ps to find the process ID of the Tarantool instance.

ps -A | grep tarantool

On Terminal #2: use kill -HUP to send a SIGHUP signal to the Tarantool instance. The result of this is:
Tarantool will open Log_file again, and the next log message will go to Log_file. (The same effect could be
accomplished by executing log.rotate() on the instance.)

kill -HUP process_id

On Terminal #1: put a message “Log Line #3” in the log file.

276 Chapter 6. Reference

Tarantool, Release 1.7.4

log.info('Log Line #3')

On Terminal #2: use less to examine files. Log_file.bak will have these lines, except that the date and time
will depend on when the example is done:

2015-11-30 15:13:06.373 [27469] main/101/interactive I> Log Line #1`
2015-11-30 15:14:25.973 [27469] main/101/interactive I> Log Line #2`

and Log_file will have

log file has been reopened
2015-11-30 15:15:32.629 [27469] main/101/interactive I> Log Line #3

Deprecated parameters

These parameters are deprecated since Tarantool version 1.7.4:

• coredump

• logger

• logger_nonblock

• panic_on_snap_error,

• panic_on_wal_error

• replication_source

• slab_alloc_arena

• slab_alloc_factor

• slab_alloc_maximal

• slab_alloc_minimal

• snap_dir

• snapshot_count

• snapshot_period

coredump
Deprecated, do not use.

Type: boolean

Default: false

Dynamic: no

logger
Deprecated in favor of log. The parameter was only renamed, while the type, values and semantics
remained intact.

logger_nonblock
Deprecated in favor of log_nonblock. The parameter was only renamed, while the type, values and
semantics remained intact.

6.3. Configuration reference 277

Tarantool, Release 1.7.4

panic_on_snap_error
Deprecated in favor of force_recovery.

If there is an error while reading a snapshot file (at server instance start), abort.

Type: boolean

Default: true

Dynamic: no

panic_on_wal_error
Deprecated in favor of force_recovery.

Type: boolean

Default: true

Dynamic: yes

replication_source
Deprecated in favor of replication. The parameter was only renamed, while the type, values and
semantics remained intact.

slab_alloc_arena
Deprecated in favor of memtx_memory.

How much memory Tarantool allocates to actually store tuples, in gigabytes. When the limit is reached,
INSERT or UPDATE requests begin failing with error ER_MEMORY_ISSUE. While the server does
not go beyond the defined limit to allocate tuples, there is additional memory used to store indexes
and connection information. Depending on actual configuration and workload, Tarantool can consume
up to 20% more than the limit set here.

Type: float

Default: 1.0

Dynamic: no

slab_alloc_factor
Deprecated, do not use.

The multiplier for computing the sizes of memory chunks that tuples are stored in. A lower value may
result in less wasted memory depending on the total amount of memory available and the distribution
of item sizes.

Type: float

Default: 1.1

Dynamic: no

slab_alloc_maximal
Deprecated in favor of memtx_max_tuple_size. The parameter was only renamed, while the type,
values and semantics remained intact.

278 Chapter 6. Reference

Tarantool, Release 1.7.4

slab_alloc_minimal
Deprecated in favor of memtx_min_tuple_size. The parameter was only renamed, while the type,
values and semantics remained intact.

snap_dir
Deprecated in favor of memtx_dir. The parameter was only renamed, while the type, values and
semantics remained intact.

snapshot_period
Deprecated in favor of checkpoint_interval. The parameter was only renamed, while the type, values
and semantics remained intact.

snapshot_count
Deprecated in favor of checkpoint_count. The parameter was only renamed, while the type, values
and semantics remained intact.

6.4 Utility tarantoolctl

tarantoolctl is a utility for administering Tarantool instances. It is shipped and installed as part of Tarantool
distribution.

The command format is:

tarantoolctl COMMAND NAME [URI] [FILE] [OPTIONS..]

where:

• COMMAND is one of the following: start, stop, logrotate, status, enter, restart, eval, check, connect,
cat, play.

• NAME is the name of an instance file.

• FILE is the path to some file (.lua, .xlog or .snap).

• URI is the URI of some Tarantool instance.

• OPTIONS are options taken by some tarantoolctl commands.

See also:

• Detailed reference upon man tarantoolctl or tarantoolctl --help.

• Usage examples in Server administration section.

6.5 Tips on Lua syntax

The Lua syntax for data-manipulation functions can vary. Here are examples of the variations with select()
requests. The same rules exist for the other data-manipulation functions.

Every one of the examples does the same thing: select a tuple set from a space named ‘tester’ where the
primary-key field value equals 1. For these examples, we assume that the numeric id of ‘tester’ is 512, which
happens to be the case in our sandbox example only.

First, there are three object reference variations:

-- #1 module . submodule . name
tarantool> box.space.tester:select{1}
-- #2 replace name with a literal in square brackets

(continues on next page)

6.4. Utility tarantoolctl 279

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> box.space['tester']:select{1}
-- #3 use a variable for the entire object reference
tarantool> s = box.space.tester
tarantool> s:select{1}

Examples in this manual usually have the “box.space.tester:” form (#1). However, this is a matter of user
preference and all the variations exist in the wild.

Also, descriptions in this manual use the syntax “space_object:” for references to objects which are spaces,
and “index_object:” for references to objects which are indexes (for example box.space.tester.index.primary:).

Then, there are seven parameter variations:

-- #1
tarantool> box.space.tester:select{1}
-- #2
tarantool> box.space.tester:select({1})
-- #3
tarantool> box.space.tester:select(1)
-- #4
tarantool> box.space.tester.select(box.space.tester,1)
-- #5
tarantool> box.space.tester:select({1},{iterator='EQ'})
-- #6
tarantool> variable = 1
tarantool> box.space.tester:select{variable}
-- #7
tarantool> variable = {1}
tarantool> box.space.tester:select(variable)

Lua allows to omit parentheses () when invoking a function if its only argument is a Lua table, and we use
it sometimes in our examples. This is why select{1} is equivalent to select({1}). Literal values such as 1
(a scalar value) or {1} (a Lua table value) may be replaced by variable names, as in examples #6 and #7.
Although there are special cases where braces can be omitted, they are preferable because they signal “Lua
table”. Examples and descriptions in this manual have the {1} form. However, this too is a matter of user
preference and all the variations exist in the wild.

280 Chapter 6. Reference

CHAPTER 7

Tutorials

7.1 Lua tutorials

Here are three tutorials on using Lua stored procedures with Tarantool:

• Insert one million tuples with a Lua stored procedure,

• Sum a JSON field for all tuples,

• Indexed pattern search.

7.1.1 Insert one million tuples with a Lua stored procedure

This is an exercise assignment: “Insert one million tuples. Each tuple should have a constantly-increasing
numeric primary-key field and a random alphabetic 10-character string field.”

The purpose of the exercise is to show what Lua functions look like inside Tarantool. It will be necessary
to employ the Lua math library, the Lua string library, the Tarantool box library, the Tarantool box.tuple
library, loops, and concatenations. It should be easy to follow even for a person who has not used either
Lua or Tarantool before. The only requirement is a knowledge of how other programming languages work
and a memory of the first two chapters of this manual. But for better understanding, follow the comments
and the links, which point to the Lua manual or to elsewhere in this Tarantool manual. To further enhance
learning, type the statements in with the tarantool client while reading along.

Configure

We are going to use the Tarantool sandbox that was created our “Getting started” exercises. So there is
a single space, and a numeric primary key, and a running Tarantool server instance which also serves as a
client.

281

Tarantool, Release 1.7.4

Delimiter

In earlier versions of Tarantool, multi-line functions had to be enclosed within “delimiters”. They are no
longer necessary, and so they will not be used in this tutorial. However, they are still supported. Users
who wish to use delimiters, or users of older versions of Tarantool, should check the syntax description for
declaring a delimiter before proceeding.

Create a function that returns a string

We will start by making a function that returns a fixed string, “Hello world”.

function string_function()
return "hello world"

end

The word “function” is a Lua keyword – we’re about to go into Lua. The function name is string_function.
The function has one executable statement, return "hello world". The string “hello world” is enclosed in
double quotes here, although Lua doesn’t care – one could use single quotes instead. The word “end” means
“this is the end of the Lua function declaration.” To confirm that the function works, we can say

string_function()

Sending function-name() means “invoke the Lua function.” The effect is that the string which the function
returns will end up on the screen.

For more about Lua strings see Lua manual chapter 2.4 “Strings” . For more about functions see Lua manual
chapter 5 “Functions”.

The screen now looks like this:

tarantool> function string_funciton()
> return "hello world"
> end

...
tarantool> string_function()

- hello world
...
tarantool>

Create a function that calls another function and sets a variable

Now that string_function exists, we can invoke it from another function.

function main_function()
local string_value
string_value = string_function()
return string_value

end

We begin by declaring a variable “string_value”. The word “local” means that string_value appears only
in main_function. If we didn’t use “local” then string_value would be visible everywhere - even by other
users using other clients connected to this server instance! Sometimes that’s a very desirable feature for
inter-client communication, but not this time.

282 Chapter 7. Tutorials

http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/5.html

Tarantool, Release 1.7.4

Then we assign a value to string_value, namely, the result of string_function(). Soon we will invoke
main_function() to check that it got the value.

For more about Lua variables see Lua manual chapter 4.2 “Local Variables and Blocks” .

The screen now looks like this:

tarantool> function main_function()
> local string_value
> string_value = string_function()
> return string_value
> end

...
tarantool> main_function()

- hello world
...
tarantool>

Modify the function so it returns a one-letter random string

Now that it’s a bit clearer how to make a variable, we can change string_function() so that, instead of
returning a fixed literal “Hello world”, it returns a random letter between ‘A’ and ‘Z’.

function string_function()
local random_number
local random_string
random_number = math.random(65, 90)
random_string = string.char(random_number)
return random_string

end

It is not necessary to destroy the old string_function() contents, they’re simply overwritten. The first
assignment invokes a random-number function in Lua’s math library; the parameters mean “the number
must be an integer between 65 and 90.” The second assignment invokes an integer-to-character function in
Lua’s string library; the parameter is the code point of the character. Luckily the ASCII value of ‘A’ is 65
and the ASCII value of ‘Z’ is 90 so the result will always be a letter between A and Z.

For more about Lua math-library functions see Lua users “Math Library Tutorial”. For more about Lua
string-library functions see Lua users “String Library Tutorial” .

Once again the string_function() can be invoked from main_function() which can be invoked with
main_function().

The screen now looks like this:

tarantool> function string_function()
> local random_number
> local random_string
> random_number = math.random(65, 90)
> random_string = string.char(random_number)
> return random_string
> end

...
tarantool> main_function()

(continues on next page)

7.1. Lua tutorials 283

http://www.lua.org/pil/4.2.html
http://lua-users.org/wiki/MathLibraryTutorial
http://lua-users.org/wiki/StringLibraryTutorial

Tarantool, Release 1.7.4

(continued from previous page)

- C
...
tarantool>

. . . Well, actually it won’t always look like this because math.random() produces random numbers. But for
the illustration purposes it won’t matter what the random string values are.

Modify the function so it returns a ten-letter random string

Now that it’s clear how to produce one-letter random strings, we can reach our goal of producing a ten-letter
string by concatenating ten one-letter strings, in a loop.

function string_function()
local random_number
local random_string
random_string = ""
for x = 1,10,1 do
random_number = math.random(65, 90)
random_string = random_string .. string.char(random_number)

end
return random_string

end

The words “for x = 1,10,1” mean “start with x equals 1, loop until x equals 10, increment x by 1 for each
iteration.” The symbol “..” means “concatenate”, that is, add the string on the right of the “..” sign to the
string on the left of the “..” sign. Since we start by saying that random_string is “” (a blank string), the end
result is that random_string has 10 random letters. Once again the string_function() can be invoked from
main_function() which can be invoked with main_function().

For more about Lua loops see Lua manual chapter 4.3.4 “Numeric for”.

The screen now looks like this:

tarantool> function string_function()
> local random_number
> local random_string
> random_string = ""
> for x = 1,10,1 do
> random_number = math.random(65, 90)
> random_string = random_string .. string.char(random_number)
> end
> return random_string
> end

...
tarantool> main_function()

- 'ZUDJBHKEFM'
...
tarantool>

284 Chapter 7. Tutorials

http://www.lua.org/pil/4.3.4.html

Tarantool, Release 1.7.4

Make a tuple out of a number and a string

Now that it’s clear how to make a 10-letter random string, it’s possible to make a tuple that contains a
number and a 10-letter random string, by invoking a function in Tarantool’s library of Lua functions.

function main_function()
local string_value, t
string_value = string_function()
t = box.tuple.new({1, string_value})
return t

end

Once this is done, t will be the value of a new tuple which has two fields. The first field is numeric: 1. The
second field is a random string. Once again the string_function() can be invoked from main_function()
which can be invoked with main_function().

For more about Tarantool tuples see Tarantool manual section Submodule box.tuple.

The screen now looks like this:

tarantool> function main_function()
> local string_value, t
> string_value = string_function()
> t = box.tuple.new({1, string_value})
> return t
> end

...
tarantool> main_function()

- [1, 'PNPZPCOOKA']
...
tarantool>

Modify main_function to insert a tuple into the database

Now that it’s clear how to make a tuple that contains a number and a 10-letter random string, the only trick
remaining is putting that tuple into tester. Remember that tester is the first space that was defined in the
sandbox, so it’s like a database table.

function main_function()
local string_value, t
string_value = string_function()
t = box.tuple.new({1,string_value})
box.space.tester:replace(t)

end

The new line here is box.space.tester:replace(t). The name contains ‘tester’ because the insertion is going
to be to tester. The second parameter is the tuple value. To be perfectly correct we could have said box.
space.tester:insert(t) here, rather than box.space.tester:replace(t), but “replace” means “insert even if there
is already a tuple whose primary-key value is a duplicate”, and that makes it easier to re-run the exercise
even if the sandbox database isn’t empty. Once this is done, tester will contain a tuple with two fields. The
first field will be 1. The second field will be a random 10-letter string. Once again the string_function()
can be invoked from main_function() which can be invoked with main_function(). But main_function()
won’t tell the whole story, because it does not return t, it only puts t into the database. To confirm that
something got inserted, we’ll use a SELECT request.

7.1. Lua tutorials 285

Tarantool, Release 1.7.4

main_function()
box.space.tester:select{1}

For more about Tarantool insert and replace calls, see Tarantool manual section Submodule box.space.

The screen now looks like this:

tarantool> function main_function()
> local string_value, t
> string_value = string_function()
> t = box.tuple.new({1,string_value})
> box.space.tester:replace(t)
> end

...
tarantool> main_function()

...
tarantool> box.space.tester:select{1}

- - [1, 'EUJYVEECIL']
...
tarantool>

Modify main_function to insert a million tuples into the database

Now that it’s clear how to insert one tuple into the database, it’s no big deal to figure out how to scale up:
instead of inserting with a literal value = 1 for the primary key, insert with a variable value = between 1
and 1 million, in a loop. Since we already saw how to loop, that’s a simple thing. The only extra wrinkle
that we add here is a timing function.

function main_function()
local string_value, t
for i = 1,1000000,1 do
string_value = string_function()
t = box.tuple.new({i,string_value})
box.space.tester:replace(t)

end
end
start_time = os.clock()
main_function()
end_time = os.clock()
'insert done in ' .. end_time - start_time .. ' seconds'

The standard Lua function os.clock() will return the number of CPU seconds since the start. Therefore, by
getting start_time = number of seconds just before the inserting, and then getting end_time = number of
seconds just after the inserting, we can calculate (end_time - start_time) = elapsed time in seconds. We
will display that value by putting it in a request without any assignments, which causes Tarantool to send
the value to the client, which prints it. (Lua’s answer to the C printf() function, which is print(), will also
work.)

For more on Lua os.clock() see Lua manual chapter 22.1 “Date and Time”. For more on Lua print() see Lua
manual chapter 5 “Functions”.

Since this is the grand finale, we will redo the final versions of all the necessary requests: the request
that created string_function(), the request that created main_function(), and the request that invokes
main_function().

286 Chapter 7. Tutorials

http://www.lua.org/manual/5.1/manual.html#pdf-os.clock
http://www.lua.org/pil/22.1.html
http://www.lua.org/pil/5.html

Tarantool, Release 1.7.4

function string_function()
local random_number
local random_string
random_string = ""
for x = 1,10,1 do
random_number = math.random(65, 90)
random_string = random_string .. string.char(random_number)

end
return random_string

end

function main_function()
local string_value, t
for i = 1,1000000,1 do
string_value = string_function()
t = box.tuple.new({i,string_value})
box.space.tester:replace(t)

end
end
start_time = os.clock()
main_function()
end_time = os.clock()
'insert done in ' .. end_time - start_time .. ' seconds'

The screen now looks like this:

tarantool> function string_function()
> local random_number
> local random_string
> random_string = ""
> for x = 1,10,1 do
> random_number = math.random(65, 90)
> random_string = random_string .. string.char(random_number)
> end
> return random_string
> end

...
tarantool> function main_function()

> local string_value, t
> for i = 1,1000000,1 do
> string_value = string_function()
> t = box.tuple.new({i,string_value})
> box.space.tester:replace(t)
> end
> end

...
tarantool> start_time = os.clock()

...
tarantool> main_function()

...
tarantool> end_time = os.clock()

...

(continues on next page)

7.1. Lua tutorials 287

Tarantool, Release 1.7.4

(continued from previous page)

tarantool> 'insert done in ' .. end_time - start_time .. ' seconds'

- insert done in 37.62 seconds
...
tarantool>

What has been shown is that Lua functions are quite expressive (in fact one can do more with Tarantool’s Lua
stored procedures than one can do with stored procedures in some SQL DBMSs), and that it’s straightforward
to combine Lua-library functions and Tarantool-library functions.

What has also been shown is that inserting a million tuples took 37 seconds. The host computer was a
Linux laptop. By changing wal_mode to ‘none’ before running the test, one can reduce the elapsed time to
4 seconds.

7.1.2 Sum a JSON field for all tuples

This is an exercise assignment: “Assume that inside every tuple there is a string formatted as JSON. Inside
that string there is a JSON numeric field. For each tuple, find the numeric field’s value and add it to a ‘sum’
variable. At end, return the ‘sum’ variable.” The purpose of the exercise is to get experience in one way to
read and process tuples.

1 json = require('json')
2 function sum_json_field(field_name)
3 local v, t, sum, field_value, is_valid_json, lua_table
4 sum = 0
5 for v, t in box.space.tester:pairs() do
6 is_valid_json, lua_table = pcall(json.decode, t[2])
7 if is_valid_json then
8 field_value = lua_table[field_name]
9 if type(field_value) == "number" then sum = sum + field_value end

10 end
11 end
12 return sum
13 end

LINE 3: WHY “LOCAL”. This line declares all the variables that will be used in the function. Actually
it’s not necessary to declare all variables at the start, and in a long function it would be better to declare
variables just before using them. In fact it’s not even necessary to declare variables at all, but an undeclared
variable is “global”. That’s not desirable for any of the variables that are declared in line 1, because all of
them are for use only within the function.

LINE 5: WHY “PAIRS()”. Our job is to go through all the rows and there are two ways to do
it: with box.space.space_object:pairs() or with variable = select(...) followed by for i, n, 1 do some-
function(variable[i]) end. We preferred pairs() for this example.

LINE 5: START THE MAIN LOOP. Everything inside this “for” loop will be repeated as long as there is
another index key. A tuple is fetched and can be referenced with variable t.

LINE 6: WHY “PCALL”. If we simply said lua_table = json.decode(t[2])), then the function would abort
with an error if it encountered something wrong with the JSON string - a missing colon, for example. By
putting the function inside “pcall” (protected call), we’re saying: we want to intercept that sort of error, so
if there’s a problem just set is_valid_json = false and we will know what to do about it later.

LINE 6: MEANING. The function is json.decode which means decode a JSON string, and the parameter is
t[2] which is a reference to a JSON string. There’s a bit of hard coding here, we’re assuming that the second
field in the tuple is where the JSON string was inserted. For example, we’re assuming a tuple looks like

288 Chapter 7. Tutorials

http://www.lua.org/pil/8.4.html

Tarantool, Release 1.7.4

field[1]: 444
field[2]: '{"Hello": "world", "Quantity": 15}'

meaning that the tuple’s first field, the primary key field, is a number while the tuple’s second field, the
JSON string, is a string. Thus the entire statement means “decode t[2] (the tuple’s second field) as a JSON
string; if there’s an error set is_valid_json = false; if there’s no error set is_valid_json = true and set
lua_table = a Lua table which has the decoded string”.

LINE 8. At last we are ready to get the JSON field value from the Lua table that came from the JSON
string. The value in field_name, which is the parameter for the whole function, must be a name of a JSON
field. For example, inside the JSON string '{"Hello": "world", "Quantity": 15}', there are two JSON fields:
“Hello” and “Quantity”. If the whole function is invoked with sum_json_field("Quantity"), then field_value
= lua_table[field_name] is effectively the same as field_value = lua_table["Quantity"] or even field_value
= lua_table.Quantity. Those are just three different ways of saying: for the Quantity field in the Lua table,
get the value and put it in variable field_value.

LINE 9: WHY “IF”. Suppose that the JSON string is well formed but the JSON field is not a number, or
is missing. In that case, the function would be aborted when there was an attempt to add it to the sum.
By first checking type(field_value) == "number", we avoid that abortion. Anyone who knows that the
database is in perfect shape can skip this kind of thing.

And the function is complete. Time to test it. Starting with an empty database, defined the same way as
the sandbox database in our “Getting started” exercises,

-- if tester is left over from some previous test, destroy it
box.space.tester:drop()
box.schema.space.create('tester')
box.space.tester:create_index('primary', {parts = {1, 'unsigned'}})

then add some tuples where the first field is a number and the second field is a string.

box.space.tester:insert{444, '{"Item": "widget", "Quantity": 15}'}
box.space.tester:insert{445, '{"Item": "widget", "Quantity": 7}'}
box.space.tester:insert{446, '{"Item": "golf club", "Quantity": "sunshine"}'}
box.space.tester:insert{447, '{"Item": "waffle iron", "Quantit": 3}'}

Since this is a test, there are deliberate errors. The “golf club” and the “waffle iron” do not have numeric
Quantity fields, so must be ignored. Therefore the real sum of the Quantity field in the JSON strings should
be: 15 + 7 = 22.

Invoke the function with sum_json_field("Quantity").

tarantool> sum_json_field("Quantity")

- 22
...

It works. We’ll just leave, as exercises for future improvement, the possibility that the “hard coding” as-
sumptions could be removed, that there might have to be an overflow check if some field values are huge,
and that the function should contain a “yield” instruction if the count of tuples is huge.

7.1.3 Indexed pattern search

Here is a generic function which takes a field identifier and a search pattern, and returns all tuples that
match. * The field must be the first field of a TREE index. * The function will use Lua pattern matching,
which allows “magic characters” in regular expressions. * The initial characters in the pattern, as far as

7.1. Lua tutorials 289

http://www.lua.org/manual/5.2/manual.html#6.4.1

Tarantool, Release 1.7.4

the first magic character, will be used as an index search key. For each tuple that is found via the index,
there will be a match of the whole pattern. * To be cooperative, the function should yield after every 10
tuples, unless there is a reason to delay yielding. With this function, we can take advantage of Tarantool’s
indexes for speed, and take advantage of Lua’s pattern matching for flexibility. It does everything that an
SQL “LIKE” search can do, and far more.

Read the following Lua code to see how it works. The comments that begin with “SEE NOTE . . . ” refer to
long explanations that follow the code.

function indexed_pattern_search(space_name, field_no, pattern)
-- SEE NOTE #1 "FIND AN APPROPRIATE INDEX"
if (box.space[space_name] == nil) then
print("Error: Failed to find the specified space")
return nil

end
local index_no = -1
for i=0,box.schema.INDEX_MAX,1 do
if (box.space[space_name].index[i] == nil) then break end
if (box.space[space_name].index[i].type == "TREE"

and box.space[space_name].index[i].parts[1].fieldno == field_no
and (box.space[space_name].index[i].parts[1].type == "scalar"
or box.space[space_name].index[i].parts[1].type == "string")) then

index_no = i
break

end
end
if (index_no == -1) then
print("Error: Failed to find an appropriate index")
return nil

end
-- SEE NOTE #2 "DERIVE INDEX SEARCH KEY FROM PATTERN"
local index_search_key = ""
local index_search_key_length = 0
local last_character = ""
local c = ""
local c2 = ""
for i=1,string.len(pattern),1 do
c = string.sub(pattern, i, i)
if (last_character ~= "%") then
if (c == '^' or c == "$" or c == "(" or c == ")" or c == "."

or c == "[" or c == "]" or c == "*" or c == "+"
or c == "-" or c == "?") then

break
end
if (c == "%") then
c2 = string.sub(pattern, i + 1, i + 1)
if (string.match(c2, "%p") == nil) then break end
index_search_key = index_search_key .. c2

else
index_search_key = index_search_key .. c

end
end
last_character = c

end
index_search_key_length = string.len(index_search_key)
if (index_search_key_length < 3) then
print("Error: index search key " .. index_search_key .. " is too short")
return nil

(continues on next page)

290 Chapter 7. Tutorials

Tarantool, Release 1.7.4

(continued from previous page)

end
-- SEE NOTE #3 "OUTER LOOP: INITIATE"
local result_set = {}
local number_of_tuples_in_result_set = 0
local previous_tuple_field = ""
while true do
local number_of_tuples_since_last_yield = 0
local is_time_for_a_yield = false
-- SEE NOTE #4 "INNER LOOP: ITERATOR"
for _,tuple in box.space[space_name].index[index_no]:
pairs(index_search_key,{iterator = box.index.GE}) do
-- SEE NOTE #5 "INNER LOOP: BREAK IF INDEX KEY IS TOO GREAT"
if (string.sub(tuple[field_no], 1, index_search_key_length)
> index_search_key) then
break

end
-- SEE NOTE #6 "INNER LOOP: BREAK AFTER EVERY 10 TUPLES -- MAYBE"
number_of_tuples_since_last_yield = number_of_tuples_since_last_yield + 1
if (number_of_tuples_since_last_yield >= 10

and tuple[field_no] ~= previous_tuple_field) then
index_search_key = tuple[field_no]
is_time_for_a_yield = true
break
end

previous_tuple_field = tuple[field_no]
-- SEE NOTE #7 "INNER LOOP: ADD TO RESULT SET IF PATTERN MATCHES"
if (string.match(tuple[field_no], pattern) ~= nil) then
number_of_tuples_in_result_set = number_of_tuples_in_result_set + 1
result_set[number_of_tuples_in_result_set] = tuple

end
end
-- SEE NOTE #8 "OUTER LOOP: BREAK, OR YIELD AND CONTINUE"
if (is_time_for_a_yield ~= true) then
break

end
require('fiber').yield()

end
return result_set

end

NOTE #1 “FIND AN APPROPRIATE INDEX” The caller has passed space_name (a string) and field_no
(a number). The requirements are: (a) index type must be “TREE” because for other index types (HASH,
BITSET, RTREE) a search with iterator=GE will not return strings in order by string value; (b) field_no
must be the first index part; (c) the field must contain strings, because for other data types (such as
“unsigned”) pattern searches are not possible; If these requirements are not met by any index, then print an
error message and return nil.

NOTE #2 “DERIVE INDEX SEARCH KEY FROM PATTERN” The caller has passed pattern (a string).
The index search key will be the characters in the pattern as far as the first magic character. Lua’s magic
characters are % ^ $ () . [] * + - ?. For example, if the pattern is “ABC.E”, the period is a magic character
and therefore the index search key will be “ABC”. But there is a complication . . . If we see “%” followed by
a punctuation character, that punctuation character is “escaped” so remove the “%” when making the index
search key. For example, if the pattern is “AB%$E”, the dollar sign is escaped and therefore the index search
key will be “AB$E”. Finally there is a check that the index search key length must be at least three – this
is an arbitrary number, and in fact zero would be okay, but short index search keys will cause long search
times.

7.1. Lua tutorials 291

Tarantool, Release 1.7.4

NOTE #3 – “OUTER LOOP: INITIATE” The function’s job is to return a result set, just as box.space.select
would. We will fill it within an outer loop that contains an inner loop. The outer loop’s job is to execute
the inner loop, and possibly yield, until the search ends. The inner loop’s job is to find tuples via the index,
and put them in the result set if they match the pattern.

NOTE #4 “INNER LOOP: ITERATOR” The for loop here is using pairs(), see the explanation of what
index iterators are. Within the inner loop, there will be a local variable named “tuple” which contains the
latest tuple found via the index search key.

NOTE #5 “INNER LOOP: BREAK IF INDEX KEY IS TOO GREAT” The iterator is GE (Greater or
Equal), and we must be more specific: if the search index key has N characters, then the leftmost N
characters of the result’s index field must not be greater than the search index key. For example, if the
search index key is ‘ABC’, then ‘ABCDE’ is a potential match, but ‘ABD’ is a signal that no more matches
are possible.

NOTE #6 “INNER LOOP: BREAK AFTER EVERY 10 TUPLES – MAYBE” This chunk of code is for
cooperative multitasking. The number 10 is arbitrary, and usually a larger number would be okay. The
simple rule would be “after checking 10 tuples, yield, and then resume the search (that is, do the inner loop
again) starting after the last value that was found”. However, if the index is non-unique or if there is more
than one field in the index, then we might have duplicates – for example {“ABC”,1}, {“ABC”, 2}, {“ABC”,
3}” – and it would be difficult to decide which “ABC” tuple to resume with. Therefore, if the result’s index
field is the same as the previous result’s index field, there is no break.

NOTE #7 “INNER LOOP: ADD TO RESULT SET IF PATTERN MATCHES” Compare the result’s index
field to the entire pattern. For example, suppose that the caller passed pattern “ABC.E” and there is an
indexed field containing “ABCDE”. Therefore the initial index search key is “ABC”. Therefore a tuple
containing an indexed field with “ABCDE” will be found by the iterator, because “ABCDE” > “ABC”. In
that case string.match will return a value which is not nil. Therefore this tuple can be added to the result
set.

NOTE #8 “OUTER LOOP: BREAK, OR YIELD AND CONTINUE” There are three conditions which will
cause a break from the inner loop: (1) the for loop ends naturally because there are no more index keys
which are greater than or equal to the index search key, (2) the index key is too great as described in NOTE
#5, (3) it is time for a yield as described in NOTE #6. If condition (1) or condition (2) is true, then there
is nothing more to do, the outer loop ends too. If and only if condition (3) is true, the outer loop must yield
and then continue. If it does continue, then the inner loop – the iterator search – will happen again with a
new value for the index search key.

EXAMPLE:

Start Tarantool, cut and paste the code for function indexed_pattern_search, and try the following:

box.space.t:drop()
box.schema.space.create('t')
box.space.t:create_index('primary',{})
box.space.t:create_index('secondary',{unique=false,parts={2,'string',3,'string'}})
box.space.t:insert{1,'A','a'}
box.space.t:insert{2,'AB',''}
box.space.t:insert{3,'ABC','a'}
box.space.t:insert{4,'ABCD',''}
box.space.t:insert{5,'ABCDE','a'}
box.space.t:insert{6,'ABCDE',''}
box.space.t:insert{7,'ABCDEF','a'}
box.space.t:insert{8,'ABCDF',''}
indexed_pattern_search("t", 2, "ABC.E.")

The result will be:

tarantool> indexed_pattern_search("t", 2, "ABC.E.")

292 Chapter 7. Tutorials

Tarantool, Release 1.7.4

- - [7, 'ABCDEF', 'a']
...

7.2 C tutorial

Here is one C tutorial: C stored procedures.

7.2.1 C stored procedures

Tarantool can call C code with modules, or with ffi, or with C stored procedures. This tutorial only is about
the third option, C stored procedures. In fact the routines are always “C functions” but the phrase “stored
procedure” is commonly used for historical reasons.

In this tutorial, which can be followed by anyone with a Tarantool development package and a C compiler,
there are four tasks. The first – easy.c – prints “hello world”. The second – harder.c – decodes a passed
parameter value. The third – hardest.c – uses the C API to do a DBMS insert. The fourth – read.c – uses
the C API to do a DBMS select.

After following the instructions, and seeing that the results are what is described here, users should feel
confident about writing their own stored procedures.

Preparation

Check that these items exist on the computer: * Tarantool 1.7 * A gcc compiler, any modern version should
work * “module.h” and files #included in it * “msgpuck.h” * “libmsgpuck.a” (only for some recent msgpuck
versions)

The “module.h” file will exist if Tarantool 1.7 was installed from source. Otherwise Tarantool’s “developer”
package must be installed. For example on Ubuntu say sudo apt-get install tarantool-dev or on Fedora say
dnf -y install tarantool-devel

The “msgpuck.h” file will exist if Tarantool 1.7 was installed from source. Otherwise the “msgpuck” package
must be installed from https://github.com/rtsisyk/msgpuck.

Both module.h and msgpuck.h must be on the include path for the C compiler to see them.
For example, if module.h address is /usr/local/include/tarantool/module.h, and msgpuck.h address is
/usr/local/include/msgpuck/msgpuck.h, and they are not currently on the include path, say export
CPATH=/usr/local/include/tarantool:/usr/local/include/msgpuck

The libmsgpuck.a static library is necessary with msgpuck versions produced after February 2017. If and
only if you encounter linking problems when using the gcc statements in the examples for this tutorial, you
should put libmsgpuck.a on the path (libmsgpuck.a is produced from both msgpuck and Tarantool source
downloads so it should be easy to find). For example, instead of “gcc -shared -o harder.so -fPIC harder.c”
for the second example below, you will need to say “gcc -shared -o harder.so -fPIC harder.c libmsgpuck.a”.

Requests will be done using Tarantool as a client. Start Tarantool, and enter these requests.

box.cfg{listen=3306}
box.schema.space.create('capi_test')
box.space.capi_test:create_index('primary')
net_box = require('net.box')
capi_connection = net_box:new(3306)

In plainer language: create a space named capi_test, and make a connection to self named capi_connection.

Leave the client running. It will be necessary to enter more requests later.

7.2. C tutorial 293

https://github.com/rtsisyk/msgpuck

Tarantool, Release 1.7.4

easy.c

Start another shell. Change directory (cd) so that it is the same as the directory that the client is running
on.

Create a file. Name it easy.c. Put these six lines in it.

#include "module.h"
int easy(box_function_ctx_t *ctx, const char *args, const char *args_end)
{
printf("hello world\n");
return 0;

}

Compile the program, producing a library file named easy.so: gcc -shared -o easy.so -fPIC easy.c

Now go back to the client and execute these requests:

box.schema.func.create('easy', {language = 'C'})
box.schema.user.grant('guest', 'execute', 'function', 'easy')
capi_connection:call('easy')

If these requests appear unfamiliar, re-read the descriptions of box.schema.func.create and
box.schema.user.grant and conn:call.

The function that matters is capi_connection:call(‘easy’).

Its first job is to find the ‘easy’ function, which should be easy because by default Tarantool looks on the
current directory for a file named easy.so.

Its second job is to call the ‘easy’ function. Since the easy() function in easy.c begins with printf("hello
world\n"), the words “hello world” will appear on the screen.

Its third job is to check that the call was successful. Since the easy() function in easy.c ends with return 0,
there is no error message to display and the request is over.

The result should look like this:

tarantool> capi_connection:call('easy')
hello world

- []
...

Conclusion: calling a C function is easy.

harder.c

Go back to the shell where the easy.c program was created.

Create a file. Name it harder.c. Put these 17 lines in it:

#include "module.h"
#include "msgpuck.h"
int harder(box_function_ctx_t *ctx, const char *args, const char *args_end)
{
uint32_t arg_count = mp_decode_array(&args);
printf("arg_count = %d\n", arg_count);
uint32_t field_count = mp_decode_array(&args);
printf("field_count = %d\n", field_count);
uint32_t val;

(continues on next page)

294 Chapter 7. Tutorials

Tarantool, Release 1.7.4

(continued from previous page)

int i;
for (i = 0; i < field_count; ++i)
{
val = mp_decode_uint(&args);
printf("val=%d.\n", val);

}
return 0;

}

Compile the program, producing a library file named harder.so: gcc -shared -o harder.so -fPIC harder.c

Now go back to the client and execute these requests:

box.schema.func.create('harder', {language = 'C'})
box.schema.user.grant('guest', 'execute', 'function', 'harder')
passable_table = {}
table.insert(passable_table, 1)
table.insert(passable_table, 2)
table.insert(passable_table, 3)
capi_connection:call('harder', passable_table)

This time the call is passing a Lua table (passable_table) to the harder() function. The harder() function
will see it, it’s in the char *args parameter.

At this point the harder() function will start using functions defined in msgpuck.h, which are documented
in http://rtsisyk.github.io/msgpuck. The routines that begin with “mp” are msgpuck functions that handle
data formatted according to the MsgPack specification. Passes and returns are always done with this format
so one must become acquainted with msgpuck to become proficient with the C API.

For now, though, it’s enough to know that mp_decode_array() returns the number of elements in an array,
and mp_decode_uint returns an unsigned integer, from args. And there’s a side effect: when the decoding
finishes, args has changed and is now pointing to the next element.

Therefore the first displayed line will be “arg_count = 1” because there was only one item passed: pass-
able_table. The second displayed line will be “field_count = 3” because there are three items in the table.
The next three lines will be “1” and “2” and “3” because those are the values in the items in the table.

And now the screen looks like this:

tarantool> capi_connection:call('harder', passable_table)
arg_count = 1
field_count = 3
val=1.
val=2.
val=3.

- []
...

Conclusion: decoding parameter values passed to a C function is not easy at first, but there are routines to
do the job, and they’re documented, and there aren’t very many of them.

hardest.c

Go back to the shell where the easy.c and the harder.c programs were created.

Create a file. Name it hardest.c. Put these 13 lines in it:

7.2. C tutorial 295

http://rtsisyk.github.io/msgpuck
http://msgpack.org/

Tarantool, Release 1.7.4

#include "module.h"
#include "msgpuck.h"
int hardest(box_function_ctx_t *ctx, const char *args, const char *args_end)
{
uint32_t space_id = box_space_id_by_name("capi_test", strlen("capi_test"));
char tuple[1024];
char *tuple_pointer = tuple;
tuple_pointer = mp_encode_array(tuple_pointer, 2);
tuple_pointer = mp_encode_uint(tuple_pointer, 10000);
tuple_pointer = mp_encode_str(tuple_pointer, "String 2", 8);
int n = box_insert(space_id, tuple, tuple_pointer, NULL);
return n;

}

Compile the program, producing a library file named hardest.so: gcc -shared -o hardest.so -fPIC hardest.c

Now go back to the client and execute these requests:

box.schema.func.create('hardest', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'hardest')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')
capi_connection:call('hardest')

This time the C function is doing three things: (1) finding the numeric identifier of the “capi_test” space by
calling box_space_id_by_name(); (2) formatting a tuple using more msgpuck.h functions; (3) inserting a
tuple using box_insert.

Now, still on the client, execute this request: box.space.capi_test:select()

The result should look like this:

tarantool> box.space.capi_test:select()

- - [10000, 'String 2']
...

This proves that the hardest() function succeeded, but where did box_space_id_by_name() and
box_insert() come from? Answer: the C API. The whole C API is documented here. The function
box_space_id_by_name() is documented here. The function box_insert() is documented here.

read.c

Go back to the shell where the easy.c and the harder.c and the hardest.c programs were created.

Create a file. Name it read.c. Put these 43 lines in it:

#include "module.h"
#include <msgpuck.h>
int read(box_function_ctx_t *ctx, const char *args, const char *args_end)
{
char tuple_buf[1024]; /* where the raw MsgPack tuple will be stored */
uint32_t space_id = box_space_id_by_name("capi_test", strlen("capi_test"));
uint32_t index_id = 0; /* The number of the space's first index */
uint32_t key = 10000; /* The key value that box_insert() used */
mp_encode_array(tuple_buf, 0); /* clear */
box_tuple_format_t *fmt = box_tuple_format_default();
box_tuple_t *tuple = box_tuple_new(fmt, tuple_buf, tuple_buf+512);
assert(tuple != NULL);
char key_buf[16]; /* Pass key_buf = encoded key = 1000 */

(continues on next page)

296 Chapter 7. Tutorials

Tarantool, Release 1.7.4

(continued from previous page)

char *key_end = key_buf;
key_end = mp_encode_array(key_end, 1);
key_end = mp_encode_uint(key_end, key);
assert(key_end < key_buf + sizeof(key_buf));
/* Get the tuple. There's no box_select() but there's this. */
int r = box_index_get(space_id, index_id, key_buf, key_end, &tuple);
assert(r == 0);
assert(tuple != NULL);
/* Get each field of the tuple + display what you get. */
int field_no; /* The first field number is 0. */
for (field_no = 0; field_no < 2; ++field_no)
{
const char *field = box_tuple_field(tuple, field_no);
assert(field != NULL);
assert(mp_typeof(*field) == MP_STR || mp_typeof(*field) == MP_UINT);
if (mp_typeof(*field) == MP_UINT)
{
uint32_t uint_value = mp_decode_uint(&field);
printf("uint value=%u.\n", uint_value);

}
else /* if (mp_typeof(*field) == MP_STR) */
{
const char *str_value;
uint32_t str_value_length;
str_value = mp_decode_str(&field, &str_value_length);
printf("string value=%.*s.\n", str_value_length, str_value);

}
}
return 0;

}

Compile the program, producing a library file named read.so: gcc -shared -o read.so -fPIC read.c

Now go back to the client and execute these requests:

box.schema.func.create('read', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'read')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')
capi_connection:call('read')

This time the C function is doing four things: (1) once again, finding the numeric identifier of the “capi_test”
space by calling box_space_id_by_name(); (2) formatting a search key = 10000 using more msgpuck.h
functions; (3) getting a tuple using box_index_get’ (4) going through the tuple’s fields with box_tuple_get()
and then decoding each field depending on its type. In this case, since what we are getting is the tuple that
we inserted with hardest.c, we know in advance that the type is either MP_UINT or MP_STR; however,
it’s very common to have a case statement here with one option for each possible type.

The result of capi_connection:call(‘read’) should look like this:

tarantool> capi_connection:call('read')
uint value=10000.
string value=String 2.

- []
...

This proves that the read() function succeeded. Once again the important functions that start with box

7.2. C tutorial 297

Tarantool, Release 1.7.4

came from the C API. The function box_index_get() is documented here. The function box_tuple_field()
is documented here.

Conclusion: the long description of the whole C API is there for a good reason. All of the functions in it
can be called from C functions which are called from Lua. So C “stored procedures” have full access to the
database.

Cleaning up

Get rid of each of the function tuples with box.schema.func.drop, and get rid of the capi_test space with
box.schema.capi_test:drop(), and remove the .c and .so files that were created for this tutorial.

An example in the test suite

Download the source code of Tarantool. Look in a subdirectory test/box. Notice that there is a file named
tuple_bench.test.lua and another file named tuple_bench.c. Examine the Lua file and observe that it is
calling a function in the C file, using the same techniques that this tutorial has shown.

Conclusion: parts of the standard test suite use C stored procedures, and they must work, because releases
don’t happen if Tarantool doesn’t pass the tests.

7.3 libslave tutorial

libslave is a C++ library for reading data changes done by MysQL and, optionally, writing them to a
Tarantool database. It works by acting as a replication slave. The MySQL server writes data-change
information to a “binary log”, and transfers the information to any client that says “I want to see the
information starting with this file and this record, continuously”. So, libslave is primarily good for making
a Tarantool database replica (much faster than using a conventional MySQL slave server), and for keeping
track of data changes so they can be searched.

We will not go into the many details here – the API documentation has them. We will only show an exercise:
a minimal program that uses the library.

Note: Use a test machine. Do not use a production machine.

STEP 1: Make sure you have:

• a recent version of Linux (versions such as Ubuntu 14.04 will not do),

• a recent version of MySQL 5.6 or MySQL 5.7 server (MariaDB will not do),

• MySQL client development package. For example, on Ubuntu you can download it with this command:

sudo apt-get install mysql-client-core-5.7

STEP 2: Download libslave.

The recommended source is https://github.com/tarantool/libslave/. Downloads include the source code
only.

sudo apt-get install libboost-all-dev
cd ~
git clone https://github.com/tarantool/libslave.git tarantool-libslave
cd tarantool-libslave
git submodule init
git submodule update

(continues on next page)

298 Chapter 7. Tutorials

https://github.com/vozbu/libslave/wiki/API
https://github.com/tarantool/libslave/

Tarantool, Release 1.7.4

(continued from previous page)

cmake .
make

If you see an error message mentioning the word “vector”, edit field.h and add this line:

#include <vector>

STEP 3: Start the MySQL server. On the command line, add appropriate switches for doing replication.
For example:

mysqld --log-bin=mysql-bin --server-id=1

STEP 4: For purposes of this exercise, we are assuming you have:

• a “root” user with password “root” with privileges,

• a “test” database with a table named “test”,

• a binary log named “mysql-bin”,

• a server with server id = 1.

The values are hard-coded in the program, though of course you can change the program – it’s easy to see
their settings.

STEP 5: Look at the program:

#include <unistd.h>
#include <iostream>
#include <sstream>
#include "Slave.h"
#include "DefaultExtState.h"

slave::Slave* sl = NULL;

void callback(const slave::RecordSet& event) {
slave::Slave::binlog_pos_t sBinlogPos = sl->getLastBinlog();
switch (event.type_event) {
case slave::RecordSet::Update: std::cout << "UPDATE" << "\n"; break;
case slave::RecordSet::Delete: std::cout << "DELETE" << "\n"; break;
case slave::RecordSet::Write: std::cout << "INSERT" << "\n"; break;
default: break;
}

}

bool isStopping()
{

return 0;
}

int main(int argc, char** argv)
{

slave::MasterInfo masterinfo;
masterinfo.conn_options.mysql_host = "127.0.0.1";
masterinfo.conn_options.mysql_port = 3306;
masterinfo.conn_options.mysql_user = "root";
masterinfo.conn_options.mysql_pass = "root";
bool error = false;

(continues on next page)

7.3. libslave tutorial 299

Tarantool, Release 1.7.4

(continued from previous page)

try {
slave::DefaultExtState sDefExtState;
slave::Slave slave(masterinfo, sDefExtState);
sl = &slave;
sDefExtState.setMasterLogNamePos("mysql-bin", 0);
slave.setCallback("test", "test", callback);
slave.init();
slave.createDatabaseStructure();
try {

slave.get_remote_binlog(isStopping);
} catch (std::exception& ex) {

std::cout << "Error reading: " << ex.what() << std::endl;
error = true;

}
} catch (std::exception& ex) {

std::cout << "Error initializing: " << ex.what() << std::endl;
error = true;

}
return 0;

}

Everything unnecessary has been stripped so that you can see quickly how it works. At the start of main(),
there are some settings used for connecting – host, port, user, password. Then there is an initialization call
with the binary log file name = “mysql-bin”. Pay particular attention to the setCallback statement, which
passes database name = “test”, table name = “test”, and callback function address = callback. The program
will be looping and invoking this callback function. See how, earlier in the program, the callback function
prints “UPDATE” or “DELETE” or “INSERT” depending on what is passed to it.

STEP 5: Put the program in the tarantool-libslave directory and name it example.cpp.

Step 6: Compile and build:

g++ -I/tarantool-libslave/include example.cpp -o example libslave_a.a -ldl -lpthread

Note: Replace tarantool-libslave/include with the full directory name.

Notice that the name of the static library is libslave_a.a, not libslave.a.

Step 7: Run:

./example

The result will be nothing – the program is looping, waiting for the MySQL server to write to the replication
binary log.

Step 8: Start a MySQL client program – any client program will do. Enter these statements:

USE test
INSERT INTO test VALUES ('A');
INSERT INTO test VALUES ('B');
DELETE FROM test;

Watch what happens in example.cpp output – it displays:

300 Chapter 7. Tutorials

Tarantool, Release 1.7.4

INSERT
INSERT
DELETE
DELETE

This is row-based replication, so you see two DELETEs, because there are two rows.

What the exercise has shown is:

• the library can be built, and

• programs that use the library can access everything that the MySQL server dumps.

For the many details and examples of usage in the field, see:

• Our downloadable libslave version:

https://github.com/tarantool/libslave

• The version it was forked from (with a different README):

https://github.com/vozbu/libslave/wiki/API

• How to speed up your MySQL with replication to in-memory database article

• Replicating data from MySQL to Tarantool article (in Russian)

• Asynchronous replication uncensored article (in Russian)

7.3. libslave tutorial 301

https://github.com/tarantool/libslave
https://github.com/vozbu/libslave/wiki/API
http://highscalability.com/blog/2017/3/29/how-to-speed-up-your-mysql-with-replication-to-in-memory-dat.html
https://habrahabr.ru/company/mailru/blog/323870/
https://habrahabr.ru/company/oleg-bunin/blog/313594/

CHAPTER 8

Contributor’s Guide

8.1 C API reference

8.1.1 Module box

box_function_ctx_t
Opaque structure passed to the stored C procedure

int box_return_tuple(box_function_ctx_t *ctx, box_tuple_t *tuple)
Return a tuple from stored C procedure.

Returned tuple is automatically reference counted by Tarantool.

Parameters

• ctx (box_funtion_ctx_t*) – an opaque structure passed to the stored C procedure
by Tarantool

• tuple (box_tuple_t*) – a tuple to return

Returns -1 on error (perhaps, out of memory; check box_error_last())

Returns 0 otherwise

uint32_t box_space_id_by_name(const char *name, uint32_t len)
Find space id by name.

This function performs SELECT request to _vspace system space.

Parameters

• char* name (const) – space name

• len (uint32_t) – length of name

Returns BOX_ID_NIL on error or if not found (check box_error_last())

Returns space_id otherwise

302

Tarantool, Release 1.7.4

See also: box_index_id_by_name

uint32_t box_index_id_by_name(uint32_t space_id, const char *name, uint32_t len)
Find index id by name.

Parameters

• space_id (uint32_t) – space identifier

• char* name (const) – index name

• len (uint32_t) – length of name

Returns BOX_ID_NIL on error or if not found (check box_error_last())

Returns space_id otherwise

This function performs SELECT request to _vindex system space.

See also: box_space_id_by_name

int box_insert(uint32_t space_id, const char *tuple, const char *tuple_end, box_tuple_t **result)
Execute an INSERT/REPLACE request.

Parameters

• space_id (uint32_t) – space identifier

• char* tuple (const) – encoded tuple in MsgPack Array format ([field1, field2, . . .])

• char* tuple_end (const) – end of a tuple

• result (box_tuple_t**) – output argument. Resulted tuple. Can be set to NULL
to discard result

Returns -1 on error (check box_error_last())

Returns 0 otherwise

See also space_object.insert()

int box_replace(uint32_t space_id, const char *tuple, const char *tuple_end, box_tuple_t **result)
Execute an REPLACE request.

Parameters

• space_id (uint32_t) – space identifier

• char* tuple (const) – encoded tuple in MsgPack Array format ([field1, field2, . . .])

• char* tuple_end (const) – end of a tuple

• result (box_tuple_t**) – output argument. Resulted tuple. Can be set to NULL
to discard result

Returns -1 on error (check box_error_last())

Returns 0 otherwise

See also space_object.replace()

int box_delete(uint32_t space_id, uint32_t index_id, const char *key, const char *key_end,
box_tuple_t **result)

Execute an DELETE request.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

8.1. C API reference 303

Tarantool, Release 1.7.4

• char* key (const) – encoded key in MsgPack Array format ([field1, field2, . . .])

• char* key_end (const) – end of a key

• result (box_tuple_t**) – output argument. Result an old tuple. Can be set to
NULL to discard result

Returns -1 on error (check box_error_last())

Returns 0 otherwise

See also space_object.delete()

int box_update(uint32_t space_id, uint32_t index_id, const char *key, const char *key_end, const
char *ops, const char *ops_end, int index_base, box_tuple_t **result)

Execute an UPDATE request.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• char* key (const) – encoded key in MsgPack Array format ([field1, field2, . . .])

• char* key_end (const) – end of a key

• char* ops (const) – encoded operations in MsgPack Arrat format, e.g. [['=',
field_id, value], ['!', 2, 'xxx']]

• char* ops_end (const) – end of a ops

• index_base (int) – 0 if field_ids in update operation are zero-based indexed (like C)
or 1 if for one-based indexed field ids (like Lua).

• result (box_tuple_t**) – output argument. Result an old tuple. Can be set to
NULL to discard result

Returns -1 on error (check box_error_last())

Returns 0 otherwise

See also space_object.update()

int box_upsert(uint32_t space_id, uint32_t index_id, const char *tuple, const char *tuple_end,
const char *ops, const char *ops_end, int index_base, box_tuple_t **result)

Execute an UPSERT request.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• char* tuple (const) – encoded tuple in MsgPack Array format ([field1, field2, . . .])

• char* tuple_end (const) – end of a tuple

• char* ops (const) – encoded operations in MsgPack Arrat format, e.g. [['=',
field_id, value], ['!', 2, 'xxx']]

• char* ops_end (const) – end of a ops

• index_base (int) – 0 if field_ids in update operation are zero-based indexed (like C)
or 1 if for one-based indexed field ids (like Lua).

• result (box_tuple_t**) – output argument. Result an old tuple. Can be set to
NULL to discard result

304 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Returns -1 on error (check :box_error_last())

Returns 0 otherwise

See also space_object.upsert()

8.1.2 Module clock

double clock_realtime(void)
double clock_monotonic(void)
double clock_process(void)
double clock_thread(void)

uint64_t clock_realtime64(void)
uint64_t clock_monotonic64(void)
uint64_t clock_process64(void)
uint64_t clock_thread64(void)

8.1.3 Module coio

enum COIO_EVENT

enumerator COIO_READ
READ event

enumerator COIO_WRITE
WRITE event

int coio_wait(int fd, int event, double timeout)
Wait until READ or WRITE event on socket (fd). Yields.

Parameters

• fd (int) – non-blocking socket file description

• event (int) – requested events to wait. Combination of COIO_READ |
COIO_WRITE bit flags.

• timeout (double) – timeout in seconds.

Returns 0 - timeout

Returns >0 - returned events. Combination of TNT_IO_READ | TNT_IO_WRITE bit
flags.

ssize_t coio_call(ssize_t (*func)(va_list), ...)
Create new eio task with specified function and arguments. Yield and wait until the task is complete
or a timeout occurs.

This function doesn’t throw exceptions to avoid double error checking: in most cases it’s also necessary
to check the return value of the called function and perform necessary actions. If func sets errno, the
errno is preserved across the call.

Returns -1 and errno = ENOMEM if failed to create a task

Returns the function return (errno is preserved).

Example:

8.1. C API reference 305

Tarantool, Release 1.7.4

static ssize_t openfile_cb(va_list ap)
{

const char* filename = va_arg(ap);
int flags = va_arg(ap);
return open(filename, flags);

}

if (coio_call(openfile_cb, 0.10, "/tmp/file", 0) == -1)
// handle errors.

...

int coio_getaddrinfo(const char *host, const char *port, const struct addrinfo *hints, struct ad-
drinfo **res, double timeout)

Fiber-friendly version of getaddrinfo(3).

8.1.4 Module error

enum box_error_code

enumerator ER_UNKNOWN

enumerator ER_ILLEGAL_PARAMS

enumerator ER_MEMORY_ISSUE

enumerator ER_TUPLE_FOUND

enumerator ER_TUPLE_NOT_FOUND

enumerator ER_UNSUPPORTED

enumerator ER_NONMASTER

enumerator ER_READONLY

enumerator ER_INJECTION

enumerator ER_CREATE_SPACE

enumerator ER_SPACE_EXISTS

enumerator ER_DROP_SPACE

enumerator ER_ALTER_SPACE

enumerator ER_INDEX_TYPE

enumerator ER_MODIFY_INDEX

enumerator ER_LAST_DROP

enumerator ER_TUPLE_FORMAT_LIMIT

enumerator ER_DROP_PRIMARY_KEY

enumerator ER_KEY_PART_TYPE

enumerator ER_EXACT_MATCH

enumerator ER_INVALID_MSGPACK

enumerator ER_PROC_RET

enumerator ER_TUPLE_NOT_ARRAY

306 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

enumerator ER_FIELD_TYPE

enumerator ER_FIELD_TYPE_MISMATCH

enumerator ER_SPLICE

enumerator ER_ARG_TYPE

enumerator ER_TUPLE_IS_TOO_LONG

enumerator ER_UNKNOWN_UPDATE_OP

enumerator ER_UPDATE_FIELD

enumerator ER_FIBER_STACK

enumerator ER_KEY_PART_COUNT

enumerator ER_PROC_LUA

enumerator ER_NO_SUCH_PROC

enumerator ER_NO_SUCH_TRIGGER

enumerator ER_NO_SUCH_INDEX

enumerator ER_NO_SUCH_SPACE

enumerator ER_NO_SUCH_FIELD

enumerator ER_SPACE_FIELD_COUNT

enumerator ER_INDEX_FIELD_COUNT

enumerator ER_WAL_IO

enumerator ER_MORE_THAN_ONE_TUPLE

enumerator ER_ACCESS_DENIED

enumerator ER_CREATE_USER

enumerator ER_DROP_USER

enumerator ER_NO_SUCH_USER

enumerator ER_USER_EXISTS

enumerator ER_PASSWORD_MISMATCH

enumerator ER_UNKNOWN_REQUEST_TYPE

enumerator ER_UNKNOWN_SCHEMA_OBJECT

enumerator ER_CREATE_FUNCTION

enumerator ER_NO_SUCH_FUNCTION

enumerator ER_FUNCTION_EXISTS

enumerator ER_FUNCTION_ACCESS_DENIED

enumerator ER_FUNCTION_MAX

enumerator ER_SPACE_ACCESS_DENIED

enumerator ER_USER_MAX

enumerator ER_NO_SUCH_ENGINE

enumerator ER_RELOAD_CFG

8.1. C API reference 307

Tarantool, Release 1.7.4

enumerator ER_CFG

enumerator ER_SOPHIA

enumerator ER_LOCAL_SERVER_IS_NOT_ACTIVE

enumerator ER_UNKNOWN_SERVER

enumerator ER_CLUSTER_ID_MISMATCH

enumerator ER_INVALID_UUID

enumerator ER_CLUSTER_ID_IS_RO

enumerator ER_RESERVED66

enumerator ER_SERVER_ID_IS_RESERVED

enumerator ER_INVALID_ORDER

enumerator ER_MISSING_REQUEST_FIELD

enumerator ER_IDENTIFIER

enumerator ER_DROP_FUNCTION

enumerator ER_ITERATOR_TYPE

enumerator ER_REPLICA_MAX

enumerator ER_INVALID_XLOG

enumerator ER_INVALID_XLOG_NAME

enumerator ER_INVALID_XLOG_ORDER

enumerator ER_NO_CONNECTION

enumerator ER_TIMEOUT

enumerator ER_ACTIVE_TRANSACTION

enumerator ER_NO_ACTIVE_TRANSACTION

enumerator ER_CROSS_ENGINE_TRANSACTION

enumerator ER_NO_SUCH_ROLE

enumerator ER_ROLE_EXISTS

enumerator ER_CREATE_ROLE

enumerator ER_INDEX_EXISTS

enumerator ER_TUPLE_REF_OVERFLOW

enumerator ER_ROLE_LOOP

enumerator ER_GRANT

enumerator ER_PRIV_GRANTED

enumerator ER_ROLE_GRANTED

enumerator ER_PRIV_NOT_GRANTED

enumerator ER_ROLE_NOT_GRANTED

enumerator ER_MISSING_SNAPSHOT

enumerator ER_CANT_UPDATE_PRIMARY_KEY

308 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

enumerator ER_UPDATE_INTEGER_OVERFLOW

enumerator ER_GUEST_USER_PASSWORD

enumerator ER_TRANSACTION_CONFLICT

enumerator ER_UNSUPPORTED_ROLE_PRIV

enumerator ER_LOAD_FUNCTION

enumerator ER_FUNCTION_LANGUAGE

enumerator ER_RTREE_RECT

enumerator ER_PROC_C

enumerator ER_UNKNOWN_RTREE_INDEX_DISTANCE_TYPE

enumerator ER_PROTOCOL

enumerator ER_UPSERT_UNIQUE_SECONDARY_KEY

enumerator ER_WRONG_INDEX_RECORD

enumerator ER_WRONG_INDEX_PARTS

enumerator ER_WRONG_INDEX_OPTIONS

enumerator ER_WRONG_SCHEMA_VERSION

enumerator ER_SLAB_ALLOC_MAX

enumerator ER_WRONG_SPACE_OPTIONS

enumerator ER_UNSUPPORTED_INDEX_FEATURE

enumerator ER_VIEW_IS_RO

enumerator box_error_code_MAX

box_error_t
Error - contains information about error.

const char * box_error_type(const box_error_t *error)
Return the error type, e.g. “ClientError”, “SocketError”, etc.

Parameters

• error (box_error_t*) – error

Returns not-null string

uint32_t box_error_code(const box_error_t *error)
Return IPROTO error code

Parameters

• error (box_error_t*) – error

Returns enum box_error_code

const char * box_error_message(const box_error_t *error)
Return the error message

Parameters

• error (box_error_t*) – error

Returns not-null string

8.1. C API reference 309

Tarantool, Release 1.7.4

box_error_t * box_error_last(void)
Get the information about the last API call error.

The Tarantool error handling works most like libc’s errno. All API calls return -1 or NULL in the
event of error. An internal pointer to box_error_t type is set by API functions to indicate what went
wrong. This value is only significant if API call failed (returned -1 or NULL).

Successful function can also touch the last error in some cases. You don’t have to clear the last error
before calling API functions. The returned object is valid only until next call to any API function.

You must set the last error using box_error_set() in your stored C procedures if you want to return a
custom error message. You can re-throw the last API error to IPROTO client by keeping the current
value and returning -1 to Tarantool from your stored procedure.

Returns last error

void box_error_clear(void)
Clear the last error.

int box_error_set(const char *file, unsigned line, uint32_t code, const char *format, ...)
Set the last error.

Parameters

• char* file (const) –

• line (unsigned) –

• code (uint32_t) – IPROTO error code

• char* format (const) –

• ... – format arguments

See also: IPROTO error code

box_error_raise(code, format, ...)
A backward-compatible API define.

8.1.5 Module fiber

struct fiber
Fiber - contains information about fiber

struct fiber *fiber_new(const char *name, fiber_func f)

typedef int (*fuber_func)(va_list)
Create a new fiber.

Takes a fiber from fiber cache, if it’s not empty. Can fail only if there is not enough memory for the
fiber structure or fiber stack.

The created fiber automatically returns itself to the fiber cache when its “main” function completes.

Parameters

• char* name (const) – string with fiber name

• f (fiber_func) – func for run inside fiber

See also: fiber_start()

310 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

void fiber_yield(void)
Return control to another fiber and wait until it’ll be woken.

See also: fiber_wakeup()

void fiber_start(struct fiber *callee, ...)
Start execution of created fiber.

Parameters

• fiber* callee (struct) – fiber to start

• ... – arguments to start the fiber with

void fiber_wakeup(struct fiber *f)
Interrupt a synchronous wait of a fiber

Parameters

• fiber* f (struct) – fiber to be woken up

void fiber_cancel(struct fiber *f)
Cancel the subject fiber (set FIBER_IS_CANCELLED flag)

If target fiber’s flag FIBER_IS_CANCELLABLE set, then it would be woken up (maybe prematurely).
Then current fiber yields until the target fiber is dead (or is woken up by fiber_wakeup()).

Parameters

• fiber* f (struct) – fiber to be cancelled

bool fiber_set_cancellable(bool yesno)
Make it possible or not possible to wakeup the current fiber immediately when it’s cancelled.

Parameters

• fiber* f (struct) – fiber

• yesno (bool) – status to set

Returns previous state

void fiber_set_joinable(struct fiber *fiber, bool yesno)
Set fiber to be joinable (false by default).

Parameters

• fiber* f (struct) – fiber

• yesno (bool) – status to set

void fiber_join(struct fiber *f)
Wait until the fiber is dead and then move its execution status to the caller. The fiber must not be
detached.

Parameters

• fiber* f (struct) – fiber to be woken up

Before: FIBER_IS_JOINABLE flag is set.

See also: fiber_set_joinable()

void fiber_sleep(double s)
Put the current fiber to sleep for at least ‘s’ seconds.

Parameters

8.1. C API reference 311

Tarantool, Release 1.7.4

• s (double) – time to sleep

Note: this is a cancellation point.

See also: fiber_is_cancelled()

bool fiber_is_cancelled()
Check current fiber for cancellation (it must be checked manually).

double fiber_time(void)
Report loop begin time as double (cheap).

uint64_t fiber_time64(void)
Report loop begin time as 64-bit int.

void fiber_reschedule(void)
Reschedule fiber to end of event loop cycle.

struct slab_cache

struct slab_cache *cord_slab_cache(void)
Return slab_cache suitable to use with tarantool/small library

8.1.6 Module index

box_iterator_t
A space iterator

enum iterator_type
Controls how to iterate over tuples in an index. Different index types support different iterator types.
For example, one can start iteration from a particular value (request key) and then retrieve all tuples
where keys are greater or equal (= GE) to this key.

If iterator type is not supported by the selected index type, iterator constructor must fail with
ER_UNSUPPORTED. To be selectable for primary key, an index must support at least ITER_EQ
and ITER_GE types.

NULL value of request key corresponds to the first or last key in the index, depending on iteration
direction. (first key for GE and GT types, and last key for LE and LT). Therefore, to iterate over all
tuples in an index, one can use ITER_GE or ITER_LE iteration types with start key equal to NULL.
For ITER_EQ, the key must not be NULL.

enumerator ITER_EQ
key == x ASC order

enumerator ITER_REQ
key == x DESC order

enumerator ITER_ALL
all tuples

enumerator ITER_LT
key < x

enumerator ITER_LE
key <= x

enumerator ITER_GE
key >= x

enumerator ITER_GT
key > x

312 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

enumerator ITER_BITS_ALL_SET
all bits from x are set in key

enumerator ITER_BITS_ANY_SET
at least one x’s bit is set

enumerator ITER_BITS_ALL_NOT_SET
all bits are not set

enumerator ITER_OVERLAPS
key overlaps x

enumerator ITER_NEIGHBOR
tuples in distance ascending order from specified point

box_iterator_t *box_index_iterator(uint32_t space_id, uint32_t index_id, int type, const
char *key, const char *key_end)

Allocate and initialize iterator for space_id, index_id.

The returned iterator must be destroyed by box_iterator_free.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• type (int) – iterator_type

• char* key (const) – encode key in MsgPack Array format ([part1, part2, . . .])

• char* key_end (const) – the end of encoded key

Returns NULL on error (check :ref:box_error_last‘c_api-error-box_error_last>‘)

Returns iterator otherwise

See also box_iterator_next, box_iterator_free

int box_iterator_next(box_iterator_t *iterator, box_tuple_t **result)
Retrieve the next item from the iterator.

Parameters

• iterator (box_iterator_t*) – an iterator returned by :ref:box_index_iterator‘c_api-
box_index-box_index_iterator>‘

• result (box_tuple_t**) – output argument. result a tuple or NULL if there is no
more data.

Returns -1 on error (check :ref:box_error_last‘c_api-error-box_error_last>‘)

Returns 0 on success. The end of data is not an error.

void box_iterator_free(box_iterator_t *iterator)
Destroy and deallocate iterator.

Parameters

• iterator (box_iterator_t*) – an iterator returned by :ref:box_index_iterator‘c_api-
box_index-box_index_iterator>‘

ssize_t box_index_len(uint32_t space_id, uint32_t index_id)
Return the number of element in the index.

Parameters

8.1. C API reference 313

Tarantool, Release 1.7.4

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

Returns -1 on error (check :ref:box_error_last‘c_api-error-box_error_last>‘)

Returns >= 0 otherwise

ssize_t box_index_bsize(uint32_t space_id, uint32_t index_id)
Return the number of bytes used in memory by the index.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

Returns -1 on error (check :ref:box_error_last‘c_api-error-box_error_last>‘)

Returns >= 0 otherwise

int box_index_random(uint32_t space_id, uint32_t index_id, uint32_t rnd, box_tuple_t **result)
Return a random tuple from the index (useful for statistical analysis).

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• rnd (uint32_t) – random seed

• result (box_tuple_t**) – output argument. result a tuple or NULL if there is no
tuples in space

See also: index_object.random

int box_index_get(uint32_t space_id, uint32_t index_id, const char *key, const char *key_end,
box_tuple_t **result)

Get a tuple from index by the key.

Please note that this function works much more faster than index_object.select or box_index_iterator
+ box_iterator_next.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• char* key (const) – encode key in MsgPack Array format ([part1, part2, . . .])

• char* key_end (const) – the end of encoded key

• result (box_tuple_t**) – output argument. result a tuple or NULL if there is no
tuples in space

Returns -1 on error (check :ref:box_error_last‘c_api-error-box_error_last>‘)

Returns 0 on success

See also: index_object.get()

int box_index_min(uint32_t space_id, uint32_t index_id, const char *key, const char *key_end,
box_tuple_t **result)

Return a first (minimal) tuple matched the provided key.

Parameters

314 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• char* key (const) – encode key in MsgPack Array format ([part1, part2, . . .])

• char* key_end (const) – the end of encoded key

• result (box_tuple_t**) – output argument. result a tuple or NULL if there is no
tuples in space

Returns -1 on error (check :ref:box_error_last()‘c_api-error-box_error_last>‘)

Returns 0 on success

See also: index_object.min()

int box_index_max(uint32_t space_id, uint32_t index_id, const char *key, const char *key_end,
box_tuple_t **result)

Return a last (maximal) tuple matched the provided key.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• char* key (const) – encode key in MsgPack Array format ([part1, part2, . . .])

• char* key_end (const) – the end of encoded key

• result (box_tuple_t**) – output argument. result a tuple or NULL if there is no
tuples in space

Returns -1 on error (check :ref:box_error_last()‘c_api-error-box_error_last>‘)

Returns 0 on success

See also: index_object.max()

ssize_t box_index_count(uint32_t space_id, uint32_t index_id, int type, const char *key, const
char *key_end)

Count the number of tuple matched the provided key.

Parameters

• space_id (uint32_t) – space identifier

• index_id (uint32_t) – index identifier

• type (int) – iterator_type

• char* key (const) – encode key in MsgPack Array format ([part1, part2, . . .])

• char* key_end (const) – the end of encoded key

Returns -1 on error (check :ref:box_error_last()‘c_api-error-box_error_last>‘)

Returns 0 on success

See also: index_object.count()

8.1.7 Module latch

box_latch_t
A lock for cooperative multitasking environment

8.1. C API reference 315

Tarantool, Release 1.7.4

box_latch_t *box_latch_new(void)
Allocate and initialize the new latch.

Returns allocated latch object

Return type box_latch_t *

void box_latch_delete(box_latch_t *latch)
Destroy and free the latch.

Parameters

• latch (box_latch_t*) – latch to destroy

void box_latch_lock(box_latch_t *latch)
Lock a latch. Waits indefinitely until the current fiber can gain access to the latch.

param box_latch_t* latch latch to lock

int box_latch_trylock(box_latch_t *latch)
Try to lock a latch. Return immediately if the latch is locked.

Parameters

• latch (box_latch_t*) – latch to lock

Returns status of operation. 0 - success, 1 - latch is locked

Return type int

void box_latch_unlock(box_latch_t *latch)
Unlock a latch. The fiber calling this function must own the latch.

Parameters

• latch (box_latch_t*) – latch to unlock

8.1.8 Module lua/utils

void *luaL_pushcdata(struct lua_State *L, uint32_t ctypeid)
Push cdata of given ctypeid onto the stack.

CTypeID must be used from FFI at least once. Allocated memory returned uninitialized. Only
numbers and pointers are supported.

Parameters

• L (lua_State*) – Lua State

• ctypeid (uint32_t) – FFI’s CTypeID of this cdata

Returns memory associated with this cdata

See also: luaL_checkcdata()

void *luaL_checkcdata(struct lua_State *L, int idx, uint32_t *ctypeid)
Checks whether the function argument idx is a cdata

Parameters

• L (lua_State*) – Lua State

• idx (int) – stack index

• ctypeid (uint32_t*) – output argument. FFI’s CTypeID of returned cdata

Returns memory associated with this cdata

316 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

See also: luaL_pushcdata()

void luaL_setcdatagc(struct lua_State *L, int idx)
Sets finalizer function on a cdata object.

Equivalent to call ffi.gc(obj, function). Finalizer function must be on the top of the stack.

Parameters

• L (lua_State*) – Lua State

• idx (int) – stack index

uint32_t luaL_ctypeid(struct lua_State *L, const char *ctypename)
Return CTypeID (FFI) of given СDATA type

Parameters

• L (lua_State*) – Lua State

• char* ctypename (const) – C type name as string (e.g. “struct request” or “uint32_t”)

Returns CTypeID

See also: luaL_pushcdata(), luaL_checkcdata()

int luaL_cdef(struct lua_State *L, const char *ctypename)
Declare symbols for FFI

Parameters

• L (lua_State*) – Lua State

• char* ctypename (const) – C definitions (e.g. “struct stat”)

Returns 0 on success

Returns LUA_ERRRUN, LUA_ERRMEM` or ``LUA_ERRERR otherwise.

See also: ffi.cdef(def)

void luaL_pushuint64(struct lua_State *L, uint64_t val)
Push uint64_t onto the stack

Parameters

• L (lua_State*) – Lua State

• val (uint64_t) – value to push

void luaL_pushint64(struct lua_State *L, int64_t val)
Push int64_t onto the stack

Parameters

• L (lua_State*) – Lua State

• val (int64_t) – value to push

uint64_t luaL_checkuint64(struct lua_State *L, int idx)
Checks whether the argument idx is a uint64 or a convertable string and returns this number.

Throws error if the argument can’t be converted

uint64_t luaL_checkint64(struct lua_State *L, int idx)
Checks whether the argument idx is a int64 or a convertable string and returns this number.

Throws error if the argument can’t be converted

8.1. C API reference 317

Tarantool, Release 1.7.4

uint64_t luaL_touint64(struct lua_State *L, int idx)
Checks whether the argument idx is a uint64 or a convertable string and returns this number.

Returns the converted number or 0 of argument can’t be converted

int64_t luaL_toint64(struct lua_State *L, int idx)
Checks whether the argument idx is a int64 or a convertable string and returns this number.

Returns the converted number or 0 of argument can’t be converted

8.1.9 Module say (logging)

enum say_level

enumerator S_FATAL
do not use this value directly

enumerator S_SYSERROR

enumerator S_ERROR

enumerator S_CRIT

enumerator S_WARN

enumerator S_INFO

enumerator S_DEBUG

say(level, format, ...)
Format and print a message to Tarantool log file.

Parameters

• level (int) – log level

• char* format (const) – printf()-like format string

• ... – format arguments

See also printf(3), say_level

say_error(format, ...)
say_crit(format, ...)
say_warn(format, ...)
say_info(format, ...)
say_debug(format, ...)
say_syserror(format, ...)

Format and print a message to Tarantool log file.

Parameters

• char* format (const) – printf()-like format string

• ... – format arguments

See also printf(3), say_level

Example:

say_info("Some useful information: %s", status);

318 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

8.1.10 Module schema

enum SCHEMA

enumerator BOX_SYSTEM_ID_MIN
Start of the reserved range of system spaces.

enumerator BOX_SCHEMA_ID
Space id of _schema.

enumerator BOX_SPACE_ID
Space id of _space.

enumerator BOX_VSPACE_ID
Space id of _vspace view.

enumerator BOX_INDEX_ID
Space id of _index.

enumerator BOX_VINDEX_ID
Space id of _vindex view.

enumerator BOX_FUNC_ID
Space id of _func.

enumerator BOX_VFUNC_ID
Space id of _vfunc view.

enumerator BOX_USER_ID
Space id of _user.

enumerator BOX_VUSER_ID
Space id of _vuser view.

enumerator BOX_PRIV_ID
Space id of _priv.

enumerator BOX_VPRIV_ID
Space id of _vpriv view.

enumerator BOX_CLUSTER_ID
Space id of _cluster.

enumerator BOX_SYSTEM_ID_MAX
End of reserved range of system spaces.

enumerator BOX_ID_NIL
NULL value, returned on error.

8.1.11 Module trivia/config

API_EXPORT
Extern modifier for all public functions.

PACKAGE_VERSION_MAJOR
Package major version - 1 for 1.7.0.

PACKAGE_VERSION_MINOR
Package minor version - 7 for 1.7.0.

8.1. C API reference 319

Tarantool, Release 1.7.4

PACKAGE_VERSION_PATCH
Package patch version - 0 for 1.7.0.

PACKAGE_VERSION
A string with major-minor-patch-commit-id identifier of the release, e.g. 1.7.0-1216-g73f7154.

SYSCONF_DIR
System configuration dir (e.g /etc)

INSTALL_PREFIX
Install prefix (e.g. /usr)

BUILD_TYPE
Build type, e.g. Debug or Release

BUILD_INFO
CMake build type signature, e.g. Linux-x86_64-Debug

BUILD_OPTIONS
Command line used to run CMake.

COMPILER_INFO
Pathes to C and CXX compilers.

TARANTOOL_C_FLAGS
C compile flags used to build Tarantool.

TARANTOOL_CXX_FLAGS
CXX compile flags used to build Tarantool.

MODULE_LIBDIR
A path to install *.lua module files.

MODULE_LUADIR
A path to install *.so/*.dylib module files.

MODULE_INCLUDEDIR
A path to Lua includes (the same directory where this file is contained)

MODULE_LUAPATH
A constant added to package.path in Lua to find *.lua module files.

MODULE_LIBPATH
A constant added to package.cpath in Lua to find *.so module files.

8.1.12 Module tuple

box_tuple_format_t

box_tuple_format_t *box_tuple_format_default(void)
Tuple format.

Each Tuple has associated format (class). Default format is used to create tuples which are not attach
to any particular space.

box_tuple_t
Tuple

box_tuple_t *box_tuple_new(box_tuple_format_t *format, const char *tuple, const char *tu-
ple_end)

Allocate and initialize a new tuple from a raw MsgPack Array data.

Parameters

320 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

• format (box_tuple_format_t*) – tuple format. Use box_tuple_format_default()
to create space-independent tuple.

• char* tuple (const) – tuple data in MsgPack Array format ([field1, field2, . . .])

• char* tuple_end (const) – the end of data

Returns NULL on out of memory

Returns tuple otherwise

See also: box.tuple.new()

int box_tuple_ref(box_tuple_t *tuple)
Increase the reference counter of tuple.

Tuples are reference counted. All functions that return tuples guarantee that the last returned tuple
is refcounted internally until the next call to API function that yields or returns another tuple.

You should increase the reference counter before taking tuples for long processing in your code. Such
tuples will not be garbage collected even if another fiber remove they from space. After processing
please decrement the reference counter using box_tuple_unref(), otherwise the tuple will leak.

Parameters

• tuple (box_tuple_t*) – a tuple

Returns -1 on error

Returns 0 otherwise

See also: box_tuple_unref()

void box_tuple_unref(box_tuple_t *tuple)
Decrease the reference counter of tuple.

Parameters

• tuple (box_tuple_t*) – a tuple

Returns -1 on error

Returns 0 otherwise

See also: box_tuple_ref()

uint32_t box_tuple_field_count(const box_tuple_t *tuple)
Return the number of fields in tuple (the size of MsgPack Array).

Parameters

• tuple (box_tuple_t*) – a tuple

size_t box_tuple_bsize(const box_tuple_t *tuple)
Return the number of bytes used to store internal tuple data (MsgPack Array).

Parameters

• tuple (box_tuple_t*) – a tuple

ssize_t box_tuple_to_buf(const box_tuple_t *tuple, char *buf, size_t size)
Dump raw MsgPack data to the memory buffer buf of size size.

Store tuple fields in the memory buffer.

Upon successful return, the function returns the number of bytes written. If buffer size is not enough
then the return value is the number of bytes which would have been written if enough space had been
available.

8.1. C API reference 321

Tarantool, Release 1.7.4

Returns -1 on error

Returns number of bytes written on success.

box_tuple_format_t *box_tuple_format(const box_tuple_t *tuple)
Return the associated format.

Parameters

• tuple (box_tuple_t*) – a tuple

Returns tuple format

const char *box_tuple_field(const box_tuple_t *tuple, uint32_t field_id)
Return the raw tuple field in MsgPack format. The result is a pointer to raw MessagePack data which
can be decoded with mp_decode functions, for an example see the tutorial program read.c.

The buffer is valid until next call to box_tuple_* functions.

Parameters

• tuple (box_tuple_t*) – a tuple

• field_id (uint32_t) – zero-based index in MsgPack array.

Returns NULL if i >= box_tuple_field_count()

Returns msgpack otherwise

box_tuple_iterator_t
Tuple iterator

box_tuple_iterator_t *box_tuple_iterator(box_tuple_t *tuple)
Allocate and initialize a new tuple iterator. The tuple iterator allow to iterate over fields at root level
of MsgPack array.

Example:

box_tuple_iterator_t* it = box_tuple_iterator(tuple);
if (it == NULL) {

// error handling using box_error_last()
}
const char* field;
while (field = box_tuple_next(it)) {

// process raw MsgPack data
}

// rewind iterator to first position
box_tuple_rewind(it)
assert(box_tuple_position(it) == 0);

// rewind three fields
field = box_tuple_seek(it, 3);
assert(box_tuple_position(it) == 4);

box_iterator_free(it);

void box_tuple_iterator_free(box_tuple_iterator_t *it)
Destroy and free tuple iterator

uint32_t box_tuple_position(box_tuple_iterator_t *it)
Return zero-based next position in iterator. That is, this function return the field id of field that will
be returned by the next call to box_tuple_next(). Returned value is zero after initialization or rewind
and box_tuple_field_count() after the end of iteration.

322 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Parameters

• it (box_tuple_iterator_t*) – a tuple iterator

Returns position

void box_tuple_rewind(box_tuple_iterator_t *it)
Rewind iterator to the initial position.

Parameters

• it (box_tuple_iterator_t*) – a tuple iterator

After: box_tuple_position(it) == 0

const char *box_tuple_seek(box_tuple_iterator_t *it, uint32_t field_no)
Seek the tuple iterator.

The result is a pointer to raw MessagePack data which can be decoded with mp_decode functions, for
an example see the tutorial program read.c. The returned buffer is valid until next call to box_tuple_*
API. Requested field_no returned by next call to box_tuple_next(it).

Parameters

• it (box_tuple_iterator_t*) – a tuple iterator

• field_no (uint32_t) – field number - zero-based position in MsgPack array

After:

• box_tuple_position(it) == field_not if returned value is not NULL.

• box_tuple_position(it) == box_tuple_field_count(tuple) if returned value is NULL.

const char *box_tuple_next(box_tuple_iterator_t *it)
Return the next tuple field from tuple iterator.

The result is a pointer to raw MessagePack data which can be decoded with mp_decode functions, for
an example see the tutorial program read.c. The returned buffer is valid until next call to box_tuple_*
API.

Parameters

• it (box_tuple_iterator_t*) –

Returns NULL if there are no more fields

Returns MsgPack otherwise

Before: box_tuple_position() is zero-based ID of returned field.

After: box_tuple_position(it) == box_tuple_field_count(tuple) if returned value is NULL.

box_tuple_t *box_tuple_update(const box_tuple_t *tuple, const char *expr, const char *expr_end)

box_tuple_t *box_tuple_upsert(const box_tuple_t *tuple, const char *expr, const char *expr_end)

8.1.13 Module txn

bool box_txn(void)
Return true if there is an active transaction.

int box_txn_begin(void)
Begin a transaction in the current fiber.

A transaction is attached to caller fiber, therefore one fiber can have only one active transaction.

8.1. C API reference 323

Tarantool, Release 1.7.4

Returns 0 on success

Returns -1 on error. Perhaps a transaction has already been started

int box_txn_commit(void)
Commit the current transaction.

Returns 0 on success

Returns -1 on error. Perhaps a disk write failure

void box_txn_rollback(void)
Rollback the current transaction.

void *box_txn_alloc(size_t size)
Allocate memory on txn memory pool.

The memory is automatically deallocated when the transaction is committed or rolled back.

Returns NULL on out of memory

8.2 Internals

8.2.1 Tarantool’s binary protocol

Tarantool’s binary protocol is a binary request/response protocol.

Notation in diagrams

0 X
+----+
| | - X bytes
+----+
TYPE - type of MsgPack value (if it is a MsgPack object)

+====+
| | - Variable size MsgPack object
+====+
TYPE - type of MsgPack value

+~~~~+
| | - Variable size MsgPack Array/Map
+~~~~+
TYPE - type of MsgPack value

MsgPack data types:

• MP_INT - Integer

• MP_MAP - Map

• MP_ARR - Array

• MP_STRING - String

• MP_FIXSTR - Fixed size string

• MP_OBJECT - Any MsgPack object

• MP_BIN - MsgPack binary format

324 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Greeting packet

TARANTOOL'S GREETING:

0 63
+--------------------------------------+
| |
| Tarantool Greeting (server version) |
| 64 bytes |
+---------------------+----------------+
| | |
| BASE64 encoded SALT | NULL |
| 44 bytes | |
+---------------------+----------------+
64 107 127

The server instance begins the dialogue by sending a fixed-size (128-byte) text greeting to the client. The
greeting always contains two 64-byte lines of ASCII text, each line ending with a newline character (‘\n’).
The first line contains the instance version and protocol type. The second line contains up to 44 bytes of
base64-encoded random string, to use in the authentication packet, and ends with up to 23 spaces.

Unified packet structure

Once a greeting is read, the protocol becomes pure request/response and features a complete access to
Tarantool functionality, including:

• request multiplexing, e.g. ability to asynchronously issue multiple requests via the same connection

• response format that supports zero-copy writes

For data structuring and encoding, the protocol uses msgpack data format, see http://msgpack.org

The Tarantool protocol mandates use of a few integer constants serving as keys in maps used in the protocol.
These constants are defined in src/box/iproto_constants.h

We list them here too:

-- user keys
<code> ::= 0x00
<sync> ::= 0x01
<schema_id> ::= 0x05
<space_id> ::= 0x10
<index_id> ::= 0x11
<limit> ::= 0x12
<offset> ::= 0x13
<iterator> ::= 0x14
<key> ::= 0x20
<tuple> ::= 0x21
<function_name> ::= 0x22
<username> ::= 0x23
<expression> ::= 0x27
<ops> ::= 0x28
<data> ::= 0x30
<error> ::= 0x31

-- -- Value for <code> key in request can be:
-- User command codes

(continues on next page)

8.2. Internals 325

http://msgpack.org
https://github.com/tarantool/tarantool/blob/1.7/src/box/iproto_constants.h

Tarantool, Release 1.7.4

(continued from previous page)

<select> ::= 0x01
<insert> ::= 0x02
<replace> ::= 0x03
<update> ::= 0x04
<delete> ::= 0x05
<call_16> ::= 0x06
<auth> ::= 0x07
<eval> ::= 0x08
<upsert> ::= 0x09
<call> ::= 0x0a
-- Admin command codes
<ping> ::= 0x40

-- -- Value for <code> key in response can be:
<OK> ::= 0x00
<ERROR> ::= 0x8XXX

Both <header> and <body> are msgpack maps:

Request/Response:

0 5
+--------+ +============+ +===================================+
| BODY + | | | | |
| HEADER | | HEADER | | BODY |
| SIZE | | | | |
+--------+ +============+ +===================================+
MP_INT MP_MAP MP_MAP

UNIFIED HEADER:

+================+================+=====================+
| | | |
| 0x00: CODE | 0x01: SYNC | 0x05: SCHEMA_ID |
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_INT |
| | | |
+================+================+=====================+

MP_MAP

They only differ in the allowed set of keys and values. The key defines the type of value that follows. If a
body has no keys, the entire msgpack map for the body may be missing. Such is the case, for example, for
a <ping> request. schema_id may be absent in the request’s header, meaning that there will be no version
checking, but it must be present in the response. If schema_id is sent in the header, then it will be checked.

Authentication

When a client connects to the server instance, the instance responds with a 128-byte text greeting message.
Part of the greeting is base-64 encoded session salt - a random string which can be used for authentication.
The length of decoded salt (44 bytes) exceeds the amount necessary to sign the authentication message (first
20 bytes). An excess is reserved for future authentication schemas.

PREPARE SCRAMBLE:

LEN(ENCODED_SALT) = 44;

(continues on next page)

326 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

LEN(SCRAMBLE) = 20;

prepare 'chap-sha1' scramble:

salt = base64_decode(encoded_salt);
step_1 = sha1(password);
step_2 = sha1(step_1);
step_3 = sha1(salt, step_2);
scramble = xor(step_1, step_3);
return scramble;

AUTHORIZATION BODY: CODE = 0x07

+==================+====================================+
| | +-------------+-----------+ | | | |
| (KEY) | (TUPLE)| len == 9 | len == 20 | |
| 0x23:USERNAME | 0x21:| "chap-sha1" | SCRAMBLE | |
| MP_INT:MP_STRING | MP_INT:| MP_STRING | MP_BIN | |
| | +-------------+-----------+ |
| | MP_ARRAY |
+==================+====================================+

MP_MAP

<key> holds the user name. <tuple> must be an array of 2 fields: authentication mechanism (“chap-sha1”
is the only supported mechanism right now) and password, encrypted according to the specified mechanism.
Authentication in Tarantool is optional, if no authentication is performed, session user is ‘guest’. The
instance responds to authentication packet with a standard response with 0 tuples.

Requests

• SELECT: CODE - 0x01 Find tuples matching the search pattern

SELECT BODY:

+==================+==================+==================+
| | | |
| 0x10: SPACE_ID | 0x11: INDEX_ID | 0x12: LIMIT |
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_INT |
| | | |
+==================+==================+==================+
| | | |
| 0x13: OFFSET | 0x14: ITERATOR | 0x20: KEY |
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_ARRAY |
| | | |
+==================+==================+==================+

MP_MAP

• INSERT: CODE - 0x02 Inserts tuple into the space, if no tuple with same unique keys exists. Otherwise
throw duplicate key error.

• REPLACE: CODE - 0x03 Insert a tuple into the space or replace an existing one.

INSERT/REPLACE BODY:

+==================+==================+

(continues on next page)

8.2. Internals 327

Tarantool, Release 1.7.4

(continued from previous page)

| | |
| 0x10: SPACE_ID | 0x21: TUPLE |
| MP_INT: MP_INT | MP_INT: MP_ARRAY |
| | |
+==================+==================+

MP_MAP

• UPDATE: CODE - 0x04 Update a tuple

UPDATE BODY:

+==================+=======================+
| | |
| 0x10: SPACE_ID | 0x11: INDEX_ID |
| MP_INT: MP_INT | MP_INT: MP_INT |
| | |
+==================+=======================+
| | +~~~~~~~~~~+ | | |
| | | | |
| | (TUPLE) | OP | |
| 0x20: KEY | 0x21: | | |
| MP_INT: MP_ARRAY | MP_INT: +~~~~~~~~~~+ |
| | MP_ARRAY |
+==================+=======================+

MP_MAP

OP:
Works only for integer fields:
* Addition OP = '+' . space[key][field_no] += argument
* Subtraction OP = '-' . space[key][field_no] -= argument
* Bitwise AND OP = '&' . space[key][field_no] &= argument
* Bitwise XOR OP = '^' . space[key][field_no] ^= argument
* Bitwise OR OP = '|' . space[key][field_no] |= argument
Works on any fields:
* Delete OP = '#'
delete <argument> fields starting
from <field_no> in the space[<key>]

0 2
+-----------+==========+==========+
| | | |
| OP | FIELD_NO | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_INT |
| | | |
+-----------+==========+==========+

MP_ARRAY

* Insert OP = '!'
insert <argument> before <field_no>

* Assign OP = '='
assign <argument> to field <field_no>.
will extend the tuple if <field_no> == <max_field_no> + 1

0 2
+-----------+==========+===========+
| | | |

(continues on next page)

328 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

| OP | FIELD_NO | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_OBJECT |
| | | |
+-----------+==========+===========+

MP_ARRAY

Works on string fields:
* Splice OP = ':'
take the string from space[key][field_no] and
substitute <offset> bytes from <position> with <argument>

0 2
+-----------+==========+==========+========+==========+
| | | | | |
| ':' | FIELD_NO | POSITION | OFFSET | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_INT | MP_INT | MP_STR |
| | | | | |
+-----------+==========+==========+========+==========+

MP_ARRAY

It is an error to specify an argument of a type that differs from the expected type.

• DELETE: CODE - 0x05 Delete a tuple

DELETE BODY:

+==================+==================+==================+
| | | |
| 0x10: SPACE_ID | 0x11: INDEX_ID | 0x20: KEY |
| MP_INT: MP_INT | MP_INT: MP_INT | MP_INT: MP_ARRAY |
| | | |
+==================+==================+==================+

MP_MAP

• CALL_16: CODE - 0x06 Call a stored function, returning an array of tuples. This is deprecated;
CALL (0x0a) is recommended instead.

CALL_16 BODY:

+=======================+==================+
| | |
| 0x22: FUNCTION_NAME | 0x21: TUPLE |
| MP_INT: MP_STRING | MP_INT: MP_ARRAY |
| | |
+=======================+==================+

MP_MAP

• EVAL: CODE - 0x08 Evaulate Lua expression

EVAL BODY:

+=======================+==================+
| | |
| 0x27: EXPRESSION | 0x21: TUPLE |
| MP_INT: MP_STRING | MP_INT: MP_ARRAY |
| | |

(continues on next page)

8.2. Internals 329

Tarantool, Release 1.7.4

(continued from previous page)

+=======================+==================+
MP_MAP

• UPSERT: CODE - 0x09 Update tuple if it would be found elsewhere try to insert tuple. Always use
primary index for key.

UPSERT BODY:

+==================+==================+==========================+
| | | +~~~~~~~~~~+ | | |
| | | | | |
| 0x10: SPACE_ID | 0x21: TUPLE | (OPS) | OP | |
| MP_INT: MP_INT | MP_INT: MP_ARRAY | 0x28: | | |
| | | MP_INT: +~~~~~~~~~~+ |
| | | MP_ARRAY |
+==================+==================+==========================+

MP_MAP

Operations structure same as for UPDATE operation.
0 2

+-----------+==========+==========+
| | | |
| OP | FIELD_NO | ARGUMENT |
| MP_FIXSTR | MP_INT | MP_INT |
| | | |
+-----------+==========+==========+

MP_ARRAY

Supported operations:

'+' - add a value to a numeric field. If the filed is not numeric, it's
changed to 0 first. If the field does not exist, the operation is
skipped. There is no error in case of overflow either, the value
simply wraps around in C style. The range of the integer is MsgPack:
from -2^63 to 2^64-1

'-' - same as the previous, but subtract a value
'=' - assign a field to a value. The field must exist, if it does not exist,

the operation is skipped.
'!' - insert a field. It's only possible to insert a field if this create no

nil "gaps" between fields. E.g. it's possible to add a field between
existing fields or as the last field of the tuple.

'#' - delete a field. If the field does not exist, the operation is skipped.
It's not possible to change with update operations a part of the primary
key (this is validated before performing upsert).

• CALL: CODE - 0x0a Similar to CALL_16, but – like EVAL, CALL returns a list of values, unconverted

CALL BODY:

+=======================+==================+
| | |
| 0x22: FUNCTION_NAME | 0x21: TUPLE |
| MP_INT: MP_STRING | MP_INT: MP_ARRAY |
| | |
+=======================+==================+

MP_MAP

330 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Response packet structure

We will show whole packets here:

OK: LEN + HEADER + BODY

0 5 OPTIONAL
+------++================+================++===================+
| || | || |
| BODY || 0x00: 0x00 | 0x01: SYNC || 0x30: DATA |
|HEADER|| MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_OBJECT |
| SIZE || | || |
+------++================+================++===================+
MP_INT MP_MAP MP_MAP

Set of tuples in the response <data> expects a msgpack array of tuples as value EVAL command returns
arbitrary MP_ARRAY with arbitrary MsgPack values.

ERROR: LEN + HEADER + BODY

0 5
+------++================+================++===================+
| || | || |
| BODY || 0x00: 0x8XXX | 0x01: SYNC || 0x31: ERROR |
|HEADER|| MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_STRING |
| SIZE || | || |
+------++================+================++===================+
MP_INT MP_MAP MP_MAP

Where 0xXXX is ERRCODE.

An error message is present in the response only if there is an error; <error> expects as value a msgpack
string.

Convenience macros which define hexadecimal constants for return codes can be found in src/box/errcode.h

Replication packet structure

-- replication keys
<server_id> ::= 0x02
<lsn> ::= 0x03
<timestamp> ::= 0x04
<server_uuid> ::= 0x24
<cluster_uuid> ::= 0x25
<vclock> ::= 0x26

-- replication codes
<join> ::= 0x41
<subscribe> ::= 0x42

JOIN:

In the beginning you must send initial JOIN
HEADER BODY

+================+================++===================+

(continues on next page)

8.2. Internals 331

https://github.com/tarantool/tarantool/blob/1.7/src/box/errcode.h

Tarantool, Release 1.7.4

(continued from previous page)

| | || SERVER_UUID |
| 0x00: 0x41 | 0x01: SYNC || 0x24: UUID |
| MP_INT: MP_INT | MP_INT: MP_INT || MP_INT: MP_STRING |
| | || |
+================+================++===================+

MP_MAP MP_MAP

Then instance, which we connect to, will send last SNAP file by, simply,
creating a number of INSERTs (with additional LSN and ServerID)
(don't reply). Then it'll send a vclock's MP_MAP and close a socket.

+================+================++============================+
| | || +~~~~~~~~~~~~~~~~~+ | | |
| | || | | |
| 0x00: 0x00 | 0x01: SYNC || 0x26:| SRV_ID: SRV_LSN | |
| MP_INT: MP_INT | MP_INT: MP_INT || MP_INT:| MP_INT: MP_INT | |
| | || +~~~~~~~~~~~~~~~~~+ |
| | || MP_MAP |
+================+================++============================+

MP_MAP MP_MAP

SUBSCRIBE:

Then you must send SUBSCRIBE:

HEADER
+===================+===================+
| | |
| 0x00: 0x41 | 0x01: SYNC |
| MP_INT: MP_INT | MP_INT: MP_INT |
| | |
+===================+===================+
| SERVER_UUID | CLUSTER_UUID |
| 0x24: UUID | 0x25: UUID |
| MP_INT: MP_STRING | MP_INT: MP_STRING |
| | |
+===================+===================+

MP_MAP

BODY
+================+
| |
| 0x26: VCLOCK |
| MP_INT: MP_INT |
| |
+================+

MP_MAP

Then you must process every query that'll came through other masters.
Every request between masters will have Additional LSN and SERVER_ID.

XLOG / SNAP

XLOG and SNAP files have nearly the same format. The header looks like:

332 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

<type>\n SNAP\n or XLOG\n
<version>\n currently 0.13\n
Server: <server_uuid>\n where UUID is a 36-byte string
VClock: <vclock_map>\n e.g. {1: 0}\n
\n

After the file header come the data tuples. Tuples begin with a row marker 0xd5ba0bab and the last tuple
may be followed by an EOF marker 0xd510aded. Thus, between the file header and the EOF marker, there
may be data tuples that have this form:

0 3 4 17
+-------------+========+============+===========+=========+
| | | | | |
| 0xd5ba0bab | LENGTH | CRC32 PREV | CRC32 CUR | PADDING |
| | | | | |
+-------------+========+============+===========+=========+
MP_FIXEXT2 MP_INT MP_INT MP_INT ---

+============+ +===================================+
| | | |
| HEADER | | BODY |
| | | |
+============+ +===================================+

MP_MAP MP_MAP

See the example in the following section.

8.2.2 Data persistence and the WAL file format

To maintain data persistence, Tarantool writes each data change request (insert, update, delete, replace,
upsert) into a write-ahead log (WAL) file in the wal_dir directory. A new WAL file is created for every
rows_per_wal records. Each data change request gets assigned a continuously growing 64-bit log sequence
number. The name of the WAL file is based on the log sequence number of the first record in the file, plus
an extension .xlog.

Apart from a log sequence number and the data change request (formatted as in Tarantool’s binary protocol),
each WAL record contains a header, some metadata, and then the data formatted according to msgpack
rules. For example, this is what the WAL file looks like after the first INSERT request (“s:insert({1})”) for
the sandbox database created in our “Getting started” exercises. On the left are the hexadecimal bytes that
you would see with:

$ hexdump 00000000000000000000.xlog

and on the right are comments.

Hex dump of WAL file Comment
-------------------- -------
58 4c 4f 47 0a "XLOG\n"
30 2e 31 33 0a "0.13\n" = version
53 65 72 76 65 72 3a 20 "Server: "
38 62 66 32 32 33 65 30 2d [Server UUID]\n
36 39 31 34 2d 34 62 35 35
2d 39 34 64 32 2d 64 32 62
36 64 30 39 62 30 31 39 36
0a

(continues on next page)

8.2. Internals 333

https://en.wikipedia.org/wiki/MessagePack

Tarantool, Release 1.7.4

(continued from previous page)

56 43 6c 6f 63 6b 3a 20 "Vclock: "
7b 7d "{}" = vclock value, initially blank
... (not shown = tuples for system spaces)
d5 ba 0b ab Magic row marker always = 0xab0bbad5
19 Length, not including length of header, = 25 bytes
00 Record header: previous crc32
ce 8c 3e d6 70 Record header: current crc32
a7 cc 73 7f 00 00 66 39 Record header: padding
84 msgpack code meaning "Map of 4 elements" follows
00 02 element#1: tag=request type, value=0x02=IPROTO_INSERT
02 01 element#2: tag=server id, value=0x01
03 04 element#3: tag=lsn, value=0x04
04 cb 41 d4 e2 2f 62 fd d5 d4 element#4: tag=timestamp, value=an 8-byte "Float64"
82 msgpack code meaning "map of 2 elements" follows
10 cd 02 00 element#1: tag=space id, value=512, big byte first
21 91 01 element#2: tag=tuple, value=1-element fixed array={1}

Tarantool processes requests atomically: a change is either accepted and recorded in the WAL, or discarded
completely. Let’s clarify how this happens, using the REPLACE request as an example:

1. The server instance attempts to locate the original tuple by primary key. If found, a reference to the
tuple is retained for later use.

2. The new tuple is validated. If for example it does not contain an indexed field, or it has an indexed
field whose type does not match the type according to the index definition, the change is aborted.

3. The new tuple replaces the old tuple in all existing indexes.

4. A message is sent to the WAL writer running in a separate thread, requesting that the change be
recorded in the WAL. The instance switches to work on the next request until the write is acknowledged.

5. On success, a confirmation is sent to the client. On failure, a rollback procedure is begun. During the
rollback procedure, the transaction processor rolls back all changes to the database which occurred
after the first failed change, from latest to oldest, up to the first failed change. All rolled back requests
are aborted with ER_WAL_IO error. No new change is applied while rollback is in progress. When
the rollback procedure is finished, the server restarts the processing pipeline.

One advantage of the described algorithm is that complete request pipelining is achieved, even for requests
on the same value of the primary key. As a result, database performance doesn’t degrade even if all requests
refer to the same key in the same space.

The transaction processor thread communicates with the WAL writer thread using asynchronous (yet re-
liable) messaging; the transaction processor thread, not being blocked on WAL tasks, continues to handle
requests quickly even at high volumes of disk I/O. A response to a request is sent as soon as it is ready, even
if there were earlier incomplete requests on the same connection. In particular, SELECT performance, even
for SELECTs running on a connection packed with UPDATEs and DELETEs, remains unaffected by disk
load.

The WAL writer employs a number of durability modes, as defined in configuration variable wal_mode.
It is possible to turn the write-ahead log completely off, by setting wal_mode to none. Even without the
write-ahead log it’s still possible to take a persistent copy of the entire data set with the box.snapshot()
request.

An .xlog file always contains changes based on the primary key. Even if the client requested an update or
delete using a secondary key, the record in the .xlog file will contain the primary key.

334 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

8.2.3 The snapshot file format

The format of a snapshot .snap file is nearly the same as the format of a WAL .xlog file. However, the
snapshot header differs: it contains the instance’s global unique identifier and the snapshot file’s position in
history, relative to earlier snapshot files. Also, the content differs: an .xlog file may contain records for any
data-change requests (inserts, updates, upserts, and deletes), a .snap file may only contain records of inserts
to memtx spaces.

Primarily, the .snap file’s records are ordered by space id. Therefore the records of system spaces – such
as _schema, _space, _index, _func, _priv and _cluster – will be at the start of the .snap file, before the
records of any spaces that were created by users.

Secondarily, the .snap file’s records are ordered by primary key within space id.

8.2.4 The recovery process

The recovery process begins when box.cfg{} happens for the first time after the Tarantool server instance
starts.

The recovery process must recover the databases as of the moment when the instance was last shut down.
For this it may use the latest snapshot file and any WAL files that were written after the snapshot. One
complicating factor is that Tarantool has two engines – the memtx data must be reconstructed entirely from
the snapshot and the WAL files, while the vinyl data will be on disk but might require updating around the
time of a checkpoint. (When a snapshot happens, Tarantool tells the vinyl engine to make a checkpoint, and
the snapshot operation is rolled back if anything goes wrong, so vinyl’s checkpoint is at least as fresh as the
snapshot file.)

Step 1 Read the configuration parameters in the box.cfg{} request. Parameters which affect recovery may
include work_dir, wal_dir, memtx_dir, vinyl_dir and force_recovery.

Step 2 Find the latest snapshot file. Use its data to reconstruct the in-memory databases. Instruct the vinyl
engine to recover to the latest checkpoint.

There are actually two variations of the reconstruction procedure for memtx databases, depending on
whether the recovery process is “default”.

If the recovery process is default (force_recovery is false), memtx can read data in the snapshot with
all indexes disabled. First, all tuples are read into memory. Then, primary keys are built in bulk,
taking advantage of the fact that the data is already sorted by primary key within each space.

If the recovery process is non-default (force_recovery is true), Tarantool performs additional checking.
Indexes are enabled at the start, and tuples are added one by one. This means that any unique-key
constraint violations will be caught, and any duplicates will be skipped. Normally there will be no
constraint violations or duplicates, so these checks are only made if an error has occurred.

Step 3 Find the WAL file that was made at the time of, or after, the snapshot file. Read its log entries
until the log-entry LSN is greater than the LSN of the snapshot, or greater than the LSN of the vinyl
checkpoint. This is the recovery process’s “start position”; it matches the current state of the engines.

Step 4 Redo the log entries, from the start position to the end of the WAL. The engine skips a redo instruction
if it is older than the engine’s checkpoint.

Step 5 For the memtx engine, re-create all secondary indexes.

8.2.5 Server startup with replication

In addition to the recovery process described above, the server must take additional steps and precautions
if replication is enabled.

8.2. Internals 335

Tarantool, Release 1.7.4

Once again the startup procedure is initiated by the box.cfg{} request. One of the box.cfg parameters may
be replication that specifies replication source(-s). We will refer to this replica, which is starting up due to
box.cfg, as the “local” replica to distinguish it from the other replicas in a replica set, which we will refer to
as “distant” replicas.

If there is no snapshot .snap file and the ‘‘replication‘‘ parameter is empty: then the local replica assumes
it is an unreplicated “standalone” instance, or is the first replica of a new replica set. It will generate new
UUIDs for itself and for the replica set. The replica UUID is stored in the _cluster space; the replica set
UUID is stored in the _schema space. Since a snapshot contains all the data in all the spaces, that means
the local replica’s snapshot will contain the replica UUID and the replica set UUID. Therefore, when the
local replica restarts on later occasions, it will be able to recover these UUIDs when it reads the .snap file.

If there is no snapshot .snap file and the ‘‘replication‘‘ parameter is not empty and the ‘‘_cluster‘‘ space
contains no other replica UUIDs: then the local replica assumes it is not a standalone instance, but is not
yet part of a replica set. It must now join the replica set. It will send its replica UUID to the first distant
replica which is listed in replication and which will act as a master. This is called the “join request”. When
a distant replica receives a join request, it will send back:

(1) the distant replica’s replica set UUID,

(2) the contents of the distant replica’s .snap file. When the local replica receives this information, it puts
the replica set UUID in its _schema space, puts the distant replica’s UUID and connection information
in its _cluster space, and makes a snapshot containing all the data sent by the distant replica. Then,
if the local replica has data in its WAL .xlog files, it sends that data to the distant replica. The distant
replica will receive this and update its own copy of the data, and add the local replica’s UUID to its
_cluster space.

If there is no snapshot .snap file and the ‘‘replication‘‘ parameter is not empty and the ‘‘_cluster‘‘ space
contains other replica UUIDs: then the local replica assumes it is not a standalone instance, and is already
part of a replica set. It will send its replica UUID and replica set UUID to all the distant replicas which
are listed in replication. This is called the “on-connect handshake”. When a distant replica receives an
on-connect handshake:

(1) the distant replica compares its own copy of the replica set UUID to the one in the on-connect hand-
shake. If there is no match, then the handshake fails and the local replica will display an error.

(2) the distant replica looks for a record of the connecting instance in its _cluster space. If there is none,
then the handshake fails. Otherwise the handshake is successful. The distant replica will read any new
information from its own .snap and .xlog files, and send the new requests to the local replica.

In the end . . . the local replica knows what replica set it belongs to, the distant replica knows that the local
replica is a member of the replica set, and both replicas have the same database contents.

If there is a snapshot file and replication source is not empty: first the local replica goes through the recovery
process described in the previous section, using its own .snap and .xlog files. Then it sends a “subscribe”
request to all the other replicas of the replica set. The subscribe request contains the server vector clock.
The vector clock has a collection of pairs ‘server id, lsn’ for every replica in the _cluster system space. Each
distant replica, upon receiving a subscribe request, will read its .xlog files’ requests and send them to the
local replica if (lsn of .xlog file request) is greater than (lsn of the vector clock in the subscribe request).
After all the other replicas of the replica set have responded to the local replica’s subscribe request, the
replica startup is complete.

The following temporary limitations apply for version 1.7:

• The URIs in the replication parameter should all be in the same order on all replicas. This is not
mandatory but is an aid to consistency.

• The replicas of a replica set should be started up at slightly different times. This is not mandatory
but prevents a situation where each replica is waiting for the other replica to be ready.

336 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

• The maximum number of entries in the _cluster space is 32. Tuples for out-of-date replicas are not
automatically re-used, so if this 32-replica limit is reached, users may have to reorganize the _cluster
space manually.

8.3 Build and contribute

8.3.1 Building from source

For downloading Tarantool source and building it, the platforms can differ and the preferences can differ.
But the steps are always the same. Here in the manual we’ll explain what the steps are, and after that you
can look at some example scripts on the Internet.

1. Get tools and libraries that will be necessary for building and testing.

The absolutely necessary ones are:

• A program for downloading source repositories. For all platforms, this is git. It allows to download
the latest complete set of source files from the Tarantool repository at GitHub.

• A C/C++ compiler. Ordinarily, this is gcc and g++ version 4.6 or later. On Mac OS X, this is
Clang version 3.2 or later.

• A program for managing the build process. For all platforms, this is CMake. The CMake version
should be 2.8 or later.

• Command-line interpreter for Python-based code (namely, for Tarantool test suite). For all plat-
forms, this is python. The Python version should be greater than 2.6 – preferably 2.7 – and less
than 3.0.

Here are names of tools and libraries which may have to be installed in advance, using sudo apt-get
(for Ubuntu), sudo yum install (for CentOS), or the equivalent on other platforms. Different platforms
may use slightly different names. Ignore the ones marked optional, only in Mac OS scripts unless the
platform is Mac OS.

• gcc and g++, or clang (see above)

• git (see above)

• cmake (see above)

• python (see above; for test suite)

• libreadline-dev or libreadline6-dev or readline-devel (for interactive mode)

• libssl-dev (for digest module)

• libcurl4-gnutls-dev or libcurl4-openssl-dev or libcurl4-nss-dev (for http module)

• autoconf (optional, only in Mac OS scripts)

• zlib1g or zlib (optional, only in Mac OS scripts)

2. Set up Python modules for running the test suite.

This step is optional. Python modules are not necessary for building Tarantool itself, unless you intend
to use the “Run the test suite” option in step 7.

You need the following Python modules:

• pip, any version

• dev, any version

8.3. Build and contribute 337

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/dev

Tarantool, Release 1.7.4

• pyYAML version 3.10

• argparse version 1.1

• msgpack-python version 0.4.6

• gevent version 1.1b5

• six version 1.8.0

On Ubuntu, you can get the modules from the repository:

sudo apt-get install python-pip python-dev python-yaml <...>

On CentOS 6, you can likewise get the modules from the repository:

sudo yum install python26 python26-PyYAML <...>

If some modules are not available on a repository, it is best to set up the modules by getting a tarball
and doing the setup with python setup.py, thus:

On some machines, this initial command may be necessary:
wget https://bootstrap.pypa.io/ez_setup.py -O - | sudo python

Python module for parsing YAML (pyYAML), for test suite:
(If wget fails, check at http://pyyaml.org/wiki/PyYAML
what the current version is.)
cd ~
wget http://pyyaml.org/download/pyyaml/PyYAML-3.10.tar.gz
tar -xzf PyYAML-3.10.tar.gz
cd PyYAML-3.10
sudo python setup.py install

Finally, use Python pip to bring in Python packages that may not be up-to-date in the distro reposito-
ries. (On CentOS 7, it will be necessary to install pip first, with sudo yum install epel-release followed
by sudo yum install python-pip.)

pip install tarantool\>0.4 --user

3. Use git to download the latest Tarantool source code from the GitHub repository tarantool/tarantool,
branch 1.7. For example, to a local directory named ~/tarantool:

git clone https://github.com/tarantool/tarantool.git ~/tarantool

4. Use git again so that third-party contributions will be seen as well.

The build depends on the following external libraries:

• Readline development files (libreadline-dev/readline-devel package).

• OpenSSL development files (libssl-dev/openssl-devel package).

• libyaml (libyaml-dev/libyaml-devel package).

• liblz4 (liblz4-dev/lz4-devel package).

• GNU bfd which is the part of GNU binutils (binutils-dev/binutils-devel package).

This step is only necessary once, the first time you do a download.

338 Chapter 8. Contributor’s Guide

https://pypi.python.org/pypi/PyYAML
https://pypi.python.org/pypi/argparse
https://pypi.python.org/pypi/msgpack-python
https://pypi.python.org/pypi/gevent
https://pypi.python.org/pypi/six

Tarantool, Release 1.7.4

cd ~/tarantool
git submodule init
git submodule update --recursive
cd ../

On rare occasions, the submodules will need to be updated again with the command:

git submodule update --init --recursive

Note: There is an alternative – to say git clone --recursive earlier in step 3, – but we prefer the method
above because it works with older versions of git.

5. Use CMake to initiate the build.

cd ~/tarantool
make clean # unnecessary, added for good luck
rm CMakeCache.txt # unnecessary, added for good luck
cmake . # start initiating with build type=Debug

On some platforms, it may be necessary to specify the C and C++ versions, for example:

CC=gcc-4.8 CXX=g++-4.8 cmake .

The CMake option for specifying build type is -DCMAKE_BUILD_TYPE=type, where type can be:

• Debug – used by project maintainers

• Release – used only if the highest performance is required

• RelWithDebInfo – used for production, also provides debugging capabilities

The CMake option for hinting that the result will be distributed is -DENABLE_DIST=ON. If this
option is on, then later make install will install tarantoolctl files in addition to tarantool files.

6. Use make to complete the build.

make

This creates the ‘tarantool’ executable in the directory src/

Next, it’s highly recommended to say make install to install Tarantool to the /usr/local directory and
keep your system clean. However, it is possible to run the Tarantool executable without installation.

7. Run the test suite.

This step is optional. Tarantool’s developers always run the test suite before they publish new versions.
You should run the test suite too, if you make any changes in the code. Assuming you downloaded to
~/tarantool, the principal steps are:

make a subdirectory named `bin`
mkdir ~/tarantool/bin
link python to bin (this may require superuser privilege)
ln /usr/bin/python ~/tarantool/bin/python
get on the test subdirectory
cd ~/tarantool/test
run tests using python
PATH=~/tarantool/bin:$PATH ./test-run.py

The output should contain reassuring reports, for example:

8.3. Build and contribute 339

Tarantool, Release 1.7.4

==
TEST RESULT
--
box/bad_trigger.test.py [pass]
box/call.test.py [pass]
box/iproto.test.py [pass]
box/xlog.test.py [pass]
box/admin.test.lua [pass]
box/auth_access.test.lua [pass]
... etc.

To prevent later confusion, clean up what’s in the bin subdirectory:

rm ~/tarantool/bin/python
rmdir ~/tarantool/bin

8. Make an rpm package.

This step is optional. It’s only for people who want to redistribute Tarantool. Package maintainers who
want to build with rpmbuild should consult the rpm-build instructions for the appropriate platform.

9. Verify your Tarantool installation.

tarantool $./src/tarantool

This will start Tarantool in the interactive mode.

For your added convenience, we provide OS-specific README files with example scripts at GitHub:

• README.FreeBSD for FreeBSD 10.1

• README.MacOSX for Mac OS X El Capitan

• README.md for generic GNU/Linux

These example scripts assume that the intent is to download from the 1.7 branch, build the server and run
tests after build.

8.3.2 Building documentation

Tarantool documentation is built using a simplified markup system named Sphinx (see http://sphinx-doc.
org). You can build a local version of this documentation and you can contribute to Tarantool’s version.

You need to install these packages:

• git (a program for downloading source repositories)

• CMake version 2.8 or later (a program for managing the build process)

• Python version greater than 2.6 – preferably 2.7 – and less than 3.0 (Sphinx is a Python-based tool)

• LaTeX (a system for document preparation, the installable package name usually begins with the word
texlive or tetex, on Ubuntu the name is texlive-latex-base)

You need to install these Python modules:

• pip, any version

• Sphinx version 1.4.4 or later

• sphinx-intl version 0.9.9

340 Chapter 8. Contributor’s Guide

https://github.com/tarantool/tarantool/blob/1.7/README.FreeBSD
https://github.com/tarantool/tarantool/blob/1.7/README.MacOSX
https://github.com/tarantool/tarantool/blob/1.7/README.md
http://sphinx-doc.org
http://sphinx-doc.org
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx-intl

Tarantool, Release 1.7.4

• lupa – any version

See more details about installation in the build-from-source section of this documentation.

1. Use git to download the latest source code of this documentation from the GitHub repository tarantool/
doc, branch 1.7. For example, to download to a local directory named ~/tarantool-doc:

git clone https://github.com/tarantool/doc.git ~/tarantool-doc

2. Use CMake to initiate the build.

cd ~/tarantool-doc
make clean # unnecessary, added for good luck
rm CMakeCache.txt # unnecessary, added for good luck
cmake . # initiate

3. Build a local version of the documentation.

Run the make command with an appropriate option to specify which documentation version to build.

cd ~/tarantool-doc
make sphinx-html # multi-page English version
make sphinx-singlehtml # one-page English version
make sphinx-html-ru # multi-page Russian version
make sphinx-singlehtml-ru # one-page Russian version
make all # all versions plus the entire web-site

Documentation will be created in subdirectories of /output:

• /output/en (files of the English version)

• /output/ru (files of the Russian version)

The entry point for each version is the index.html file in the appropriate directory.

4. Set up a web-server.

Run the following command to set up a web-server. The example below is for Ubuntu, but the procedure
is similar for other supported operating systems. Make sure to run it from the documentation output
folder, output/en or output/ru, as in the example below:

cd ~/tarantool-doc/output/en
python -m SimpleHTTPServer 8000

5. Open your browser and enter 127.0.0.1:8000/doc/1.7 into the address box. If your local documentation
build is valid, the manual will appear in the browser.

6. To contribute to documentation, use the .rst format for drafting and submit your updates as a pull
request via GitHub.

To comply with the writing and formatting style, use the guidelines provided in the documentation,
common sense and existing documents.

Note:

• If you suggest creating a new documentation section (a whole new page), it has to be saved to the
relevant section at GitHub.

• If you want to contribute to localizing this documentation (for example into Russian), add your
translation strings to .po files stored in the corresponding locale directory (for example /locale/ru/
LC_MESSAGES/ for Russian). See more about localizing with Sphinx at http://www.sphinx-doc.
org/en/stable/intl.html

8.3. Build and contribute 341

https://pypi.python.org/pypi/lupa
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
http://www.sphinx-doc.org/en/stable/intl.html
http://www.sphinx-doc.org/en/stable/intl.html

Tarantool, Release 1.7.4

8.3.3 Release management

How to make a minor release

$ git tag -a 1.4.4 -m "Next minor in 1.4 series"
$ vim CMakeLists.txt # edit CPACK_PACKAGE_VERSION_PATCH
$ git push --tags

Update the Web site in doc/www

Update all issues, upload the ChangeLog based on git log output. The ChangeLog must only include items
which are mentioned as issues on github. If anything significant is there, which is not mentioned, something
went wrong in release planning and the release should be held up until this is cleared.

Click ‘Release milestone’. Create a milestone for the next minor release. Alert the driver to target bugs and
blueprints to the new milestone.

8.4 Guidelines

8.4.1 Developer guidelines

How to work on a bug

Any defect, even minor, if it changes the user-visible server behavior, needs a bug report. Report a bug at
http://github.com/tarantool/tarantool/issues.

When reporting a bug, try to come up with a test case right away. Set the current maintenance milestone
for the bug fix, and specify the series. Assign the bug to yourself. Put the status to ‘In progress’ Once the
patch is ready, put the bug the bug to ‘In review’ and solicit a review for the fix.

Once there is a positive code review, push the patch and set the status to ‘Closed’

Patches for bugs should contain a reference to the respective Launchpad bug page or at least bug id. Each
patch should have a test, unless coming up with one is difficult in the current framework, in which case QA
should be alerted.

There are two things you need to do when your patch makes it into the master:

• put the bug to ‘fix committed’,

• delete the remote branch.

How to write a commit message

Any commit needs a helpful message. Mind the following guidelines when committing to any of Tarantool
repositories at GitHub.

1. Separate subject from body with a blank line.

2. Try to limit the subject line to 50 characters or so.

3. Start the subject line with a capital letter unless it prefixed with a subsystem name and semicolon:

• memtx:

342 Chapter 8. Contributor’s Guide

http://github.com/tarantool/tarantool/issues

Tarantool, Release 1.7.4

• vinyl:

• xlog:

• replication:

• recovery:

• iproto:

• net.box:

• lua:

4. Do not end the subject line with a period.

5. Do not put “gh-xx”, “closes #xxx” to the subject line.

6. Use the imperative mood in the subject line. A properly formed Git commit subject line should always
be able to complete the following sentence: “If applied, this commit will /your subject line here/”.

7. Wrap the body to 72 characters or so.

8. Use the body to explain what and why vs. how.

9. Link GitHub issues on the lasts lines (see how).

10. Use your real name and real email address. For Tarantool team members, @tarantool.org email is
preferred, but not mandatory.

A template:

Summarize changes in 50 characters or less

More detailed explanatory text, if necessary.
Wrap it to 72 characters or so.
In some contexts, the first line is treated as the subject of the
commit, and the rest of the text as the body.
The blank line separating the summary from the body is critical
(unless you omit the body entirely); various tools like `log`,
`shortlog` and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

- Bullet points are okay, too.

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions
vary here.

Fixes: #123
Closes: #456
Needed for: #859
See also: #343, #789

Some real-world examples:

• tarantool/tarantool@2993a75

8.4. Guidelines 343

https://help.github.com/articles/closing-issues-via-commit-messages
https://github.com/tarantool/tarantool/commit/2993a75858352f101deb4a15cefd497ae6a78cf7

Tarantool, Release 1.7.4

• tarantool/tarantool@ccacba2

• tarantool/tarantool@386df3d

• tarantool/tarantool@076a842

Based on [1] and [2].

8.4.2 Documentation guidelines

These guidelines are updated on the on-demand basis, covering only those issues that cause pains to the
existing writers. At this point, we do not aim to come up with an exhaustive Documentation Style Guide
for the Tarantool project.

Markup issues

Wrapping text

The limit is 80 characters per line for plain text, and no limit for any other constructions when wrapping
affects ReST readability and/or HTML output. Also, it makes no sense to wrap text into lines shorter than
80 characters unless you have a good reason to do so.

The 80-character limit comes from the ISO/ANSI 80x24 screen resolution, and it’s unlikely that read-
ers/writers will use 80-character consoles. Yet it’s still a standard for many coding guidelines (including
Tarantool). As for writers, the benefit is that an 80-character page guide allows keeping the text window
rather narrow most of the time, leaving more space for other applications in a wide-screen environment.

Formatting code snippets

For code snippets, we mainly use the code-block directive with an appropriate highlighting language. The
most commonly used highlighting languages are:

• .. code-block:: tarantoolsession

• .. code-block:: console

• .. code-block:: lua

For example (a code snippet in Lua):

for page in paged_iter("X", 10) do
print("New Page. Number Of Tuples = " .. #page)
for i=1,#page,1 do print(page[i]) end

end

In rare cases, when we need custom highlight for specific parts of a code snippet and the code-block directive
is not enough, we use the per-line codenormal directive together and explicit output formatting (defined in
doc/sphinx/_static/sphinx_design.css).

Examples:

• Function syntax (the placeholder space-name is displayed in italics):

box.space.space-name:create_index(‘index-name’)

• A tdb session (user input is in bold, command prompt is in blue, computer output is in green):

344 Chapter 8. Contributor’s Guide

https://github.com/tarantool/tarantool/commit/ccacba28f813fb99fd9eaf07fb41bf604dd341bc
https://github.com/tarantool/tarantool/commit/386df3d3eb9c5239fc83fd4dd3292d1b49446b89
https://github.com/tarantool/tarantool/commit/076a842011e09c84c25fb5e68f1b23c9917a3750
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://chris.beams.io/posts/git-commit/

Tarantool, Release 1.7.4

$ tarantool example.lua
(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua
(TDB) [example.lua]
(TDB) 3: i = 1

Warning: Every entry of explicit output formatting (codenormal, codebold, etc) tends to cause troubles
when this documentation is translated to other languages. Please avoid using explicit output formatting
unless it is REALLY needed.

Using separated links

Avoid separating the link and the target definition (ref), like this:

This is a paragraph that contains `a link`_.

.. _a link: http://example.com/

Use non-separated links instead:

This is a paragraph that contains `a link <http://example.com/>`_.

Warning: Every separated link tends to cause troubles when this documentation is translated to other
languages. Please avoid using separated links unless it is REALLY needed (e.g. in tables).

Creating labels for local links

We avoid using links that sphinx generates automatically for most objects. Instead, we add our own labels
for linking to any place in this documentation.

Our naming convention is as follows:

• Character set: a through z, 0 through 9, dash, underscore.

• Format: path dash filename dash tag

Example: _c_api-box_index-iterator_type where: c_api is the directory name, box_index is the file
name (without “.rst”), and iterator_type is the tag.

The file name is useful for knowing, when you see “ref”, where it is pointing to. And if the file name is
meaningful, you see that better.

The file name alone, without a path, is enough when the file name is unique within doc/sphinx. So, for
fiber.rst it should be just “fiber”, not “reference-fiber”. While for “index.rst” (we have a handful of “index.rst”
in different directories) please specify the path before the file name, e.g. “reference-index”.

Use a dash “-” to delimit the path and the file name. In the documentation source, we use only underscores
“_” in paths and file names, reserving dash “-” as the delimiter for local links.

The tag can be anything meaningful. The only guideline is for Tarantool syntax items (such as members),
where the preferred tag syntax is module_or_object_name dash member_name. For example, box_space-
drop.

8.4. Guidelines 345

Tarantool, Release 1.7.4

Making comments

Sometimes we may need to leave comments in a ReST file. To make sphinx ignore some text during
processing, use the following per-line notation with “.. //” as the comment marker:

.. // your comment here

The starting symbols “.. //” do not interfere with the other ReST markup, and they are easy to find both
visually and using grep. There are no symbols to escape in grep search, just go ahead with something like
this:

grep ".. //" doc/sphinx/dev_guide/*.rst

These comments don’t work properly in nested documentation, though (e.g. if you leave a comment in
module -> object -> method, sphinx ignores the comment and all nested content that follows in the method
description).

Language and style issues

US vs British spelling

We use English US spelling.

Instance vs server

We say “instance” rather than “server” to refer to an instance of Tarantool server. This keeps the manual
terminology consistent with names like /etc/tarantool/instances.enabled in the Tarantool environment.

Wrong usage: “Replication allows multiple Tarantool servers to work on copies of the same databases.”

Correct usage: “Replication allows multiple Tarantool instances to work on copies of the same databases.”

Examples and templates

Module and function

Here is an example of documenting a module (my_fiber) and a function (my_fiber.create).

my_fiber.create(function[, function-arguments])
Create and start a my_fiber object. The object is created and begins to run immediately.

Parameters

• function – the function to be associated with the my_fiber object

• function-arguments – what will be passed to function

Return created my_fiber object

Rtype userdata

Example:

346 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

tarantool> my_fiber = require('my_fiber')

...
tarantool> function function_name()

> my_fiber.sleep(1000)
> end

...
tarantool> my_fiber_object = my_fiber.create(function_name)

...

Module, class and method

Here is an example of documenting a module (my_box.index), a class (my_index_object) and a function
(my_index_object.rename).

object my_index_object

my_index_object:rename(index-name)
Rename an index.

Parameters

• index_object – an object reference

• index_name – a new name for the index (type = string)

Return nil

Possible errors: index_object does not exist.

Example:

tarantool> box.space.space55.index.primary:rename('secondary')

...

Complexity Factors: Index size, Index type, Number of tuples accessed.

8.4.3 C Style Guide

The project’s coding style is based on a version of the Linux kernel coding style.

The latest version of the Linux style can be found at: http://www.kernel.org/doc/Documentation/
CodingStyle

Since it is open for changes, the version of style that we follow, one from 2007-July-13, will be also copied
later in this document.

There are a few additional guidelines, either unique to Tarantool or deviating from the Kernel guidelines.

A. Chapters 10 “Kconfig configuration files”, 11 “Data structures”, 13 “Printing kernel messages”, 14 “Al-
locating memory” and 17 “Don’t re-invent the kernel macros” do not apply, since they are specific to
Linux kernel programming environment.

B. The rest of Linux Kernel Coding Style is amended as follows:

8.4. Guidelines 347

http://www.kernel.org/doc/Documentation/CodingStyle
http://www.kernel.org/doc/Documentation/CodingStyle

Tarantool, Release 1.7.4

General guidelines

We use Git for revision control. The latest development is happening in the ‘master’ branch. Our git
repository is hosted on github, and can be checked out with git clone git://github.com/tarantool/tarantool.git
anonymous read-only access

If you have any questions about Tarantool internals, please post them on the developer discussion list, https:
//groups.google.com/forum/#!forum/tarantool. However, please be warned: Launchpad silently deletes
posts from non-subscribed members, thus please be sure to have subscribed to the list prior to posting.
Additionally, some engineers are always present on #tarantool channel on irc.freenode.net.

Commenting style

Use Doxygen comment format, Javadoc flavor, i.e. @tag rather than tag. The main tags in use are @param,
@retval, @return, @see, @note and @todo.

Every function, except perhaps a very short and obvious one, should have a comment. A sample function
comment may look like below:

/** Write all data to a descriptor.
*
* This function is equivalent to 'write', except it would ensure
* that all data is written to the file unless a non-ignorable
* error occurs.
*
* @retval 0 Success
*
* @reval 1 An error occurred (not EINTR)
* /
static int
write_all(int fd, void *data, size_t len);

Public structures and important structure members should be commented as well.

Header files

Use header guards. Put the header guard in the first line in the header, before the copyright or declarations.
Use all-uppercase name for the header guard. Derive the header guard name from the file name, and append
_INCLUDED to get a macro name. For example, core/log_io.h -> CORE_LOG_IO_H_INCLUDED. In
.c (implementation) file, include the respective declaration header before all other headers, to ensure that
the header is self- sufficient. Header “header.h” is self-sufficient if the following compiles without errors:

#include "header.h"

Allocating memory

Prefer the supplied slab (salloc) and pool (palloc) allocators to malloc()/free() for any performance-intensive
or large memory allocations. Repetitive use of malloc()/free() can lead to memory fragmentation and should
therefore be avoided.

Always free all allocated memory, even allocated at start-up. We aim at being valgrind leak-check clean,
and in most cases it’s just as easy to free() the allocated memory as it is to write a valgrind suppression.
Freeing all allocated memory is also dynamic-load friendly: assuming a plug-in can be dynamically loaded
and unloaded multiple times, reload should not lead to a memory leak.

348 Chapter 8. Contributor’s Guide

https://groups.google.com/forum/#!forum/tarantool
https://groups.google.com/forum/#!forum/tarantool

Tarantool, Release 1.7.4

Other

Select GNU C99 extensions are acceptable. It’s OK to mix declarations and statements, use true and false.

The not-so-current list of all GCC C extensions can be found at: http://gcc.gnu.org/onlinedocs/gcc-4.3.5/
gcc/C-Extensions.html

Linux kernel coding style

This is a short document describing the preferred coding style for the linux kernel. Coding style is very
personal, and I won’t _force_ my views on anybody, but this is what goes for anything that I have to be
able to maintain, and I’d prefer it for most other things too. Please at least consider the points made here.

First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a
great symbolic gesture.

Anyway, here goes:

Chapter 1: Indentation

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try to
make indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to be 3.

Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends.
Especially when you’ve been looking at your screen for 20 straight hours, you’ll find it a lot easier to see how
the indentation works if you have large indentations.

Now, some people will claim that having 8-character indentations makes the code move too far to the right,
and makes it hard to read on a 80-character terminal screen. The answer to that is that if you need more
than 3 levels of indentation, you’re screwed anyway, and should fix your program.

In short, 8-char indents make things easier to read, and have the added benefit of warning you when you’re
nesting your functions too deep. Heed that warning.

The preferred way to ease multiple indentation levels in a switch statement is to align the “switch” and its
subordinate “case” labels in the same column instead of “double-indenting” the “case” labels. e.g.:

switch (suffix) {
case 'G':
case 'g':

mem <<= 30;
break;

case 'M':
case 'm':

mem <<= 20;
break;

case 'K':
case 'k':

mem <<= 10;
/* fall through */

default:
break;

}

Don’t put multiple statements on a single line unless you have something to hide:

8.4. Guidelines 349

http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/C-Extensions.html

Tarantool, Release 1.7.4

if (condition) do_this;
do_something_everytime;

Don’t put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky
expressions.

Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and the
above example is deliberately broken.

Get a decent editor and don’t leave whitespace at the end of lines.

Chapter 2: Breaking long lines and strings

Coding style is all about readability and maintainability using commonly available tools.

The limit on the length of lines is 80 columns and this is a strongly preferred limit.

Statements longer than 80 columns will be broken into sensible chunks. Descendants are always substantially
shorter than the parent and are placed substantially to the right. The same applies to function headers with
a long argument list. Long strings are as well broken into shorter strings. The only exception to this is
where exceeding 80 columns significantly increases readability and does not hide information.

void fun(int a, int b, int c)
{

if (condition)
printk(KERN_WARNING "Warning this is a long printk with "

"3 parameters a: %u b: %u "
"c: %u \n", a, b, c);

else
next_statement;

}

Chapter 3: Placing Braces and Spaces

The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there
are few technical reasons to choose one placement strategy over the other, but the preferred way, as shown
to us by the prophets Kernighan and Ritchie, is to put the opening brace last on the line, and put the closing
brace first, thusly:

if (x is true) {
we do y

}

This applies to all non-function statement blocks (if, switch, for, while, do). e.g.:

switch (action) {
case KOBJ_ADD:

return "add";
case KOBJ_REMOVE:

return "remove";
case KOBJ_CHANGE:

return "change";
default:

return NULL;
}

350 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

However, there is one special case, namely functions: they have the opening brace at the beginning of the
next line, thus:

int function(int x)
{

body of function;
}

Heretic people all over the world have claimed that this inconsistency is . . . well . . . inconsistent, but all
right-thinking people know that (a) K&R are _right_ and (b) K&R are right. Besides, functions are special
anyway (you can’t nest them in C).

Note that the closing brace is empty on a line of its own, _except_ in the cases where it is followed by a
continuation of the same statement, ie a “while” in a do-statement or an “else” in an if-statement, like this:

do {
body of do-loop;

} while (condition);

and

if (x == y) {
..

} else if (x > y) {
...

} else {
....

}

Rationale: K&R.

Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without
any loss of readability. Thus, as the supply of new-lines on your screen is not a renewable resource (think
25-line terminal screens here), you have more empty lines to put comments on.

Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

This does not apply if one branch of a conditional statement is a single statement. Use braces in both
branches.

if (condition) {
do_this();
do_that();

} else {
otherwise();

}

Chapter 3.1: Spaces

Linux kernel style for use of spaces depends (mostly) on function-versus-keyword usage. Use a space after
(most) keywords. The notable exceptions are sizeof, typeof, alignof, and __attribute__, which look some-
what like functions (and are usually used with parentheses in Linux, although they are not required in the
language, as in: “sizeof info” after “struct fileinfo info;” is declared).

8.4. Guidelines 351

Tarantool, Release 1.7.4

So use a space after these keywords: if, switch, case, for, do, while but not with sizeof, typeof, alignof, or
__attribute__. E.g.,

s = sizeof(struct file);

Do not add spaces around (inside) parenthesized expressions. This example is bad:

s = sizeof(struct file);

When declaring pointer data or a function that returns a pointer type, the preferred use of ‘*’ is adjacent to
the data name or function name and not adjacent to the type name. Examples:

char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);

Use one space around (on each side of) most binary and ternary operators, such as any of these:

= + - < > * / % | & ^ <= >= == != ? :

but no space after unary operators:

& * + - ~ ! sizeof typeof alignof __attribute__ defined

no space before the postfix increment & decrement unary operators:

++ –

no space after the prefix increment & decrement unary operators:

++ –

and no space around the ‘.’ and “->” structure member operators.

Do not leave trailing whitespace at the ends of lines. Some editors with “smart” indentation will insert
whitespace at the beginning of new lines as appropriate, so you can start typing the next line of code right
away. However, some such editors do not remove the whitespace if you end up not putting a line of code
there, such as if you leave a blank line. As a result, you end up with lines containing trailing whitespace.

Git will warn you about patches that introduce trailing whitespace, and can optionally strip the trailing
whitespace for you; however, if applying a series of patches, this may make later patches in the series fail by
changing their context lines.

Chapter 4: Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C
programmers do not use cute names like ThisVariableIsATemporaryCounter. A C programmer would call
that variable “tmp”, which is much easier to write, and not the least more difficult to understand.

HOWEVER, while mixed-case names are frowned upon, descriptive names for global variables are a must.
To call a global function “foo” is a shooting offense.

GLOBAL variables (to be used only if you _really_ need them) need to have descriptive names, as do
global functions. If you have a function that counts the number of active users, you should call that
“count_active_users()” or similar, you should _not_ call it “cntusr()”.

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the compiler
knows the types anyway and can check those, and it only confuses the programmer. No wonder MicroSoft
makes buggy programs.

352 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

LOCAL variable names should be short, and to the point. If you have some random integer loop counter, it
should probably be called “i”. Calling it “loop_counter” is non-productive, if there is no chance of it being
mis-understood. Similarly, “tmp” can be just about any type of variable that is used to hold a temporary
value.

If you are afraid to mix up your local variable names, you have another problem, which is called the function-
growth-hormone-imbalance syndrome. See chapter 6 (Functions).

Chapter 5: Typedefs

Please don’t use things like “vps_t”.

It’s a _mistake_ to use typedef for structures and pointers. When you see a

vps_t a;

in the source, what does it mean?

In contrast, if it says

struct virtual_container *a;

you can actually tell what “a” is.

Lots of people think that typedefs “help readability”. Not so. They are useful only for:

(a) totally opaque objects (where the typedef is actively used to _hide_ what the object is).

Example: “pte_t” etc. opaque objects that you can only access using the proper accessor functions.

NOTE! Opaqueness and “accessor functions” are not good in themselves. The reason we have them for
things like pte_t etc. is that there really is absolutely _zero_ portably accessible information there.

(b) Clear integer types, where the abstraction _helps_ avoid confusion whether it is “int” or “long”.

u8/u16/u32 are perfectly fine typedefs, although they fit into category (d) better than here.

NOTE! Again - there needs to be a _reason_ for this. If something is “unsigned long”, then there’s no
reason to do

typedef unsigned long myflags_t;

but if there is a clear reason for why it under certain circumstances might be an “unsigned int” and
under other configurations might be “unsigned long”, then by all means go ahead and use a typedef.

(c) when you use sparse to literally create a _new_ type for type-checking.

(d) New types which are identical to standard C99 types, in certain exceptional circumstances.

Although it would only take a short amount of time for the eyes and brain to become accustomed to
the standard types like ‘uint32_t’, some people object to their use anyway.

Therefore, the Linux-specific ‘u8/u16/u32/u64’ types and their signed equivalents which are identical
to standard types are permitted – although they are not mandatory in new code of your own.

When editing existing code which already uses one or the other set of types, you should conform to
the existing choices in that code.

(e) Types safe for use in userspace.

8.4. Guidelines 353

Tarantool, Release 1.7.4

In certain structures which are visible to userspace, we cannot require C99 types and cannot use the
‘u32’ form above. Thus, we use __u32 and similar types in all structures which are shared with
userspace.

Maybe there are other cases too, but the rule should basically be to NEVER EVER use a typedef unless
you can clearly match one of those rules.

In general, a pointer, or a struct that has elements that can reasonably be directly accessed should never be
a typedef.

Chapter 6: Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of text
(the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and indentation level of that
function. So, if you have a conceptually simple function that is just one long (but simple) case-statement,
where you have to do lots of small things for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school
student might not even understand what the function is all about, you should adhere to the maximum limits
all the more closely. Use helper functions with descriptive names (you can ask the compiler to in-line them
if you think it’s performance-critical, and it will probably do a better job of it than you would have done).

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you’re
doing something wrong. Re-think the function, and split it into smaller pieces. A human brain can generally
easily keep track of about 7 different things, anything more and it gets confu/sed. You know you’re brilliant,
but maybe you’d like to understand what you did 2 weeks from now.

In source files, separate functions with one blank line. If the function is exported, the EXPORT* macro for
it should follow immediately after the closing function brace line. E.g.:

int system_is_up(void)
{

return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);

In function prototypes, include parameter names with their data types. Although this is not required by the
C language, it is preferred in Linux because it is a simple way to add valuable information for the reader.

Chapter 7: Centralized exiting of functions

Albeit deprecated by some people, the equivalent of the goto statement is used frequently by compilers in
form of the unconditional jump instruction.

The goto statement comes in handy when a function exits from multiple locations and some common work
such as cleanup has to be done.

The rationale is:

• unconditional statements are easier to understand and follow

• nesting is reduced

• errors by not updating individual exit points when making modifications are prevented

• saves the compiler work to optimize redundant code away ;)

354 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

int fun(int a)
{

int result = 0;
char *buffer = kmalloc(SIZE);

if (buffer == NULL)
return -ENOMEM;

if (condition1) {
while (loop1) {

...
}
result = 1;
goto out;

}
...

out:
kfree(buffer);
return result;

}

Chapter 8: Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code
works in a comment: it’s much better to write the code so that the _working_ is obvious, and it’s a waste
of time to explain badly written code. с Generally, you want your comments to tell WHAT your code does,
not HOW. Also, try to avoid putting comments inside a function body: if the function is so complex that
you need to separately comment parts of it, you should probably go back to chapter 6 for a while. You can
make small comments to note or warn about something particularly clever (or ugly), but try to avoid excess.
Instead, put the comments at the head of the function, telling people what it does, and possibly WHY it
does it.

When commenting the kernel API functions, please use the kernel-doc format. See the files
Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc for details.

Linux style for comments is the C89 "/* ... */" style. Don’t use C99-style "// ..." comments.

The preferred style for long (multi-line) comments is:

/*
* This is the preferred style for multi-line
* comments in the Linux kernel source code.
* Please use it consistently.
*
* Description: A column of asterisks on the left side,
* with beginning and ending almost-blank lines.
*/

It’s also important to comment data, whether they are basic types or derived types. To this end, use just
one data declaration per line (no commas for multiple data declarations). This leaves you room for a small
comment on each item, explaining its use.

8.4. Guidelines 355

Tarantool, Release 1.7.4

Chapter 9: You’ve made a mess of it

That’s OK, we all do. You’ve probably been told by your long-time Unix user helper that “GNU emacs”
automatically formats the C sources for you, and you’ve noticed that yes, it does do that, but the defaults
it uses are less than desirable (in fact, they are worse than random typing - an infinite number of monkeys
typing into GNU emacs would never make a good program).

So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick
the following in your .emacs file:

(defun c-lineup-arglist-tabs-only (ignored)
"Line up argument lists by tabs, not spaces"
(let* ((anchor (c-langelem-pos c-syntactic-element))

(column (c-langelem-2nd-pos c-syntactic-element))
(offset (- (1+ column) anchor))
(steps (floor offset c-basic-offset)))
(* (max steps 1)
c-basic-offset)))

(add-hook 'c-mode-common-hook
(lambda ()

;; Add kernel style
(c-add-style
"linux-tabs-only"
'("linux" (c-offsets-alist

(arglist-cont-nonempty
c-lineup-gcc-asm-reg
c-lineup-arglist-tabs-only))))))

(add-hook 'c-mode-hook
(lambda ()

(let ((filename (buffer-file-name)))
;; Enable kernel mode for the appropriate files
(when (and filename

(string-match (expand-file-name "~/src/linux-trees")
filename))

(setq indent-tabs-mode t)
(c-set-style "linux-tabs-only")))))

This will make emacs go better with the kernel coding style for C files below ~/src/linux-trees.

But even if you fail in getting emacs to do sane formatting, not everything is lost: use “indent”.

Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need to
give it a few command line options. However, that’s not too bad, because even the makers of GNU indent
recognize the authority of K&R (the GNU people aren’t evil, they are just severely misguided in this matter),
so you just give indent the options “-kr -i8” (stands for “K&R, 8 character indents”), or use “scripts/Lindent”,
which indents in the latest style.

“indent” has a lot of options, and especially when it comes to comment re-formatting you may want to take
a look at the man page. But remember: “indent” is not a fix for bad programming.

Chapter 10: Kconfig configuration files

For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different.
Lines under a “config” definition are indented with one tab, while help text is indented an additional two
spaces. Example:

356 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.

Features that might still be considered unstable should be defined as dependent on “EXPERIMENTAL”:

config SLUB
depends on EXPERIMENTAL && !ARCH_USES_SLAB_PAGE_STRUCT
bool "SLUB (Unqueued Allocator)"
...

while seriously dangerous features (such as write support for certain filesystems) should advertise this promi-
nently in their prompt string:

config ADFS_FS_RW
bool "ADFS write support (DANGEROUS)"
depends on ADFS_FS
...

For full documentation on the configuration files, see the file Documentation/kbuild/kconfig-language.txt.

Chapter 11: Data structures

Data structures that have visibility outside the single-threaded environment they are created and destroyed
in should always have reference counts. In the kernel, garbage collection doesn’t exist (and outside the kernel
garbage collection is slow and inefficient), which means that you absolutely _have_ to reference count all
your uses.

Reference counting means that you can avoid locking, and allows multiple users to have access to the data
structure in parallel - and not having to worry about the structure suddenly going away from under them
just because they slept or did something else for a while.

Note that locking is _not_ a replacement for reference counting. Locking is used to keep data structures
coherent, while reference counting is a memory management technique. Usually both are needed, and they
are not to be confused with each other.

Many data structures can indeed have two levels of reference counting, when there are users of different
“classes”. The subclass count counts the number of subclass users, and decrements the global count just once
when the subclass count goes to zero.

Examples of this kind of “multi-level-reference-counting” can be found in memory management (“struct
mm_struct”: mm_users and mm_count), and in filesystem code (“struct super_block”: s_count and
s_active).

Remember: if another thread can find your data structure, and you don’t have a reference count on it, you
almost certainly have a bug.

Chapter 12: Macros, Enums and RTL

Names of macros defining constants and labels in enums are capitalized.

8.4. Guidelines 357

Tarantool, Release 1.7.4

#define CONSTANT 0x12345

Enums are preferred when defining several related constants.

CAPITALIZED macro names are appreciated but macros resembling functions may be named in lower case.

Generally, inline functions are preferable to macros resembling functions.

Macros with multiple statements should be enclosed in a do - while block:

#define macrofun(a, b, c) \
do { \

if (a == 5) \
do_this(b, c); \

} while (0)

Things to avoid when using macros:

1. macros that affect control flow:

#define FOO(x) \
do { \

if (blah(x) < 0) \
return -EBUGGERED; \

} while(0)

is a _very_ bad idea. It looks like a function call but exits the “calling” function; don’t break the
internal parsers of those who will read the code.

2. macros that depend on having a local variable with a magic name:

#define FOO(val) bar(index, val)

might look like a good thing, but it’s confusing as hell when one reads the code and it’s prone to
breakage from seemingly innocent changes.

3. macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns
FOO into an inline function.

4. forgetting about precedence: macros defining constants using expressions must enclose the expression
in parentheses. Beware of similar issues with macros using parameters.

#define CONSTANT 0x4000
#define CONSTEXP (CONSTANT | 3)

The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is
used frequently with assembly language in the kernel.

Chapter 13: Printing kernel messages

Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good
impression. Do not use crippled words like “dont”; use “do not” or “don’t” instead. Make the messages
concise, clear, and unambiguous.

Kernel messages do not have to be terminated with a period.

Printing numbers in parentheses (%d) adds no value and should be avoided.

358 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

There are a number of driver model diagnostic macros in <linux/device.h> which you should use to make
sure messages are matched to the right device and driver, and are tagged with the right level: dev_err(),
dev_warn(), dev_info(), and so forth. For messages that aren’t associated with a particular device,
<linux/kernel.h> defines pr_debug() and pr_info().

Coming up with good debugging messages can be quite a challenge; and once you have them, they can
be a huge help for remote troubleshooting. Such messages should be compiled out when the DEBUG
symbol is not defined (that is, by default they are not included). When you use dev_dbg() or pr_debug(),
that’s automatic. Many subsystems have Kconfig options to turn on -DDEBUG. A related convention uses
VERBOSE_DEBUG to add dev_vdbg() messages to the ones already enabled by DEBUG.

Chapter 14: Allocating memory

The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kcalloc(), and
vmalloc(). Please refer to the API documentation for further information about them.

The preferred form for passing a size of a struct is the following:

p = kmalloc(sizeof(*p), ...);

The alternative form where struct name is spelled out hurts readability and introduces an opportunity for
a bug when the pointer variable type is changed but the corresponding sizeof that is passed to a memory
allocator is not.

Casting the return value which is a void pointer is redundant. The conversion from void pointer to any other
pointer type is guaranteed by the C programming language.

Chapter 15: The inline disease

There appears to be a common misperception that gcc has a magic “make me faster” speedup option called
“inline”. While the use of inlines can be appropriate (for example as a means of replacing macros, see Chapter
12), it very often is not. Abundant use of the inline keyword leads to a much bigger kernel, which in turn
slows the system as a whole down, due to a bigger icache footprint for the CPU and simply because there
is less memory available for the pagecache. Just think about it; a pagecache miss causes a disk seek, which
easily takes 5 milliseconds. There are a LOT of cpu cycles that can go into these 5 milliseconds.

A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them.
An exception to this rule are the cases where a parameter is known to be a compiletime constant, and as
a result of this constantness you know the compiler will be able to optimize most of your function away at
compile time. For a good example of this later case, see the kmalloc() inline function.

Often people argue that adding inline to functions that are static and used only once is always a win since
there is no space tradeoff. While this is technically correct, gcc is capable of inlining these automatically
without help, and the maintenance issue of removing the inline when a second user appears outweighs the
potential value of the hint that tells gcc to do something it would have done anyway.

Chapter 16: Function return values and names

Functions can return values of many different kinds, and one of the most common is a value indicating
whether the function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx
= failure, 0 = success) or a “succeeded” boolean (0 = failure, non-zero = success).

8.4. Guidelines 359

Tarantool, Release 1.7.4

Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language
included a strong distinction between integers and booleans then the compiler would find these mistakes for
us. . . but it doesn’t. To help prevent such bugs, always follow this convention:

If the name of a function is an action or an imperative command,
the function should return an error-code integer. If the name
is a predicate, the function should return a "succeeded" boolean.

For example, “add work” is a command, and the add_work() function returns 0 for success or -EBUSY for
failure. In the same way, “PCI device present” is a predicate, and the pci_dev_present() function returns 1
if it succeeds in finding a matching device or 0 if it doesn’t.

All EXPORTed functions must respect this convention, and so should all public functions. Private (static)
functions need not, but it is recommended that they do.

Functions whose return value is the actual result of a computation, rather than an indication of whether the
computation succeeded, are not subject to this rule. Generally they indicate failure by returning some out-
of-range result. Typical examples would be functions that return pointers; they use NULL or the ERR_PTR
mechanism to report failure.

Chapter 17: Don’t re-invent the kernel macros

The header file include/linux/kernel.h contains a number of macros that you should use, rather than explicitly
coding some variant of them yourself. For example, if you need to calculate the length of an array, take
advantage of the macro

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

Similarly, if you need to calculate the size of some structure member, use

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))

There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse
that header file to see what else is already defined that you shouldn’t reproduce in your code.

Chapter 18: Editor modelines and other cruft

Some editors can interpret configuration information embedded in source files, indicated with special markers.
For example, emacs interprets lines marked like this:

-*- mode: c -*-

Or like this:

/*
Local Variables:
compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
End:
*/

Vim interprets markers that look like this:

/* vim:set sw=8 noet */

360 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Do not include any of these in source files. People have their own personal editor configurations, and your
source files should not override them. This includes markers for indentation and mode configuration. People
may use their own custom mode, or may have some other magic method for making indentation work
correctly.

Appendix I: References

• The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Pren-
tice Hall, Inc., 1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).

• The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999.
ISBN 0-201-61586-X.

• GNU manuals - where in compliance with K&R and this text - for cpp, gcc, gcc internals and indent

• WG14 International standardization workgroup for the programming language C

• Kernel CodingStyle, by greg@kroah.com at OLS 2002

8.4.4 Python Style Guide

Introduction

This document gives coding conventions for the Python code comprising the standard library in the main
Python distribution. Please see the companion informational PEP describing style guidelines for the C code
in the C implementation of Python1.

This document and PEP 257 (Docstring Conventions) were adapted from Guido’s original Python Style
Guide essay, with some additions from Barry’s style guide2.

A Foolish Consistency is the Hobgoblin of Little Minds

One of Guido’s key insights is that code is read much more often than it is written. The guidelines provided
here are intended to improve the readability of code and make it consistent across the wide spectrum of
Python code. As PEP 20 says, “Readability counts”.

A style guide is about consistency. Consistency with this style guide is important. Consistency within a
project is more important. Consistency within one module or function is the most important.

But most importantly: know when to be inconsistent – sometimes the style guide just doesn’t apply. When
in doubt, use your best judgment. Look at other examples and decide what looks best. And don’t hesitate
to ask!

Two good reasons to break a particular rule:

1. When applying the rule would make the code less readable, even for someone who is used to reading
code that follows the rules.

2. To be consistent with surrounding code that also breaks it (maybe for historic reasons) – although this
is also an opportunity to clean up someone else’s mess (in true XP style).

1 PEP 7, Style Guide for C Code, van Rossum
2 Barry’s GNU Mailman style guide

8.4. Guidelines 361

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_Practice_of_Programming
http://www.gnu.org/manual/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
https://www.python.org/dev/peps/pep-0007/
http://barry.warsaw.us/software/STYLEGUIDE.txt

Tarantool, Release 1.7.4

Code lay-out

Indentation

Use 4 spaces per indentation level.

For really old code that you don’t want to mess up, you can continue to use 8-space tabs.

Continuation lines should align wrapped elements either vertically using Python’s implicit line joining inside
parentheses, brackets and braces, or using a hanging indent. When using a hanging indent the following
considerations should be applied; there should be no arguments on the first line and further indentation
should be used to clearly distinguish itself as a continuation line.

Yes:

Aligned with opening delimiter
foo = long_function_name(var_one, var_two,

var_three, var_four)

More indentation included to distinguish this from the rest.
def long_function_name(

var_one, var_two, var_three,
var_four):

print(var_one)

No:

Arguments on first line forbidden when not using vertical alignment
foo = long_function_name(var_one, var_two,

var_three, var_four)

Further indentation required as indentation is not distinguishable
def long_function_name(

var_one, var_two, var_three,
var_four):
print(var_one)

Optional:

Extra indentation is not necessary.
foo = long_function_name(
var_one, var_two,
var_three, var_four)

The closing brace/bracket/parenthesis on multi-line constructs may either line up under the first non-
whitespace character of the last line of list, as in:

my_list = [
1, 2, 3,
4, 5, 6,
]

result = some_function_that_takes_arguments(
'a', 'b', 'c',
'd', 'e', 'f',
)

or it may be lined up under the first character of the line that starts the multi-line construct, as in:

362 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

my_list = [
1, 2, 3,
4, 5, 6,

]
result = some_function_that_takes_arguments(

'a', 'b', 'c',
'd', 'e', 'f',

)

Tabs or Spaces?

Never mix tabs and spaces.

The most popular way of indenting Python is with spaces only. The second-most popular way is with tabs
only. Code indented with a mixture of tabs and spaces should be converted to using spaces exclusively.
When invoking the Python command line interpreter with the -t option, it issues warnings about code that
illegally mixes tabs and spaces. When using -tt these warnings become errors. These options are highly
recommended!

For new projects, spaces-only are strongly recommended over tabs. Most editors have features that make
this easy to do.

Maximum Line Length

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character lines; plus, limiting windows to 80
characters makes it possible to have several windows side-by-side. The default wrapping on such devices
disrupts the visual structure of the code, making it more difficult to understand. Therefore, please limit all
lines to a maximum of 79 characters. For flowing long blocks of text (docstrings or comments), limiting the
length to 72 characters is recommended.

The preferred way of wrapping long lines is by using Python’s implied line continuation inside parentheses,
brackets and braces. Long lines can be broken over multiple lines by wrapping expressions in parentheses.
These should be used in preference to using a backslash for line continuation.

Backslashes may still be appropriate at times. For example, long, multiple with-statements cannot use
implicit continuation, so backslashes are acceptable:

with open('/path/to/some/file/you/want/to/read') as file_1, \
open('/path/to/some/file/being/written', 'w') as file_2:

file_2.write(file_1.read())

Another such case is with assert statements.

Make sure to indent the continued line appropriately. The preferred place to break around a binary operator
is after the operator, not before it. Some examples:

class Rectangle(Blob):

def __init__(self, width, height,
color='black', emphasis=None, highlight=0):

if (width == 0 and height == 0 and
color == 'red' and emphasis == 'strong' or
highlight > 100):

(continues on next page)

8.4. Guidelines 363

Tarantool, Release 1.7.4

(continued from previous page)

raise ValueError("sorry, you lose")
if width == 0 and height == 0 and (color == 'red' or

emphasis is None):
raise ValueError("I don't think so -- values are %s, %s" %

(width, height))
Blob.__init__(self, width, height,

color, emphasis, highlight)

Blank Lines

Separate top-level function and class definitions with two blank lines.

Method definitions inside a class are separated by a single blank line.

Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be
omitted between a bunch of related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical sections.

Python accepts the control-L (i.e. ^L) form feed character as whitespace; Many tools treat these characters
as page separators, so you may use them to separate pages of related sections of your file. Note, some editors
and web-based code viewers may not recognize control-L as a form feed and will show another glyph in its
place.

Encodings (PEP 263)

Code in the core Python distribution should always use the ASCII or Latin-1 encoding (a.k.a. ISO-8859-1).
For Python 3.0 and beyond, UTF-8 is preferred over Latin-1, see PEP 3120.

Files using ASCII should not have a coding cookie. Latin-1 (or UTF-8) should only be used when a comment
or docstring needs to mention an author name that requires Latin-1; otherwise, using \x, \u or \U escapes
is the preferred way to include non-ASCII data in string literals.

For Python 3.0 and beyond, the following policy is prescribed for the standard library (see PEP 3131):
All identifiers in the Python standard library MUST use ASCII-only identifiers, and SHOULD use English
words wherever feasible (in many cases, abbreviations and technical terms are used which aren’t English). In
addition, string literals and comments must also be in ASCII. The only exceptions are (a) test cases testing
the non-ASCII features, and (b) names of authors. Authors whose names are not based on the latin alphabet
MUST provide a latin transliteration of their names.

Open source projects with a global audience are encouraged to adopt a similar policy.

Imports

• Imports should usually be on separate lines, e.g.:

Yes: import os
import sys

No: import sys, os

It’s okay to say this though:

364 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

from subprocess import Popen, PIPE

• Imports are always put at the top of the file, just after any module comments and docstrings, and
before module globals and constants.

Imports should be grouped in the following order:

1. standard library imports

2. related third party imports

3. local application/library specific imports

You should put a blank line between each group of imports.

Put any relevant __all__ specification after the imports.

• Relative imports for intra-package imports are highly discouraged. Always use the absolute package
path for all imports. Even now that PEP 328 is fully implemented in Python 2.5, its style of explicit
relative imports is actively discouraged; absolute imports are more portable and usually more readable.

• When importing a class from a class-containing module, it’s usually okay to spell this:

from myclass import MyClass
from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them

import myclass
import foo.bar.yourclass

and use “myclass.MyClass” and “foo.bar.yourclass.YourClass”.

Whitespace in Expressions and Statements

Pet Peeves

Avoid extraneous whitespace in the following situations:

• Immediately inside parentheses, brackets or braces.

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

• Immediately before a comma, semicolon, or colon:

Yes: if x == 4: print x, y; x, y = y, x
No: if x == 4 : print x , y ; x , y = y , x

• Immediately before the open parenthesis that starts the argument list of a function call:

Yes: spam(1)
No: spam (1)

• Immediately before the open parenthesis that starts an indexing or slicing:

Yes: dict['key'] = list[index]
No: dict ['key'] = list [index]

8.4. Guidelines 365

Tarantool, Release 1.7.4

• More than one space around an assignment (or other) operator to align it with another.

Yes:

x = 1
y = 2
long_variable = 3

No:

x = 1
y = 2
long_variable = 3

Other Recommendations

• Always surround these binary operators with a single space on either side: assignment (=), augmented
assignment (+=, -= etc.), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), Booleans
(and, or, not).

• If operators with different priorities are used, consider adding whitespace around the operators with
the lowest priority(ies). Use your own judgement; however, never use more than one space, and always
have the same amount of whitespace on both sides of a binary operator.

Yes:

i = i + 1
submitted += 1
x = x*2 - 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

No:

i=i+1
submitted +=1
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

• Don’t use spaces around the = sign when used to indicate a keyword argument or a default parameter
value.

Yes:

def complex(real, imag=0.0):
return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):
return magic(r = real, i = imag)

• Compound statements (multiple statements on the same line) are generally discouraged.

Yes:

366 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

if foo == 'blah':
do_blah_thing()

do_one()
do_two()
do_three()

Rather not:

if foo == 'blah': do_blah_thing()
do_one(); do_two(); do_three()

• While sometimes it’s okay to put an if/for/while with a small body on the same line, never do this for
multi-clause statements. Also avoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()
for x in lst: total += x
while t < 10: t = delay()

Definitely not:

if foo == 'blah': do_blah_thing()
else: do_non_blah_thing()

try: something()
finally: cleanup()

do_one(); do_two(); do_three(long, argument,
list, like, this)

if foo == 'blah': one(); two(); three()

Comments

Comments that contradict the code are worse than no comments. Always make a priority of keeping the
comments up-to-date when the code changes!

Comments should be complete sentences. If a comment is a phrase or sentence, its first word should be
capitalized, unless it is an identifier that begins with a lower case letter (never alter the case of identifiers!).

If a comment is short, the period at the end can be omitted. Block comments generally consist of one or
more paragraphs built out of complete sentences, and each sentence should end in a period.

You should use two spaces after a sentence-ending period.

When writing English, Strunk and White apply.

Python coders from non-English speaking countries: please write your comments in English, unless you are
120% sure that the code will never be read by people who don’t speak your language.

Block Comments

Block comments generally apply to some (or all) code that follows them, and are indented to the same level
as that code. Each line of a block comment starts with a # and a single space (unless it is indented text
inside the comment).

8.4. Guidelines 367

Tarantool, Release 1.7.4

Paragraphs inside a block comment are separated by a line containing a single #.

Inline Comments

Use inline comments sparingly.

An inline comment is a comment on the same line as a statement. Inline comments should be separated by
at least two spaces from the statement. They should start with a # and a single space.

Inline comments are unnecessary and in fact distracting if they state the obvious. Don’t do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

Documentation Strings

Conventions for writing good documentation strings (a.k.a. “docstrings”) are immortalized in PEP 257.

• Write docstrings for all public modules, functions, classes, and methods. Docstrings are not necessary
for non-public methods, but you should have a comment that describes what the method does. This
comment should appear after the def line.

• PEP 257 describes good docstring conventions. Note that most importantly, the """ that ends a
multiline docstring should be on a line by itself, and preferably preceded by a blank line, e.g.:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.

"""

• For one liner docstrings, it’s okay to keep the closing """ on the same line.

Version Bookkeeping

If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows.

__version__ = "$Revision$"
$Source$

These lines should be included after the module’s docstring, before any other code, separated by a blank
line above and below.

Naming Conventions

The naming conventions of Python’s library are a bit of a mess, so we’ll never get this completely consistent –
nevertheless, here are the currently recommended naming standards. New modules and packages (including
third party frameworks) should be written to these standards, but where an existing library has a different
style, internal consistency is preferred.

368 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Descriptive: Naming Styles

There are a lot of different naming styles. It helps to be able to recognize what naming style is being used,
independently from what they are used for.

The following naming styles are commonly distinguished:

• b (single lowercase letter)

• B (single uppercase letter)

• lowercase

• lower_case_with_underscores

• UPPERCASE

• UPPER_CASE_WITH_UNDERSCORES

• CapitalizedWords (or CapWords, or CamelCase – so named because of the bumpy look of its letters3).
This is also sometimes known as StudlyCaps.

Note: When using abbreviations in CapWords, capitalize all the letters of the abbreviation. Thus
HTTPServerError is better than HttpServerError.

• mixedCase (differs from CapitalizedWords by initial lowercase character!)

• Capitalized_Words_With_Underscores (ugly!)

There’s also the style of using a short unique prefix to group related names together. This is not used much
in Python, but it is mentioned for completeness. For example, the os.stat() function returns a tuple whose
items traditionally have names like st_mode, st_size, st_mtime and so on. (This is done to emphasize
the correspondence with the fields of the POSIX system call struct, which helps programmers familiar with
that.)

The X11 library uses a leading X for all its public functions. In Python, this style is generally deemed
unnecessary because attribute and method names are prefixed with an object, and function names are
prefixed with a module name.

In addition, the following special forms using leading or trailing underscores are recognized (these can
generally be combined with any case convention):

• _single_leading_underscore: weak “internal use” indicator. E.g. from M import * does not import
objects whose name starts with an underscore.

• single_trailing_underscore_: used by convention to avoid conflicts with Python keyword, e.g.

Tkinter.Toplevel(master, class_='ClassName')

• __double_leading_underscore: when naming a class attribute, invokes name mangling (inside class
FooBar, __boo becomes _FooBar__boo; see below).

• __double_leading_and_trailing_underscore__: “magic” objects or attributes that live in user-
controlled namespaces. E.g. __init__, __import__ or __file__. Never invent such names; only
use them as documented.

3 CamelCase Wikipedia page

8.4. Guidelines 369

http://www.wikipedia.com/wiki/CamelCase

Tarantool, Release 1.7.4

Prescriptive: Naming Conventions

Names to Avoid

Never use the characters ‘l’ (lowercase letter el), ‘O’ (uppercase letter oh), or ‘I’ (uppercase letter eye) as
single character variable names.

In some fonts, these characters are indistinguishable from the numerals one and zero. When tempted to use
‘l’, use ‘L’ instead.

Package and Module Names

Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves
readability. Python packages should also have short, all-lowercase names, although the use of underscores is
discouraged.

Since module names are mapped to file names, and some file systems are case insensitive and truncate long
names, it is important that module names be chosen to be fairly short – this won’t be a problem on Unix,
but it may be a problem when the code is transported to older Mac or Windows versions, or DOS.

When an extension module written in C or C++ has an accompanying Python module that provides a higher
level (e.g. more object oriented) interface, the C/C++ module has a leading underscore (e.g. _socket).

Class Names

Almost without exception, class names use the CapWords convention. Classes for internal use have a leading
underscore in addition.

Exception Names

Because exceptions should be classes, the class naming convention applies here. However, you should use
the suffix “Error” on your exception names (if the exception actually is an error).

Global Variable Names

(Let’s hope that these variables are meant for use inside one module only.) The conventions are about the
same as those for functions.

Modules that are designed for use via from M import * should use the __all__ mechanism to prevent
exporting globals, or use the older convention of prefixing such globals with an underscore (which you might
want to do to indicate these globals are “module non-public”).

Function Names

Function names should be lowercase, with words separated by underscores as necessary to improve readability.

mixedCase is allowed only in contexts where that’s already the prevailing style (e.g. threading.py), to retain
backwards compatibility.

370 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Function and method arguments

Always use self for the first argument to instance methods.

Always use cls for the first argument to class methods.

If a function argument’s name clashes with a reserved keyword, it is generally better to append a single
trailing underscore rather than use an abbreviation or spelling corruption. Thus class_ is better than clss.
(Perhaps better is to avoid such clashes by using a synonym.)

Method Names and Instance Variables

Use the function naming rules: lowercase with words separated by underscores as necessary to improve
readability.

Use one leading underscore only for non-public methods and instance variables.

To avoid name clashes with subclasses, use two leading underscores to invoke Python’s name mangling rules.

Python mangles these names with the class name: if class Foo has an attribute named __a, it cannot be
accessed by Foo.__a. (An insistent user could still gain access by calling Foo._Foo__a.) Generally, double
leading underscores should be used only to avoid name conflicts with attributes in classes designed to be
subclassed.

Note: there is some controversy about the use of __names (see below).

Constants

Constants are usually defined on a module level and written in all capital letters with underscores separating
words. Examples include MAX_OVERFLOW and TOTAL.

Designing for inheritance

Always decide whether a class’s methods and instance variables (collectively: “attributes”) should be public
or non-public. If in doubt, choose non-public; it’s easier to make it public later than to make a public
attribute non-public.

Public attributes are those that you expect unrelated clients of your class to use, with your commitment to
avoid backward incompatible changes. Non-public attributes are those that are not intended to be used by
third parties; you make no guarantees that non-public attributes won’t change or even be removed.

We don’t use the term “private” here, since no attribute is really private in Python (without a generally
unnecessary amount of work).

Another category of attributes are those that are part of the “subclass API” (often called “protected” in
other languages). Some classes are designed to be inherited from, either to extend or modify aspects of the
class’s behavior. When designing such a class, take care to make explicit decisions about which attributes
are public, which are part of the subclass API, and which are truly only to be used by your base class.

With this in mind, here are the Pythonic guidelines:

• Public attributes should have no leading underscores.

• If your public attribute name collides with a reserved keyword, append a single trailing underscore
to your attribute name. This is preferable to an abbreviation or corrupted spelling. (However, not
withstanding this rule, ‘cls’ is the preferred spelling for any variable or argument which is known to be
a class, especially the first argument to a class method.)

8.4. Guidelines 371

Tarantool, Release 1.7.4

Note 1: See the argument name recommendation above for class methods.

• For simple public data attributes, it is best to expose just the attribute name, without complicated
accessor/mutator methods. Keep in mind that Python provides an easy path to future enhancement,
should you find that a simple data attribute needs to grow functional behavior. In that case, use
properties to hide functional implementation behind simple data attribute access syntax.

Note 1: Properties only work on new-style classes.

Note 2: Try to keep the functional behavior side-effect free, although side-effects such as caching are
generally fine.

Note 3: Avoid using properties for computationally expensive operations; the attribute notation makes
the caller believe that access is (relatively) cheap.

• If your class is intended to be subclassed, and you have attributes that you do not want subclasses to
use, consider naming them with double leading underscores and no trailing underscores. This invokes
Python’s name mangling algorithm, where the name of the class is mangled into the attribute name.
This helps avoid attribute name collisions should subclasses inadvertently contain attributes with the
same name.

Note 1: Note that only the simple class name is used in the mangled name, so if a subclass chooses
both the same class name and attribute name, you can still get name collisions.

Note 2: Name mangling can make certain uses, such as debugging and __getattr__(), less convenient.
However the name mangling algorithm is well documented and easy to perform manually.

Note 3: Not everyone likes name mangling. Try to balance the need to avoid accidental name clashes
with potential use by advanced callers.

References

Copyright

Author:

• Guido van Rossum <guido@python.org>

• Barry Warsaw <barry@python.org>

8.4.5 Lua Style Guide

Inspiration:

• https://github.com/Olivine-Labs/lua-style-guide

• http://dev.minetest.net/Lua_code_style_guidelines

• http://sputnik.freewisdom.org/en/Coding_Standard

Programming style is an art. There is some arbitrariness to the rules, but there are sound rationales for
them. It is useful not only to provide sound advice on style but to understand the underlying rationale and
human aspect of why the style recommendations are formed:

• http://mindprod.com/jgloss/unmain.html

• http://www.oreilly.com/catalog/perlbp/

• http://books.google.com/books?id=QnghAQAAIAAJ

Zen of Python is good; understand it and use wisely:

372 Chapter 8. Contributor’s Guide

mailto:guido@python.org
mailto:barry@python.org
https://github.com/Olivine-Labs/lua-style-guide
http://dev.minetest.net/Lua_code_style_guidelines
http://sputnik.freewisdom.org/en/Coding_Standard
http://mindprod.com/jgloss/unmain.html
http://www.oreilly.com/catalog/perlbp/
http://books.google.com/books?id=QnghAQAAIAAJ

Tarantool, Release 1.7.4

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one – and preferably only one – obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea – let’s do more of those!

https://www.python.org/dev/peps/pep-0020/

Indentation and Formatting

• 4 spaces instead tabs. PIL suggests using of two spaces, but programmer looks at code 4 up to 8 hours
a day, so it’s simplier to distinguish indentation with 4 spaces. Why spaces? Similar representation
everywhere.

You can use vim modelines:

-- vim:ts=4 ss=4 sw=4 expandtab

• A file should ends w/ one newline symbol, but shouldn’t ends w/ blank line (two newline symbols).

• Every do/while/for/if/function should indent 4 spaces.

• related or/and in if must be enclosed in the round brackets (). Example:

if (a == true and b == false) or (a == false and b == true) then
<...>

end -- good

if a == true and b == false or a == false and b == true then
<...>

end -- bad

if a ^ b == true then
end -- good, but not explicit

• Type conversion

Do not use concatenation to convert to string or addition to convert to number (use tostring/tonumber
instead):

8.4. Guidelines 373

https://www.python.org/dev/peps/pep-0020/

Tarantool, Release 1.7.4

local a = 123
a = a .. ''
-- bad

local a = 123
a = tostring(a)
-- good

local a = '123'
a = a + 5 -- 128
-- bad

local a = '123'
a = tonumber(a) + 5 -- 128
-- good

• Try to avoid multiple nested if’s with common body:

if (a == true and b == false) or (a == false and b == true) then
do_something()

end
-- good

if a == true then
if b == false then

do_something()
end

if b == true then
if a == false then

do_something()
end

end
-- bad

• Avoid multiple concatenations in one statement, use string.format instead:

function say_greeting(period, name)
local a = "good " .. period .. ", " .. name

end
-- bad

function say_greeting(period, name)
local a = string.format("good %s, %s", period, name)

end
-- good

local say_greeting_fmt = "good %s, %s"
function say_greeting(period, name)

local a = say_greeting_fmt:format(period, name)
end
-- best

• Use and/or for default variable values

function(input)
input = input or 'default_value'

end -- good

(continues on next page)

374 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

(continued from previous page)

function(input)
if input == nil then

input = 'default_value'
end

end -- ok, but excessive

• if’s and return statements:

if a == true then
return do_something()

end
do_other_thing() -- good

if a == true then
return do_something()

else
do_other_thing()

end -- bad

• Using spaces:

– one shouldn’t use spaces between function name and opening round bracket, but arguments must
be splitted with one whitespace charachter

function name (arg1,arg2,...)
end -- bad

function name(arg1, arg2, ...)
end -- good

– use space after comment marker

while true do -- inline comment
-- comment
do_something()
end
--[[
multiline
comment

]]--

– surrounding operators

local thing=1
thing = thing-1
thing = thing*1
thing = 'string'..'s'
-- bad

local thing = 1
thing = thing - 1
thing = thing * 1
thing = 'string' .. 's'
-- good

– use space after commas in tables

8.4. Guidelines 375

Tarantool, Release 1.7.4

local thing = {1,2,3}
thing = {1 , 2 , 3}
thing = {1 ,2 ,3}
-- bad

local thing = {1, 2, 3}
-- good

– use space in map definitions around equality sign and commas

return {1,2,3,4} -- bad
return {

key1 = val1,key2=val2
} -- bad

return {
1, 2, 3, 4
key1 = val1, key2 = val2,
key3 = vallll

} -- good

also, you may use alignment:

return {
long_key = 'vaaaaalue',
key = 'val',
something = 'even better'

}

– extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines
may be omitted between a bunch of related one-liners (e.g. a set of dummy implementations)

use blank lines in function, sparingly, to indicate logical sections

if thing then
-- ...stuff...

end
function derp()

-- ...stuff...
end
local wat = 7
-- bad

if thing then
-- ...stuff...

end

function derp()
-- ...stuff...

end

local wat = 7
-- good

– Delete whitespace at EOL (strongly forbidden. Use :s/\s\+$//gc in vim to delete them)

376 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Avoid global variable

You must avoid global variables. If you have an exceptional case, use _G variable to set it, add prefix or
add table instead of prefix:

function bad_global_example()
end -- very, very bad

function good_local_example()
end
_G.modulename_good_local_example = good_local_example -- good
_G.modulename = {}
_G.modulename.good_local_example = good_local_example -- better

Always use prefix to avoid name clash

Naming

• names of variables/”objects” and “methods”/functions: snake_case

• names of “classes”: CamelCase

• private variables/methods (properties in the future) of object starts with underscores <object>.
_<name>. Avoid using of local function private_methods(self) end

• boolean - naming is_<...>, isnt_<...>, has_, hasnt_ is a good style.

• for “very local” variables: - t is for tables - i, j are for indexing - n is for counting - k, v is what you
get out of pairs() (are acceptable, _ if unused) - i, v is what you get out of ipairs() (are acceptable,
_ if unused) - k/key is for table keys - v/val/value is for values that are passed around - x/y/z is for
generic math quantities - s/str/string is for strings - c is for 1-char strings - f/func/cb are for functions
- status, <rv>.. or ok, <rv>.. is what you get out of pcall/xpcall - buf, sz is a (buffer, size) pair -
<name>_p is for pointers - t0.. is for timestamps - err is for errors

• abbrevations are acceptable if they’re unambigous and if you’ll document (or they’re too common)
them.

• global variables are written with ALL_CAPS. If it’s some system variable, then they’re using under-
score to define it (_G/_VERSION/..)

• module naming snake_case (avoid underscores and dashes) - ‘luasql’, instead of ‘Lua-SQL’

• *_mt and *_methods defines metatable and methods table

Idioms and patterns

Always use round brackets in call of functions except multiple cases (common lua style idioms):

• *.cfg{ } functions (box.cfg/memcached.cfg/..)

• ffi.cdef[[]] function

Avoid these kind of constructions:

• <func>’<name>’ (strongly avoid require’..’)

• function object:method() end (use functon object.method(self) end instead)

• do not use semicolon as table separator (only comma)

• semicolons at the end of line (only to split multiple statements on one line)

8.4. Guidelines 377

Tarantool, Release 1.7.4

• try to avoid unnecessary function creation (closures/..)

Modules

Don’t start modules with license/authors/descriptions, you can write it in LICENSE/AUTHORS/README
files. For writing modules use one of the two patterns (dont use modules()):

local M = {}

function M.foo()
...
end

function M.bar()
...
end

return M

or

local function foo()
...
end

local function bar()
...
end

return {
foo = foo,
bar = bar,
}

Commenting

You should write code the way it shouldn’t be described, but don’t forget about commenting it. You shouldn’t
comment Lua syntax (assume that reader already knows Lua language). Try to tell about functions/variable
names/etc.

Multiline comments: use matching (--[[]]--) instead of simple (--[[]]).

Public function comments (??):

--- Copy any table (shallow and deep version)
-- * deepcopy: copies all levels
-- * shallowcopy: copies only first level
-- Supports __copy metamethod for copying custom tables with metatables
-- @function gsplit
-- @table inp original table
-- @shallow[opt] sep flag for shallow copy
-- @returns table (copy)

378 Chapter 8. Contributor’s Guide

Tarantool, Release 1.7.4

Testing

Use tap module for writing efficient tests. Example of test file:

#!/usr/bin/env tarantool

local test = require('tap').test('table')
test:plan(31)

do -- check basic table.copy (deepcopy)
local example_table = {

{1, 2, 3},
{"help, I'm very nested", {{{ }}} }

}

local copy_table = table.copy(example_table)

test:is_deeply(
example_table,
copy_table,
"checking, that deepcopy behaves ok"

)
test:isnt(

example_table,
copy_table,
"checking, that tables are different"

)
test:isnt(

example_table[1],
copy_table[1],
"checking, that tables are different"

)
test:isnt(

example_table[2],
copy_table[2],
"checking, that tables are different"

)
test:isnt(

example_table[2][2],
copy_table[2][2],
"checking, that tables are different"

)
test:isnt(

example_table[2][2][1],
copy_table[2][2][1],
"checking, that tables are different"

)
end

<...>

os.exit(test:check() == true and 0 or 1)

When you’ll test your code output will be something like this:

TAP version 13
1..31
ok - checking, that deepcopy behaves ok

(continues on next page)

8.4. Guidelines 379

Tarantool, Release 1.7.4

(continued from previous page)

ok - checking, that tables are different
ok - checking, that tables are different
ok - checking, that tables are different
ok - checking, that tables are different
ok - checking, that tables are different
...

380 Chapter 8. Contributor’s Guide

Lua Module Index

b
box.cfg, ??
box.error, ??
box.index, ??
box.info, ??
box.schema, ??
box.session, ??
box.slab, ??
box.space, ??
box.tuple, ??

c
capi_error, ??
clock, 169
console, 171
crypto.cipher, ??
crypto.digest, ??
csv, 174

d
digest, 177

e
errno, 180

f
fiber, ??
fio, 194

h
http.client, ??

j
json, 205

l
log, 208

m
msgpack, 209

my_box.index, ??
my_fiber, ??

n
net_box, ??

o
os, 216

p
pickle, 219

s
schema, 319
shard, 256
socket, 221
strict, 231

t
tap, 231
tarantool, 235

u
uri, 237
uuid, 235

x
xlog, 238

y
yaml, 239

381

	What’s new in Tarantool 1.7?
	What’s new in Tarantool 1.6.9 after February 15, 2017?
	What’s new in Tarantool 1.6?
	Overview
	An application server together with a database manager
	Database features

	User’s Guide
	Preface
	Getting started
	Database
	Application server
	Server administration
	Replication
	Connectors
	FAQ

	Reference
	Built-in modules reference
	Rocks reference
	Configuration reference
	Utility tarantoolctl
	Tips on Lua syntax

	Tutorials
	Lua tutorials
	C tutorial
	libslave tutorial

	Contributor’s Guide
	C API reference
	Internals
	Build and contribute
	Guidelines

	Lua Module Index

