Tarantool
Release 1.10.0

Mar 13, 2019

Contents

What’s new in Tarantool 1.7.67 2
1.1 What’s new in Tarantool 1.77 o 2
What’s new in Tarantool 1.6.9?7 4
2.1 What’s new in Tarantool 1.67 4
Overview 5
3.1 An application server together with a database manager. 5
3.2 Database features L 6
User’s Guide 7
4.1 Preface e 7
4.2 Getting startedo 8
4.3 Database e 13
4.4 Application server e 33
4.5 Server administration L e 69
4.6 Replication L e 98
4.7 Connectors 119
4.8 FAQ . . . o e e 130
Reference 132
5.1 Built-in modules reference L 132
5.2 Rocks reference 307
5.3 Configuration reference L 326
5.4 Utility tarantooletl oL 345
5.5 Tipson Luasyntax e 347
Tutorials 349
6.1 Lua tutorials e e 349
6.2 Ctutorial 361
6.3 libslave tutorial 368
Contributor’s Guide 372
7.1 C APIreference s 372
7.2 Internals 399
7.3 Build and contribute 412
7.4 Guidelines e e 420

Lua Module Index 461

ii

Tarantool, Release 1.10.0

Here is a summary of significant changes introduced in specific versions of Tarantool.

For smaller feature changes and bug fixes, see closed milestones at GitHub.

Contents 1

https://github.com/tarantool/tarantool/milestones?state=closed

CHAPTER 1

What’s new in Tarantool 1.7.67

Tarantool 1.7.6 was released on November 7, 2017.

In addition to rollback of a transaction, there is now rollback to a defined point within a transaction —
savepoint support.

There is a new object type: sequences. The older option, auto-increment, will be deprecated.
String indexes can have collations.
New options are available for:

* net_box (timeouts),

* string functions,

* space formats (user-defined field names and types),

* base64 (urlsafe option), and

* index creation (collation, is-nullable, field names).

1.1 What’s new in Tarantool 1.77

The disk-based storage engine, which was called sophia or phia in earlier versions, is superseded by the vinyl
storage engine.

There are new types for indexed fields.

The LuaJIT version is updated.

Automatic replica set bootstrap (for easier configuration of a new replica set) is supported.
The space _object:inc() function is removed.

The space_object:dec() function is removed.

The space__object:bsize() function is added.

https://github.com/tarantool/tarantool/releases/tag/1.7.6

Tarantool, Release 1.10.0

The box.coredump() function is removed, for an alternative see Core dumps.
The hot standby configuration option is added.
Configuration parameters revised:

¢ Parameters renamed:

slab_alloc_arena (in gigabytes) to memtx memory (in bytes),

— slab_alloc _minimal to memtx min tuple size,

— slab_alloc_maximal to memtx max_tuple_size,

— replication source to replication,

— snap_dir to memtx _dir,

— logger to log,

— logger nonblock to log nonblock,

— snapshot count to checkpoint count,

— snapshot _period to checkpoint interval,

— panic_on_wal error and panic_on_snap error united under force recovery.

¢ Until Tarantool 1.8, you can use deprecated parameters for both initial and runtime configuration, but
Tarantool will display a warning. Also, you can specify both deprecated and up-to-date parameters,
provided that their values are harmonized. If not, Tarantool will display an error.

1.1. What’s new in Tarantool 1.77 3

CHAPTER 2

What’s new in Tarantool 1.6.97

Since February 15, 2017, due to Tarantool issue#2040 Remove sophia engine from 1.6 there no longer is a
storage engine named sophia. It will be superseded in version 1.7 by the vinyl storage engine.

2.1 What’s new in Tarantool 1.67

Tarantool 1.6 is no longer getting major new features, although it will be maintained. The developers are
concentrating on Tarantool version 1.9.

https://github.com/tarantool/tarantool/issues/2040

CHAPTER 3

Overview

3.1 An application server together with a database manager

Tarantool is a Lua application server integrated with a database management system. It has a “fiber” model
which means that many Tarantool applications can run simultaneously on a single thread, while each instance
of the Tarantool server itself can run multiple threads for input-output and background maintenance. It
incorporates the LuaJIT — “Just In Time” — Lua compiler, Lua libraries for most common applications, and
the Tarantool Database Server which is an established NoSQL DBMS. Thus Tarantool serves all the purposes
that have made node.js and Twisted popular, plus it supports data persistence.

The code is free. The open-source license is BSD license. The supported platforms are GNU /Linux, Mac
OS and FreeBSD.

Tarantool’s creator and biggest user is Mail.Ru, the largest internet company in Russia, with 30 million
users, 25 million emails per day, and a web site whose Alexa global rank is in the top 40 worldwide.
Tarantool services Mail.Ru’s hottest data, such as the session data of online users, the properties of online
applications, the caches of the underlying data, the distribution and sharding algorithms, and much more.
Outside Mail.Ru the software is used by a growing number of projects in online gaming, digital marketing,
and social media industries. Although Mail.Ru is the sponsor for product development, the roadmap and
the bugs database and the development process are fully open. The software incorporates patches from
dozens of community contributors. The Tarantool community writes and maintains most of the drivers for
programming languages. The greater Lua community has hundreds of useful packages most of which can
become Tarantool extensions.

Users can create, modify and drop Lua functions at runtime. Or they can define Lua programs that are
loaded during startup for triggers, background tasks, and interacting with networked peers. Unlike popular
application development frameworks based on a “reactor” pattern, networking in server-side Lua is sequential,
yet very efficient, as it is built on top of the cooperative multitasking environment that Tarantool itself uses.

One of the built-in Lua packages provides an API for the Database Management System. Thus some
developers see Tarantool as a DBMS with a popular stored procedure language, while others see it as a Lua
interpreter, while still others see it as a replacement for many components of multi-tier Web applications.
Performance can be a few hundred thousand transactions per second on a laptop, scalable upwards or
outwards to server farms.

http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://api.mail.ru
http://www.alexa.com/siteinfo/mail.ru

Tarantool, Release 1.10.0

3.2 Database features

Tarantool can run without it, but “The Box” — the DBMS server — is a strong distinguishing feature.

The database API allows for permanently storing Lua objects, managing object collections, creating or
dropping secondary keys, making changes atomically, configuring and monitoring replication, performing
controlled fail-over, and executing Lua code triggered by database events. Remote database instances are
accessible transparently via a remote-procedure-invocation API.

Tarantool’s DBMS server uses the storage engine concept, where different sets of algorithms and data struc-
tures can be used for different situations. Two storage engines are built-in: an in-memory engine which has
all the data and indexes in RAM, and a two-level B-tree engine for data sets whose size is 10 to 1000 times
the amount of available RAM. All storage engines in Tarantool support transactions and replication by using
a common write ahead log (WAL). This ensures consistency and crash safety of the persistent state. Changes
are not considered complete until the WAL is written. The logging subsystem supports group commit.

Tarantool’s in-memory storage engine (memtx) keeps all the data in random-access memory, and therefore
has very low read latency. It also keeps persistent copies of the data in non-volatile storage, such as disk,
when users request “snapshots”. If an instance of the server stops and the random-access memory is lost,
then restarts, it reads the latest snapshot and then replays the transactions that are in the log — therefore
no data is lost.

Tarantool’s in-memory engine is lock-free in typical situations. Instead of the operating system’s concurrency
primitives, such as mutexes, Tarantool uses cooperative multitasking to handle thousands of connections
simultaneously. There is a fixed number of independent execution threads. The threads do not share state.
Instead they exchange data using low-overhead message queues. While this approach limits the number of
cores that the instance will use, it removes competition for the memory bus and ensures peak scalability of
memory access and network throughput. CPU utilization of a typical highly-loaded Tarantool instance is
under 10%. Searches are possible via secondary index keys as well as primary keys.

Tarantool’s disk-based storage engine is a fusion of ideas from modern filesystems, log-structured merge trees
and classical B-trees. All data is organized into ranges. Each range is represented by a file on disk. Range
size is a configuration option and normally is around 64MB. Each range is a collection of pages, serving
different purposes. Pages in a fully merged range contain non-overlapping ranges of keys. A range can be
partially merged if there were a lot of changes in its key range recently. In that case some pages represent
new keys and values in the range. The disk-based storage engine is append only: new data never overwrites
old data. The disk-based storage engine is named vinyl.

Tarantool supports multi-part index keys. The possible index types are HASH, TREE, BITSET, and
RTREE.

Tarantool supports asynchronous replication, locally or to remote hosts. The replication architecture can be
master-master, that is, many nodes may both handle the loads and receive what others have handled, for
the same data sets.

6 Chapter 3. Overview

CHAPTER 4

User’s Guide

4.1 Preface

Welcome to Tarantool! This is the User’s Guide. We recommend reading it first, and consulting Reference
materials for more detail afterwards, if needed.

4.1.1 How to read the documentation

To get started, you can install and launch Tarantool using a Docker container, a binary package, or the online
Tarantool server at http:/ /try.tarantool.org. Either way, as the first tryout, you can follow the introductory
exercises from Chapter 2 “Getting started”. If you want more hands-on experience, proceed to Tutorials
after you are through with Chapter 2.

Chapter 3 “Database” is about using Tarantool as a NoSQL DBMS, whereas Chapter 4 “Application server”
is about using Tarantool as an application server.

Chapter 5 “Server administration” and Chapter 6 “Replication” are primarily for administrators.

Chapter 7 “Connectors” is strictly for users who are connecting from a different language such as C or Perl
or Python — other users will find no immediate need for this chapter.

Chapter 8 “FAQ” gives answers to some frequently asked questions about Tarantool.

For experienced users, there are also Reference materials, a Contributor’s Guide and an extensive set of
comments in the source code.

4.1.2 Getting in touch with the Tarantool community

Please report bugs or make feature requests at http://github.com /tarantool/tarantool /issues.

You can contact developers directly in telegram or in a Tarantool discussion group (English or Russian).

http://try.tarantool.org
http://github.com/tarantool/tarantool/issues
http://telegram.me/tarantool
https://groups.google.com/forum/#!forum/tarantool
https://googlegroups.com/group/tarantool-ru

Tarantool, Release 1.10.0

4.1.3 Conventions used in this manual

Square brackets [and | enclose optional syntax.
Two dots in a row .. mean the preceding tokens may be repeated.

A vertical bar | means the preceding and following tokens are mutually exclusive alternatives.

4.2 Getting started

In this chapter, we explain how to install Tarantool, how to start it, and how to create a simple database.

This chapter contains the following sections:

4.2.1 Using a Docker image

For trial and test purposes, we recommend using official Tarantool images for Docker. An official image
contains a particular Tarantool version (1.6, 1.9, 1.10 or 2.0) and all popular external modules for Tarantool.
Everything is already installed and configured in Linux. These images are the easiest way to install and use
Tarantool.

Note: If you're new to Docker, we recommend going over this tutorial before proceeding with this chapter.

Launching a container

If you don’t have Docker installed, please follow the official installation guide for your OS.

To start a fully functional Tarantool instance, run a container with minimal options:

$ docker run
--name mytarantool
-d -p 3301:3301
-v /data/dir/on/host:/var/lib/tarantool
tarantool /tarantool:1.10

This command runs a new container named ‘mytarantool’. Docker starts it from an official image named
‘tarantool/tarantool:1.10’, with Tarantool version 1.10 and all external modules already installed.

Tarantool will be accepting incoming connections on localhost:3301. You may start using it as a key-value
storage right away.

Tarantool persists data inside the container. To make your test data available after you stop the container,
this command also mounts the host’s directory /data/dir/on/host (you need to specify here an absolute
path to an existing local directory) in the container’s directory /var/lib/tarantool (by convention, Tarantool
in a container uses this directory to persist data). So, all changes made in the mounted directory on the
container’s side are applied to the host’s disk.

Tarantool’s database module in the container is already configured and started. You needn’t do it manually,
unless you use Tarantool as an application server and run it with an application.

8 Chapter 4. User’s Guide

https://github.com/tarantool/docker
https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/#/step-1-get-docker

Tarantool, Release 1.10.0

Attaching to Tarantool

To attach to Tarantool that runs inside the container, say:

$ docker exec -i -t mytarantool console

This command:
¢ Instructs Tarantool to open an interactive console port for incoming connections.
* Attaches to the Tarantool server inside the container under ‘admin’ user via a standard Unix socket.

Tarantool displays a prompt:

tarantool.sock >

Now you can enter requests on the command line.

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

While you’re attached to the console, let’s create a simple test database.

First, create the first space (named ‘tester’) and the first index (named ‘primary’):

tarantool.sock > s = box.schema.space.create(' tester ")
tarantool.sock > s:create _index('primary', {

- type = 'hash',

- parts = {1, 'unsigned'}

.

Next, insert three tuples (our name for “records”) into the space:

tarantool.sock > t = s:insert({1, 'Roxette'})
tarantool.sock > t = s:insert({2, 'Scorpions', 2015})
tarantool.sock > t = s:insert({3, 'Ace of Base', 1993})

To select a tuple from the first space of the database, using the first defined key, say:

tarantool.sock > s:select{3}

The terminal screen now looks like this:

tarantool.sock > s = box.schema.space.create(' tester ")
2017-01-17 12:04:18.158 ... creating './00000000000000000000.xlog.inprogress "

tarantool.sock > s:create _index('primary', {type = "hash', parts = {1, 'unsigned'}})

tarantool.sock > t = s:insert{1, 'Roxette'}

tarantool.sock > t = s:insert{2, 'Scorpions"', 2015}

4.2. Getting started 9

Tarantool, Release 1.10.0

tarantool.sock > t = s:insert{3, 'Ace of Base', 1993}

tarantool.sock > s:select{3}

- -3, "Ace of Base', 1993]

tarantool.sock>

To add another index on the second field, say:

tarantool.sock > s:create index('secondary', {
- type = 'hash',
- parts = {2, 'string'}

1)

Stopping a container

When the testing is over, stop the container politely:

$ docker stop mytarantool

This was a temporary container, and its disk/memory data were flushed when you stopped it. But since you
mounted a data directory from the host in the container, Tarantool’s data files were persisted to the host’s
disk. Now if you start a new container and mount that data directory in it, Tarantool will recover all data
from disk and continue working with the persisted data.

4.2.2 Using a binary package

For production purposes, we recommend official binary packages. You can choose from two Tarantool
versions: 1.10 (stable) or 2.0 (alpha). An automatic build system creates, tests and publishes packages for
every push into a corresponding branch (1.10 or 2.0) at Tarantool’s GitHub repository.

To download and install the package that’s appropriate for your OS, start a shell (terminal) and enter the
command-line instructions provided for your OS at Tarantool’s download page.

Starting Tarantool

To start a Tarantool instance, say this:

$ # if you downloaded a binary with apt-get or yum, say this:

$ /usr/bin/tarantool

$ # if you downloaded and untarred a binary tarball to ~/tarantool, say this:
$ 7 /tarantool/bin/tarantool

Tarantool starts in the interactive mode and displays a prompt:

tarantool >

Now you can enter requests on the command line.

10 Chapter 4. User’s Guide

http://tarantool.org/download.html
https://github.com/tarantool/tarantool
http://tarantool.org/download.html

Tarantool, Release 1.10.0

Note: On production machines, Tarantool’s interactive mode is for system administration only. But we use
it for most examples in this manual, because the interactive mode is convenient for learning.

Creating a database

Here is how to create a simple test database after installing.

Create a new directory (it’s just for tests, so you can delete it when the tests are over):

$ mkdir ~/tarantool sandbox
$ cd ~/tarantool sandbox

To start Tarantool’s database module and make the instance accept TCP requests on port 3301, say this:

tarantool > box.cfg{listen — 3301}

First, create the first space (named ‘tester’) and the first index (named ‘primary’):

tarantool> s = box.schema.space.create(' tester')
tarantool > s:create index('primary ", {

- type = "hash',

- parts = {1, 'unsigned'}

)

Next, insert three tuples (our name for “records”) into the space:

tarantool> t = s:insert({1, 'Roxette'})
tarantool> t = s:insert({2, 'Scorpions', 2015})
tarantool> t = s:insert({3, "Ace of Base', 1993})

To select a tuple from the first space of the database, using the first defined key, say:

tarantool > s:select{3}

The terminal screen now looks like this:

tarantool> s = box.schema.space.create(' tester')
2017-01-17 12:04:18.158 ... creating './00000000000000000000.xlog.inprogress '

tarantool > s:create _index('primary', {type = 'hash', parts = {1, 'unsigned'}})

tarantool> t = s:insert{1, 'Roxette'}

tarantool> t = s:insert{2, 'Scorpions', 2015}

tarantool> t = s:insert{3, 'Ace of Base', 1993}

tarantool > s:select{3}

- - [3, "Ace of Base', 1993]

4.2. Getting started 11

Tarantool, Release 1.10.0

To add another index on the second field, say:

tarantool > s:create index('secondary', {
- type = 'hash',
parts = {2, 'string'}

1)

Now, to prepare for the example in the next section, try this:

tarantool > box.schema.user.grant(' guest', 'read,write,execute’, 'universe')

Connecting remotely

In the request box.cfg{listen = 3301} that we made earlier, the listen value can be any form of a URI
(uniform resource identifier). In this case, it’s just a local port: port 3301. You can send requests to the
listen URI via:

1. telnet,
2. a connector,
3. another instance of Tarantool (using the console module), or
4. tarantoolctl utility.
Let’s try (4).

Switch to another terminal. On Linux, for example, this means starting another instance of a Bash shell.
You can switch to any working directory in the new terminal, not necessarily to ~/tarantool sandbox.

Start the tarantoolctl utility:

’ $ tarantoolctl connect '3301" ‘

This means “use tarantoolctl connect to connect to the Tarantool instance that’s listening on localhost:3301”.

Try this request:

localhost:3301 > box.space.tester:select{2} ‘

This means “send a request to that Tarantool instance, and display the result”. The result in this case is one
of the tuples that was inserted earlier. Your terminal screen should now look like this:

$ tarantoolctl connect 3301
/usr/local /bin/tarantoolctl: connected to localhost:3301
localhost:3301 > box.space.tester:select{2}

- - [2, "Scorpions', 2015]

You can repeat box.space...:insert{} and box.space...:select{} indefinitely, on either Tarantool instance.
When the testing is over:

* To drop the space: s:drop()

¢ To stop tarantoolctl: Ctrl+C or Ctrl+D

* To stop Tarantool (an alternative): the standard Lua function os.exit()

12 Chapter 4. User’s Guide

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 1.10.0

 To stop Tarantool (from another terminal): sudo pkill -f tarantool

* To destroy the test: rm -r ~/tarantool sandbox

4.3 Database

In this chapter, we introduce the basic concepts of working with Tarantool as a database manager.

This chapter contains the following sections:

4.3.1 Data model

This section describes how Tarantool stores values and what operations with data it supports.

If you tried to create a database as suggested in our “Getting started” exercises, then your test database now
looks like this:

SPACE 'tester’

INDEX ‘primary*

TUPLE [, 'Roxette’]

TUPLE [, 'Scorpions’, 2015]
TUPLE [, 'Ace of Base', 1993]

INDEX ‘secondary’

KEY ['Roxette’]

KEY ['Scorpions']
KEY [Ace of Basa']

4.3. Database 13

Tarantool, Release 1.10.0

Space

A space — ‘tester’ in our example — is a container.

When Tarantool is being used to store data, there is always at least one space. Each space has a unique
name specified by the user. Besides, each space has a unique numeric identifier which can be specified by
the user, but usually is assigned automatically by Tarantool. Finally, a space always has an engine: memtx
(default) — in-memory engine, fast but limited in size, or vinyl — on-disk engine for huge data sets.

A space is a container for tuples. To be functional, it needs to have a primary index. It can also have
secondary indexes.

Tuple
A tuple plays the same role as a “row” or a “record”, and the components of a tuple (which we call “fields”)
play the same role as a “row column” or “record field”, except that:

« fields can be composite structures, such as arrays or maps, and

¢ fields don’t need to have names.

Any given tuple may have any number of fields, and the fields may be of different types. The identifier of a
field is the field’s number, base 1 (in Lua and other 1-based languages) or base 0 (in PHP or C/C++). For
example, “1” or “0” can be used in some contexts to refer to the first field of a tuple.

Tuples in Tarantool are stored as MsgPack arrays.

When Tarantool returns a tuple value in console, it uses the YAML format, for example: [3, ' Ace of Base',
1993].

Index

An index is a group of key values and pointers.

As with spaces, you should specify the index name, and let Tarantool come up with a unique numeric
identifier (“index id”).

An index always has a type. The default index type is “TREE’. TREE indexes are provided by all Tarantool
engines, can index unique and non-unique values, support partial key searches, comparisons and ordered
results. Additionally, memtx engine supports HASH, RTREE and BITSET indexes.

An index may be multi-part, that is, you can declare that an index key value is composed of two or more
fields in the tuple, in any order. For example, for an ordinary TREE index, the maximum number of parts
is 255.

An index may be unique, that is, you can declare that it would be illegal to have the same key value twice.

The first index defined on a space is called the primary key index, and it must be unique. All other indexes
are called secondary indexes, and they may be non-unique.

An index definition may include identifiers of tuple fields and their expected types (see allowed indexed field
types below).

In our example, we first defined the primary index (named ‘primary’) based on field #1 of each tuple:

tarantool> i = s:create_index('primary', {type — "hash', parts — {1, "unsigned'}})

The effect is that, for all tuples in space ‘tester’, field #1 must exist and must contain an unsigned integer.
The index type is ‘hash’, so values in field #1 must be unique, because keys in HASH indexes are unique.

14 Chapter 4. User’s Guide

https://en.wikipedia.org/wiki/MessagePack
https://en.wikipedia.org/wiki/YAML

Tarantool, Release 1.10.0

After that, we defined a secondary index (named ‘secondary’) based on field #2 of each tuple:

tarantool> 1 = s:create index('secondary', {type = 'tree', parts — {2, 'string'}})

The effect is that, for all tuples in space ‘tester’, field #2 must exist and must contain a string. The index
type is ‘tree’; so values in field #2 must not be unique, because keys in TREE indexes may be non-unique.

Note: Space definitions and index definitions are stored permanently in Tarantool’s system spaces _space
and _index (for details, see reference on box.space submodule).

You can add, drop, or alter the definitions at runtime, with some restrictions. See syntax details in reference
on box module.

Data types

Tarantool is both a database and an application server. Hence a developer often deals with two type sets:
the programming language types (e.g. Lua) and the types of the Tarantool storage format (MsgPack).

Lua vs MsgPack

Scalar / compound | MsgPack type | Lua type Example value
scalar nil “nil” msgpack.NULL
scalar boolean “boolean” true

scalar string “string” ‘ABC

scalar integer “number” 12345

scalar double “number” 1.2345
compound map “table” (with string keys) | {‘a’: 5, ‘b’: 6}
compound array “table” (with integer keys) | [1, 2, 3, 4, 5]
compound array tuple (“cdata”) [12345, ‘A B C’]

In Lua, a nil type has only one possible value, also called nil (displayed as null on Tarantool’s command line,
since the output is in the YAML format). Nils may be compared to values of any types with == (is-equal) or
~= (is-not-equal), but other operations will not work. Nils may not be used in Lua tables; the workaround
is to use msgpack.NULL

A boolean is either true or false.

A string is a variable-length sequence of bytes, usually represented with alphanumeric characters inside
single quotes. In both Lua and MsgPack, strings are treated as binary data, with no attempts to determine
a string’s character set or to perform any string conversion — unless there is an optional collation. So, usually,
string sorting and comparison are done byte-by-byte, without any special collation rules applied. (Example:
numbers are ordered by their point on the number line, so 2345 is greater than 500; meanwhile, strings are
ordered by the encoding of the first byte, then the encoding of the second byte, and so on, so ‘2345’ is less
than ‘500’.)

In Lua, a number is double-precision floating-point, but Tarantool allows both integer and floating-point
values. Tarantool will try to store a Lua number as floating-point if the value contains a decimal point or
is very large (greater than 100 trillion = lel4), otherwise Tarantool will store it as an integer. To ensure
that even very large numbers are stored as integers, use the tonumber64 function, or the LL (Long Long)
suffix, or the ULL (Unsigned Long Long) suffix. Here are examples of numbers using regular notation,
exponential notation, the ULL suffix and the tonumber64 function: -55, -2.7e+20, 100000000000000ULL,
tonumber64(' 18446744073709551615").

4.3. Database 15

http://www.lua.org/pil/2.1.html
http://www.lua.org/pil/2.2.html
http://www.lua.org/pil/2.4.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.3.html
http://www.lua.org/pil/2.5.html
http://www.lua.org/pil/2.5.html
http://luajit.org/ext_ffi.html#call

Tarantool, Release 1.10.0

Lua tables with string keys are stored as MsgPack maps; Lua tables with integer keys starting with 1 — as
MsgPack arrays. Nils may not be used in Lua tables; the workaround is to use msgpack.NULL

A tuple is a light reference to a MsgPack array stored in the database. It is a special type (cdata) to avoid
conversion to a Lua table on retrieval. A few functions may return tables with multiple tuples. For more
tuple examples, see box.tuple.

Note: Tarantool uses the MsgPack format for database storage, which is variable-length. So, for example,
the smallest number requires only one byte, but the largest number requires nine bytes.

Examples of insert requests with different data types:

tarantool > box.space.K:insert{1,nil,true," A B C',12345,1.2345}
:_il, null, true, 'A B C', 12345, 1.2345]

;.z;‘ra,ntool - box.space.K:insert{2,{['a']|=5,['b"]|=6}}

:_iz, {ra': 5, 'b': 6}]

tarantool > box.space.K:insert{3,{1,2,3,4,5}}

- [37 [717 27 37 17 r)]]

Indexed field types

Indexes restrict values which Tarantool’s MsgPack may contain. This is why, for example, ‘unsigned’ is a
separate indexed field type, compared to ‘integer’ data type in MsgPack: they both store ‘integer’ values,
but an ‘unsigned’ index contains only non-negative integer values and an ‘integer’ index contains all integer
values.

Here’s how Tarantool indexed field types correspond to MsgPack data types.

16 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

Indexed field | MsgPack data type (and possible values) Index | Ex-
type type am-
ples
unsigned (may | integer (integer between 0 and 18446744073709551615, i.e. about 18 | TREE,| 12345(
also be called | quintillion) BIT-
‘uint’ or ‘num’, SET
but ‘num’ is or
deprecated) HASH
integer (may | integer (integer between -9223372036854775808 and | TREE | -
also be called | 18446744073709551615) or 2763
‘int’) HASH
number integer (integer between -9223372036854775808 and | TREE | 1.234
18446744073709551615) or -44
double (single-precision floating point number or double-precision | HASH | 1.447¢
floating point number)
string (may also | string (any set of octets, up to the maximum length) TREE,| ‘A B
be called ‘str’) BIT- | C
SET ‘65
or 66
HASH | 67
boolean bool (true or false) TREE | true
or
HASH
array array (list of numbers representing points in a geometric figure) RTREE {10,
11}
{3,
5, 9,
10}
scalar bool (true or false) TREE | true
integer (integer between -9223372036854775808 and | or -1
18446744073709551615) HASH | 1.234
double (single-precision floating point number or double-precision ¢
floating point number) ‘py’
string (any set of octets)
Note: When there is a mix of types, the key order is: booleans, then
numbers, then strings.
Collations

By default, when Tarantool compares strings, it uses what we call a “binary” collation. The only consideration
here is the numeric value of each byte in the string. Therefore, if the string is encoded with ASCII or UTF-8,
then "A' < 'B' < 'a', because the encoding of ‘A’ (what used to be called the “ASCII value”) is 65, the
encoding of ‘B’ is 66, and the encoding of ‘a’ is 98. Binary collation is best if you prefer fast deterministic
simple maintenance and searching with Tarantool indexes.

But if you want the ordering that you see in phone books and dictionaries, then you need Tarantool’s optional

collations — unicode and unicode ci — that allow for 'A' < 'a' < "B and 'A' = 'a' < "B’ respectively.
Optional collations use the ordering according to the Default Unicode Collation Element Table (DUCET)
and the rules described in Unicode® Technical Standard 410 Unicode Collation Algorithm (UTS 410 UCA).

The only difference between the two collations is about weights:

¢ unicode collation observes four weight levels, from L1 to L4,

4.3. Database

17

+44

http://unicode.org/reports/tr10/#Default_Unicode_Collation_Element_Table
http://unicode.org/reports/tr10
https://unicode.org/reports/tr10/#Weight_Level_Defn

Tarantool, Release 1.10.0

* unicode _ci collation observes only L1 weights, the ci suffix meaning “case-insensitive”.

As an example, let’s take some Russian words:

'EJIE!"

' eJIeHbIH '
'énka'

' €JIOBBIN '

' €JI03UTH '
'Enouka’

' $JIOYHBIIH '
'EJIp!'

'enp'

...and show the difference in ordering and selecting by index:

e with unicode collation:

tarantool > box.space.T:create index('I", {parts — {{1,'str', collation—"'unicode'}}})

tarantool > box.space.T.index.I:select()

--['EJIE"]
- [eneiinbrii ']
- ["énka']
- ['enoBbrit ']
- ["enosuTs ']
- ['E;IO‘{KR’]
- [énounsrit'|
- [rems']
- ['Eflb']

tarantool > box.space.T.index.I:select{ ' EiKa'}

-l

* with unicode ci collation:

tarantool > box.space.T:create index('l", {parts = {{1,'str", collation—"unicode ci'}}})

tarantool > box.space.S.index.I:select()
- ['EJIE']

- [" eseitubrit ' |

- [rénxa']

- ['enoBbrit ']

- ["enosuTs ']

- ['Emouxa'|

- [énounsrit'|

- |'"EJIn']

tarantool > box.space.S.index.I:select{ ' FirKa '}

--[rénxa']

In fact, though, good collation involves much more than these simple examples of upper case / lower case
equivalence in alphabets. We also consider accent marks, non-alphabetic writing systems, and special rules

18 Chapter 4. User’s Guide

https://www.unicode.org/reports/tr35/tr35-collation.html#Case_Parameters

Tarantool, Release 1.10.0

that apply for combinations of characters.

Sequences

A sequence is a generator of ordered integer values.

As with spaces and indexes, you should specify the sequence name, and let Tarantool come up with a unique
numeric identifier (“sequence id”).

As well, you can specify several options when creating a new sequence. The options determine what value
will be generated whenever the sequence is used.

Options for box.schema.sequence.create()

Option Type and meaning Default Exam-
name ples
start Integer. The value to generate the first time a sequence is used | 1 start=0
min Integer. Values smaller than this cannot be generated 1 min=-
1000
max Integer. Values larger than this cannot be generated 9223372036854 77H80Ax=0
cycle Boolean. Whether to start again when values cannot be gen- | false cy-
erated cle=true
cache Integer. The number of values to store in a cache 0 cache=0
step Integer. What to add to the previous generated value, when | 1 step=-1
generating a new value

Once a sequence exists, it can be altered, dropped, reset, forced to generate the next value, or associated
with an index.

For an initial example, we generate a sequence named ‘S’.

tarantool> box.schema.sequence.create('S',{min=>5, start=>5})
- step: 1

id: 5

min: 5

cache: 0

uid: 1

max: 9223372036854775807

cycle: false

name: S

start: 5

The result shows that the new sequence has all default values, except for the two that were specified, min
and start.

Then we get the next value, with the next() function.

tarantool > box.sequence.S:next()

-5

4.3. Database 19

Tarantool, Release 1.10.0

The result is the same as the start value. If we called next() again, we would get 6 (because the previous
value plus the step value is 6), and so on.

Then we create a new table, and say that its primary key may be generated from the sequence.

tarantool > s=box.schema.space.create(' T);s:create_index(']' {sequence="S"})

Then we insert a tuple, without specifying a value for the primary key.

tarantool > box.space.T:insert{nil, ' other stuff'}

- [6, 'other stuff']

The result is a new tuple where the first field has a value of 6. This arrangement, where the system
automatically generates the values for a primary key, is sometimes called “auto-incrementing” or “identity”.

For syntax and implementation details, see the reference for box.schema.sequence.

Persistence

In Tarantool, updates to the database are recorded in the so-called write ahead log (WAL) files. This ensures
data persistence. When a power outage occurs or the Tarantool instance is killed incidentally, the in-memory
database is lost. In this situation, WAL files are used to restore the data. Namely, Tarantool reads the WAL
files and redoes the requests (this is called the “recovery process”). You can change the timing of the WAL
writer, or turn it off, by setting wal mode.

Tarantool also maintains a set of snapshot files. These files contain an on-disk copy of the entire data set for
a given moment. Instead of reading every WAL file since the databases were created, the recovery process
can load the latest snapshot file and then read only those WAL files that were produced after the snapshot
file was made. After checkpointing, old WAL files can be removed to free up space.

To force immediate creation of a snapshot file, you can use Tarantool’s box.snapshot() request. To enable
automatic creation of snapshot files, you can use Tarantool’s checkpoint daemon. The checkpoint daemon
sets intervals for forced checkpoints. It makes sure that the states of both memtx and vinyl storage engines
are synchronized and saved to disk, and automatically removes old WAL files.

Snapshot files can be created even if there is no WAL file.

Note: The memtx engine makes only regular checkpoints with the interval set in checkpoint daemon
configuration.

The vinyl engine runs checkpointing in the background at all times.

See the Internals section for more details about the WAL writer and the recovery process.
Operations
Data operations

The basic data operations supported in Tarantool are:

* one data-retrieval operation (SELECT), and

20 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

* five data-manipulation operations (INSERT, UPDATE, UPSERT, DELETE, REPLACE).
All of them are implemented as functions in box.space submodule.
Examples
¢ INSERT: Add a new tuple to space ‘tester’.
The first field, field[1], will be 999 (MsgPack type is integer).
The second field, field[2], will be ‘Taranto’ (MsgPack type is string).

tarantool > box.space.tester:insert{999, ' Taranto'}

» UPDATE: Update the tuple, changing field field[2].

The clause “{999}”, which has the value to look up in the index of the tuple’s primary-key field, is
mandatory, because update() requests must always have a clause that specifies a unique key, which in
this case is field[1].

The clause “{{‘=’, 2, ‘Tarantino’}}” specifies that assignment will happen to field[2] with the new
value.

tarantool > box.space.tester:update({999}, {{'=", 2, ' Tarantino'}})

« UPSERT: Upsert the tuple, changing field field[2] again.

The syntax of upsert() is similar to the syntax of update(). However, the execution logic of these two
requests is different. UPSERT is either UPDATE or INSERT, depending on the database’s state. Also,
UPSERT execution is postponed until after transaction commit, so, unlike update(), upsert() doesn’t
return data back.

tarantool > box.space.tester:upsert({999}, {{'=", 2, ' Tarantism'}}) ‘

« REPLACE: Replace the tuple, adding a new field.

This is also possible with the update() request, but the update() request is usually more complicated.

tarantool> box.space.tester:replace{999, ' Tarantella', 'Tarantula'} ‘

e SELECT: Retrieve the tuple.
The clause “{999}” is still mandatory, although it does not have to mention the primary key.

’tm'antool - box.space.tester:select{999} ‘

e DELETE: Delete the tuple.

In this example, we identify the primary-key field.

tarantool > box.space.tester:delete{999} ‘

All the functions operate on tuples and accept only unique key values. So, the number of tuples in the space
is always 0 or 1, since the keys are unique.

Functions insert(), upsert() and replace() accept only primary-key values. Functions select(), delete() and
update() may accept either a primary-key value or a secondary-key value.

Note: Besides Lua, you can use Perl, PHP, Python or other programming language connectors. The client
server protocol is open and documented. See this annotated BNF.

4.3. Database 21

Tarantool, Release 1.10.0

Index operations

Index operations are automatic: if a data-manipulation request changes a tuple, then it also changes the
index keys defined for the tuple.

The simple index-creation operation that we’ve illustrated before is:
box.space.space-name:create _index('index-name")

This creates a unique TREE index on the first field of all tuples (often called “Field#1”), which is assumed
to be numeric.

The simple SELECT request that we’ve illustrated before is:
box.space.space-name:select(value)

This looks for a single tuple via the first index. Since the first index is always unique, the maximum number
of returned tuples will be: one.

The following SELECT variations exist:
1. The search can use comparisons other than equality.
box.space.space-name:select(value, {iterator = 'GT"'})

The comparison operators are LT, LE, EQ, REQ, GE, GT (for “less than”, “less than or equal”, “equal”,
“reversed equal”, “greater than or equal”, “greater than” respectively). Comparisons make sense if and
only if the index type is “TREE’.

This type of search may return more than one tuple; if so, the tuples will be in descending order by
key when the comparison operator is LT or LE or REQ, otherwise in ascending order.

2. The search can use a secondary index.
box.space.space-name.index.index-name:select(value)

For a primary-key search, it is optional to specify an index name. For a secondary-key search, it is
mandatory.

3. The search may be for some or all key parts.

-- Suppose an index has two parts
tarantool> box.space.space-name.index.index-name.parts

- - type: unsigned
fieldno: 1
- type: string
fieldno: 2

-- Suppose the space has three tuples
box.space.space-name:select()

A
'[17 'B']
'[27 ”]

4. The search may be for all fields, using a table for the value:
box.space.space-name:select({1, "A'})
or the search can be for one field, using a table or a scalar:

box.space.space-name:select(1)

22 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

In the second case, the result will be two tuples: {1, "A'} and {1, 'B'}.

You can specify even zero fields, causing all three tuples to be returned. (Notice that partial key
searches are available only in TREE indexes.)

Examples

¢ BITSET example:

tarantool
tarantool >
tarantool >

tarantool
tarantool >
tarantool>
tarantool
tarantool >

—parts={2, 'unsigned ' }})
- box.space.bitset _example:insert{1,1}

- box.space.bitset _example:insert{4,3}

box.schema.space.create(' bitset example')
box.space.bitset example:create index('primary ")
box.space.bitset _example:create index('bitset ', {unique—false,type—"BITSET",_

box.space.bitset _example:insert{2,4}
box.space.bitset _example:insert{3,7}

box.space.bitset _example.index.bitset:select(2, {iterator—"'BITS ANY SET'})

The result will be:

37
- [17 3]

because (7 AND 2) is not equal to 0, and (3 AND 2) is not equal to 0.
e RTREE example:

tarantool
tarantool >
tarantool >

tarantool >
tarantool >
tarantool>

—parts—{2," ARRAY '}})

box.schema.space.create(' rtree _example')
box.space.rtree__example:create _index('primary ')
box.space.rtree _example:create index('rtree',{unique—false,type='RTREE",_

box.space.rtreeexample:insert{1, {3, 5, 9, 10}}
box.space.rtree _example:insert{2, {10, 11}}
box.space.rtree _example.index.rtree:select ({4, 7, 5, 9}, {iterator = 'GT'})

The result will be:

- [17 [37 57

9, 10]]

because a rectangle whose corners are at coordinates 4,7,5,9 is entirely within a rectangle
whose corners are at coordinates 3,5,9,10.

Additionally, there exist index iterator operations. They can only be used with code in Lua and C/C++.
Index iterators are for traversing indexes one key at a time, taking advantage of features that are specific
to an index type, for example evaluating Boolean expressions when traversing BITSET indexes, or going in
descending order when traversing TREE indexes.

See also other index operations like alter() and drop() in reference for box.index submodule.

Complexity factors

In reference for box.space and box.index submodules, there are notes about which complexity factors might
affect the resource usage of each function.

4.3. Database

23

Tarantool, Release 1.10.0

Com- Effect

plexity

factor

Index The number of index keys is the same as the number of tuples in the data set. For a TREE
size index, if there are more keys, then the lookup time will be greater, although of course the effect

is not linear. For a HASH index, if there are more keys, then there is more RAM used, but the
number of low-level steps tends to remain constant.

Index Typically, a HASH index is faster than a TREE index if the number of tuples in the space is
type greater than one.

Num- Ordinarily, only one index is accessed to retrieve one tuple. But to update the tuple, there must
ber be N accesses if the space has N different indexes.

of in- | Note re storage engine: Vinyl optimizes away such accesses if secondary index fields are un-
dexes changed by the update. So, this complexity factor applies only to memtx, since it always makes
ac- a full-tuple copy on every update.

cessed

Num- A few requests, for example SELECT, can retrieve multiple tuples. This factor is usually less
ber of | important than the others.

tuples

ac-

cessed

WAL The important setting for the write-ahead log is wal mode. If the setting causes no writing or
set- delayed writing, this factor is unimportant. If the setting causes every data-change request to
tings wait for writing to finish on a slow device, this factor is more important than all the others.

4.3.2 Transaction control

Transactions in Tarantool occur in fibers on a single thread. That is why Tarantool has a guarantee of
execution atomicity. That requires emphasis.

Threads, fibers and yields

How does Tarantool process a basic operation? As an example, let’s take this query:

tarantool > box.space.tester:update({3}, {{'=", 2, 'size'}, {'=", 3, 0}})

This is equivalent to an SQL statement like:

’ UPDATE tester SET "field[2]" = 'size', "field[3]" = 0 WHERE "field[1]" = 3

This query will be processed with three operating system threads:

1. If we issue the query on a remote client, then the network thread on the server side receives the query,
parses the statement and changes it to a server executable message which has already been checked,
and which the server instance can understand without parsing everything again.

2. The network thread ships this message to the instance’s “transaction processor” thread using a lock-free
message bus. Lua programs execute directly in the transaction processor thread, and do not require
parsing and preparation.

The instance’s transaction processor thread uses the primary-key index on field[1] to find the location
of the tuple. It determines that the tuple can be updated (not much can go wrong when you’re merely
changing an unindexed field value to something shorter).

24 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

3. The transaction processor thread sends a message to the write-ahead logging (WAL) thread to commit
the transaction. When done, the WAL thread replies with a COMMIT or ROLLBACK result, which
is returned to the client.

Notice that there is only one transaction processor thread in Tarantool. Some people are used to the idea that
there can be multiple threads operating on the database, with (say) thread #1 reading row #x, while thread
#2 writes row #y. With Tarantool, no such thing ever happens. Only the transaction processor thread can
access the database, and there is only one transaction processor thread for each Tarantool instance.

Like any other Tarantool thread, the transaction processor thread can handle many fibers. A fiber is a set
of computer instructions that may contain “yield” signals. The transaction processor thread will execute all
computer instructions until a yield, then switch to execute the instructions of a different fiber. Thus (say)
the thread reads row #x for the sake of fiber #1, then writes row #y for the sake of fiber #2.

Yields must happen, otherwise the transaction processor thread would stick permanently on the same fiber.
There are two types of yields:

e implicit yields: every data-change operation or network-access causes an implicit yield, and every
statement that goes through the Tarantool client causes an implicit yield.

* explicit yields: in a Lua function, you can (and should) add “yield” statements to prevent hogging.
This is called cooperative multitasking.

Cooperative multitasking

Cooperative multitasking means: unless a running fiber deliberately yields control, it is not preempted by
some other fiber. But a running fiber will deliberately yield when it encounters a “yield point”: a transaction
commit, an operating system call, or an explicit “yield” request. Any system call which can block will be
performed asynchronously, and any running fiber which must wait for a system call will be preempted, so
that another ready-to-run fiber takes its place and becomes the new running fiber.

This model makes all programmatic locks unnecessary: cooperative multitasking ensures that there will be
no concurrency around a resource, no race conditions, and no memory consistency issues.

When requests are small, for example simple UPDATE or INSERT or DELETE or SELECT, fiber scheduling
is fair: it takes only a little time to process the request, schedule a disk write, and yield to a fiber serving
the next client.

However, a function might perform complex computations or might be written in such a way that yields
do not occur for a long time. This can lead to unfair scheduling, when a single client throttles the rest of
the system, or to apparent stalls in request processing. Avoiding this situation is the responsibility of the
function’s author.

Transactions

In the absence of transactions, any function that contains yield points may see changes in the database state
caused by fibers that preempt. Multi-statement transactions exist to provide isolation: each transaction sees
a consistent database state and commits all its changes atomically. At commit time, a yield happens and all
transaction changes are written to the write ahead log in a single batch. Or, if needed, transaction changes
can be rolled back — completely or to a specific savepoint.

To implement isolation, Tarantool uses a simple optimistic scheduler: the first transaction to commit wins.
If a concurrent active transaction has read a value modified by a committed transaction, it is aborted.

The cooperative scheduler ensures that, in absence of yields, a multi-statement transaction is not preempted
and hence is never aborted. Therefore, understanding yields is essential to writing abort-free code.

4.3. Database 25

Tarantool, Release 1.10.0

Note: You can’t mix storage engines in a transaction today.

Implicit yields
The only explicit yield requests in Tarantool are fiber.sleep() and fiber.yield(), but many other requests
“imply” yields because Tarantool is designed to avoid blocking.
Database operations usually do not yield, but it depends on the engine:
* In memtx, reads or writes do not require I/O and do not yield.

¢ In vinyl, not all data is in memory, and SELECT often incurs a disc I/O, and therefore yields, while
a write may stall waiting for memory to free up, thus also causing a yield.

In the “autocommit” mode, all data change operations are followed by an automatic commit, which yields.
So does an explicit commit of a multi-statement transaction, box.commit().

Many functions in modules fio, net _box, console and socket (the “os” and “network” requests) yield.
Example #1

* Engine = memtx select() insert() has one yield, at the end of insertion, caused by implicit commit;
select() has nothing to write to the WAL and so does not yield.

» Engine = vinyl select() insert() has between one and three yields, since select() may yield if the data is
not in cache, insert() may yield waiting for available memory, and there is an implicit yield at commit.

* The sequence begin() insert() insert() commit() yields only at commit if the engine is memtx, and can
yield up to 3 times if the engine is vinyl.

Example #2

Assume that in space ‘tester’ there are tuples in which the third field represents a positive dollar amount.
Let’s start a transaction, withdraw from tuple#1, deposit in tuple#2, and end the transaction, making its
effects permanent.

tarantool> function txn_example(from, to, amount _of money)

box.begin()
box.space.tester:update(from, {{'-', 3, amount of money}})
box.space.tester:update(to, {{'+', 3, amount of money}})

box.commit()
return "ok"
- end

tarantool> txn_example({999}, {1000}, 1.00)

_ Hok n

If wal mode = ‘none’, then implicit yielding at commit time does not take place, because there are no writes
to the WAL.

If a task is interactive — sending requests to the server and receiving responses — then it involves network 10,
and therefore there is an implicit yield, even if the request that is sent to the server is not itself an implicit
yield request. Therefore, the sequence:

26 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

select
select
select

causes blocking (in memtx), if it is inside a function or Lua program being executed on the server instance,
but causes yielding (in both memtx and vinyl) if it is done as a series of transmissions from a client, including
a client which operates via telnet, via one of the connectors, or via the MySQL and PostgreSQL rocks, or
via the interactive mode when using Tarantool as a client.

After a fiber has yielded and then has regained control, it immediately issues testcancel.

4.3.3 Access control

Understanding security details is primarily an issue for administrators. Meanwhile, ordinary users should
at least skim this section to get an idea of how Tarantool makes it possible for administrators to prevent
unauthorized access to the database and to certain functions.

In a nutshell:

e There is a method to guarantee with password checks that users really are who they say they are
(“authentication”).

e There is a _user system space, where usernames and password-hashes are stored.
 There are functions for saying that certain users are allowed to do certain things (“privileges”).

e There is a _priv system space, where privileges are stored. Whenever a user tries to do an operation,
there is a check whether the user has the privilege to do the operation (“access control”).

Further on, we explain all of this in more detail.

Users

There is a current user for any program working with Tarantool, local or remote. If a remote connection is
using a binary port, the current user, by default, is ‘guest’. If the connection is using an admin-console port,
the current user is ‘admin’. When executing a Lua initialization script, the current user is also ‘admin’.

The current user name can be found with box.session.user().

The current user can be changed:
 For a binary port connection — with AUTH protocol command, supported by most clients;
e For an admin-console connection and in a Lua initialization script — with box.session.su;

¢ For a stored function invoked with CALL command over a binary port — with SETUID property enabled
for the function, which makes Tarantool temporarily replace the current user with the function’s creator,
with all creator’s privileges, during function execution.

Passwords

Each user (except ‘guest’) may have a password. The password is any alphanumeric string.

Tarantool passwords are stored in the user system space with a cryptographic hash function so that, if
the password is ‘x’, the stored hash-password is a long string like ‘1L30OvhkIPOKh+Vn9Avlkx69M /Ck=*.
When a client connects to a Tarantool instance, the instance sends a random salt value which the client must
mix with the hashed-password before sending to the instance. Thus the original value ‘x’ is never stored

4.3. Database 27

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Salt_%28cryptography%29

Tarantool, Release 1.10.0

anywhere except in the user’s head, and the hashed value is never passed down a network wire except when
mixed with a random salt.

Note: For more details of the password hashing algorithm (e.g. for the purpose of writing a new client
application), read the scramble.h header file.

This system prevents malicious onlookers from finding passwords by snooping in the log files or snooping on
the wire. It is the same system that MySQL introduced several years ago, which has proved adequate for
medium-security installations. Nevertheless, administrators should warn users that no system is foolproof
against determined long-term attacks, so passwords should be guarded and changed occasionally. Adminis-
trators should also advise users to choose long unobvious passwords, but it is ultimately up to the users to
choose or change their own passwords.

There are two functions for managing passwords in Tarantool: box.schema.user.password() for changing a
user’s password and box.schema.user.passwd() for getting a hash-password.

Owners and privileges

In Tarantool, all objects are organized into a hierarchy of ownership. Ordinarily the owner of every object
is its creator. The creator of the initial database state (we call it ‘universe’) — including the database itself,
the system spaces, the users — is ‘admin’.

An object’s owner can share some rights on the object by granting privileges to other users. The following
privileges can be granted:

* Read, e.g. allow select from a space

e Write, e.g. allow update on a space

* Execute, e.g. allow call of a function

¢ Create, e.g. allow box.schema.space.create (currently this can be granted but has no effect)
* Alter, e.g. allow box.space.x.index.y:alter (currently this can be granted but has no effect)
* Drop, e.g. allow box.sequence.x:drop (currently this can be granted but has no effect)

This is how the privilege system works. To be able to create objects, a user needs to have write access to
Tarantool’s system spaces. The ‘admin’ user, who is at the top of the hierarchy and who is the ultimate
source of privileges, shares write access to a system space (e.g. _space) with some users. Now the users can
insert data into the system space (e.g. creating new spaces) and themselves become creators/definers of new
objects. For the objects they created, the users can in turn share privileges with other users.

This is why only an object’s owner can drop the object, but other ordinary users cannot. Meanwhile, ‘admin’
can drop any object or delete any other user, because ‘admin’ is the creator and ultimate owner of them all.

The syntax of all grant() /revoke() commands in Tarantool follows this basic idea.
¢ The first argument is the name of the user who gets the privilege or whose privilege is revoked.
¢ The second argument is the type of privilege granted, or a list of privileges.

¢ The third argument is the object type on which the privilege is granted, or the word ‘universe’. Possible
object types are ‘space’, ‘function’, ‘sequence’ (not ‘user’ or ‘role’).

 The fourth argument is the name of the object if the object type was specified (‘universe’ has no name
because there is only one ‘universe’, but otherwise you must specify the name).

Example #1

Here we say that user ‘guest’ can do common operations on any object.

28 Chapter 4. User’s Guide

https://github.com/tarantool/tarantool/blob/1.9/src/scramble.h
http://dev.mysql.com/doc/refman/5.7/en/password-hashing.html

Tarantool, Release 1.10.0

box.schema.user.grant(' guest ', 'read,write,execute’, "universe')

Example #2

Here we create a Lua function that will be executed under the user id of its creator, even if called by another
user.

First, we create two spaces (‘u’ and ‘1’) and grant a no-password user (‘internal’) full access to them. Then we
define a function (‘read and modify’) and the no-password user becomes this function’s creator. Finally,
we grant another user (‘public_user’) access to execute Lua functions created by the no-password user.

box.schema.space.create('u")
box.schema.space.create('i")
box.space.u:create _index('pk")
box.space.i:create _index('pk")

box.schema.user.create('internal ")

box.schema.user.grant('internal ', 'read,write', "space', 'u'")
box.schema.user.grant('internal ', 'read,write', 'space', 'i")
box.schema.user.grant('internal ', 'read,write', "space', ' func')

function read _and modify(key)
local u = box.space.u
local i = box.space.i
local fiber = require(' fiber ")
local t = u:get{key}
if t "= nil then
u:put{key, box.session.uid()}
i:put{key, fiber.time()}
end
end

box.session.su('internal)
box.schema.func.create('read and modify ', {setuid= true})
box.session.su('admin")

box.schema.user.create(' public_user', {password = 'secret'})
box.schema.user.grant('public_user', 'execute', 'function’, 'read and modify")
Roles

A role is a container for privileges which can be granted to regular users. Instead of granting or revoking
individual privileges, you can put all the privileges in a role and then grant or revoke the role.

Role information is stored in the _user space, but the third field in the tuple — the type field — is ‘role’ rather
than ‘user’.

An important feature in role management is that roles can be nested. For example, role R1 can be granted
a privilege “role R2”, so users with the role R1 will subsequently get all privileges from both roles R1 and
R2. In other words, a user gets all the privileges that are granted to a user’s roles, directly or indirectly.

Example

-- This example will work for a user with many privileges, such as 'admin’
-- or a user with the pre-defined ’super ' role

-- Create space T with a primary index

box.schema.space.create(' T'")

box.space.T:create _index('primary ', {})

4.3. Database 29

Tarantool, Release 1.10.0

-- Create user Ul so that later we can change the current user to Ul
box.schema.user.create(' Ul")

-- Create two roles, R1 and R2

box.schema.role.create('R1")

box.schema.role.create('R2")

-- Grant role R2 to role R1 and role R1 to user Ul (order doesn 't matter)
box.schema.role.grant('R1'", 'execute', 'role’, 'R2")
box.schema.user.grant('Ul", 'execute', 'role’, "R1")

-- Grant read/write privileges for space T to role R2

-- (but not to role R1 and not to user Ul)

box.schema.role.grant('R2"', 'read,write', 'space', 'T")

-- Change the current user to user Ul

box.session.su('Ul")

-- An insertion to space T will now succeed because, due to nested roles,
-- user Ul has write privilege on space T

box.space.T:insert{1}

For details about Tarantool functions related to role management, see reference on box.schema submodule.

Sessions and security

A session is the state of a connection to Tarantool. It contains:
¢ an integer id identifying the connection,
¢ the current user associated with the connection,
* text description of the connected peer, and
« session local state, such as Lua variables and functions.

In Tarantool, a single session can execute multiple concurrent transactions. Each transaction is identified by
a unique integer id, which can be queried at start of the transaction using box.session.sync().

Note: To track all connects and disconnects, you can use connection and authentication triggers.

4.3.4 Triggers

Triggers, also known as callbacks, are functions which the server executes when certain events happen.
There are three types of triggers in Tarantool:

¢ connection triggers, which are executed when a session begins or ends,

* authentication triggers, which are executed during authentication, and

* replace triggers, which are for database events.
All triggers have the following characteristics:

e Triggers associate a function with an event. The request to “define a trigger” implies passing the trig-
ger’s function to one of the “on_event()” functions: box.session.on _connect(), box.session.on_auth(),
box.session.on _disconnect(), or space_object:on_replace() plus space object:before replace().

¢ Triggers are defined only by the ‘admin’ user.

30 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

e Triggers are stored in the Tarantool instance’s memory, not in the database. Therefore triggers disap-
pear when the instance is shut down. To make them permanent, put function definitions and trigger
settings into Tarantool’s initialization script.

¢ Triggers have low overhead. If a trigger is not defined, then the overhead is minimal: merely a pointer
dereference and check. If a trigger is defined, then its overhead is equivalent to the overhead of calling
a function.

¢ There can be multiple triggers for one event. In this case, triggers are executed in the reverse order
that they were defined in.

e Triggers must work within the event context. However, effects are undefined if a function contains
requests which normally could not occur immediately after the event, but only before the return from
the event. For example, putting os.exit() or box.rollback() in a trigger function would be bringing in
requests outside the event context.

e Triggers are replaceable. The request to “redefine a trigger” implies passing a new trigger function and
an old trigger function to one of the “on_event()” functions.

* The “on_event()” functions all have parameters which are function pointers, and they all return func-
tion pointers. Remember that a Lua function definition such as “function f() x = x + 1 end” is the
same as “f = function () x = x + 1 end” — in both cases f gets a function pointer. And “trigger =
box.session.on__connect(f)” is the same as “trigger = box.session.on_connect(function () x = x + 1
end)” — in both cases trigger gets the function pointer which was passed.

To get a list of triggers, you can use:
e on_ connect() — with no arguments — to return a table of all connect-trigger functions;
* on_ auth() to return all authentication-trigger functions;
* on_disconnect() to return all disconnect-trigger functions;
* on_replace() to return all replace-trigger functions made for on_replace().
* before replace() to return all replace-trigger functions made for before replace().
Example

Here we log connect and disconnect events into Tarantool server log.

log = require('log")

function on_connect impl()
log.info("connected "..box.session.peer()..",
end

sid "..box.session.id())

function on_disconnect impl()
log.info("disconnected, sid "..box.session.id())
end

function on_auth impl(user)
log.info("authenticated sid "..box.session.id().." as "..user)
end

function on_connect() pcall(on_connect impl) end
function on_disconnect() pcall(on_ disconnect impl) end
function on_auth(user) pcall(on _auth impl, user) end

box.session.on__connect(on_connect)
box.session.on _disconnect(on__disconnect)
box.session.on_auth(on_auth)

4.3. Database 31

http://www.lua.org/manual/5.1/manual.html#pdf-os.exit

Tarantool, Release 1.10.0

4.3.5 Limitations

Number of parts in an index

For TREE or HASH indexes, the maximum is 255 (box.schema.INDEX PART MAX). For
ref:RTREE <box index-rtree> indexes, the maximum is 1 but the field is an ARRAY of up to
20 dimensions. For BITSET indexes, the maximum is 1.

Number of indexes in a space
128 (box.schema.INDEX MAX).
Number of fields in a tuple

The theoretical maximum is 2,147,483,647 (box.schema.FIELD MAX). The practical maximum
is whatever is specified by the space’s field count member, or the maximal tuple length.

Number of bytes in a tuple

The maximal number of bytes in a tuple is roughly equal to memtx max tuple size or
vinyl max_tuple size (with a metadata overhead of about 20 bytes per tuple, which is
added on top of useful bytes). By default, the value of either memtx max tuple size or
vinyl max_tuple size is 1,048,576. To increase it, specify a larger value when starting the
Tarantool instance. For example, box.cfg{memtx max_tuple size=2%*1048576}.

Number of bytes in an index key

If a field in a tuple can contain a million bytes, then the index key can contain a million bytes,
so the maximum is determined by factors such as Number of bytes in a tuple, not by the index
support.

Number of spaces

The theoretical maximum is 2147483647 (box.schema.SPACE MAX) but the practical maximum
is around 65,000.

Number of connections
The practical limit is the number of file descriptors that one can set with the operating system.
Space size

The total maximum size for all spaces is in effect set by memtx memory, which in turn is limited
by the total available memory.

Update operations count

The maximum number of operations that can be in a single update is 4000
(BOX UPDATE OP_ CNT_ MAX).

Number of users and roles
32 (BOX_USER_MAX).

Length of an index name or space name or user name
65000 (box.schema.NAME MAX).

Number of replicas in a replica set

32 (box.schema.REPLICA MAX).

32 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

4.4 Application server

In this chapter, we introduce the basics of working with Tarantool as a Lua application server.

This chapter contains the following sections:
4.4.1 Launching an application
Using Tarantool as an application server, you can write your own applications. Tarantool’s native language

for writing applications is Lua, so a typical application would be a file that contains your Lua script. But
you can also write applications in C or C+-+.

Note: If you're new to Lua, we recommend going over the interactive Tarantool tutorial before proceeding
with this chapter. To launch the tutorial, say tutorial() in Tarantool console:

tarantool > tutorial()

Let’s create and launch our first Lua application for Tarantool. Here’s a simplest Lua application, the good
old “Hello, world!”:

#t! /usr/bin/env tarantool
print(' Hello, world!")

We save it in a file. Let it be myapp.lua in the current directory.
Now let’s discuss how we can launch our application with Tarantool.
Launching in Docker

If we run Tarantool in a Docker container, the following command will start Tarantool without any applica-
tion:

$ # create a temporary container and run it in interactive mode
$ docker run --rm -t -i tarantool/tarantool

To run Tarantool with our application, we can say:

$ # create a temporary container and
$ # launch Tarantool with our application
$ docker run --rm -t -i
-v " pwd’ /myapp.lua:/opt/tarantool/myapp.lua
-v /data/dir/on/host:/var/lib/tarantool
tarantool /tarantool tarantool /opt/tarantool/myapp.lua

4.4. Application server 33

http://www.lua.org/about.html

Tarantool, Release 1.10.0

Here two resources on the host get mounted in the container:
* our application file (\" pwd\ " /myapp.lua) and
 Tarantool data directory (/data/dir/on/host).

By convention, the directory for Tarantool application code inside a container is /opt/tarantool, and the
directory for data is /var/lib/tarantool.

Launching a binary program

If we run Tarantool from a binary package or from a source build, we can launch our application:
* in the script mode,
¢ as a server application, or
¢ as a daemon service.

The simplest way is to pass the filename to Tarantool at start:

$ tarantool myapp.lua
Hello, world!

Tarantool starts, executes our script in the script mode and exits.
Now let’s turn this script into a server application. We use box.cfg from Tarantool’s built-in Lua module to:

¢ launch the database (a database has a persistent on-disk state, which needs to be restored after we
start an application) and

¢ configure Tarantool as a server that accepts requests over a TCP port.

We also add some simple database logic, using space.create() and create index() to create a space with a
primary index. We use the function box.once() to make sure that our logic will be executed only once when
the database is initialized for the first time, so we don’t try to create an existing space or index on each
invocation of the script:

#!/usr/bin/env tarantool
-- Configure database
box.cfg {

listen — 3301
}

box.once("bootstrap", function()
box.schema.space.create(' tweedledum ")
box.space.tweedledum:create _index('primary"',
{ type = "TREE", parts = {1, "unsigned'}})
end)

Now we launch our application in the same manner as before:

$ tarantool myapp.lua

Hello, world!

2016-12-19 16:07:14.250 [41436] main/101/myapp.lua C> version 1.7.2-146-g021d36b

2016-12-19 16:07:14.250 [41436] main/101/myapp.lua C> log level 5

2016-12-19 16:07:14.251 [41436] main/101/myapp.lua I>> mapping 1073741824 bytes for tuple arena...
2016-12-19 16:07:14.255 [41436] main/101/myapp.lua I> recovery start

2016-12-19 16:07:14.255 [41436] main/101/myapp.lua I> recovering from *./00000000000000000000.snap "'
2016-12-19 16:07:14.271 [41436] main/101/myapp.lua I>> recover from " ./00000000000000000000.xlog"
2016-12-19 16:07:14.271 [41436] main/101/myapp.lua I>> done " ./00000000000000000000.xlog '

34 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2016-12-19 16:07:14.272 [41436] main/102/hot _standby I> recover from ./00000000000000000000.xlog"
2016-12-19 16:07:14.274 [41436] iproto/102/iproto I>> binary: started

2016-12-19 16:07:14.275 [41436] iproto/102/iproto I> binary: bound to [::]:3301

2016-12-19 16:07:14.275 [41436] main/101/myapp.lua I>> done *./00000000000000000000.xlog "
2016-12-19 16:07:14.278 [41436] main/101/myapp.lua I>> ready to accept requests

This time, Tarantool executes our script and keeps working as a server, accepting TCP requests on port
3301. We can see Tarantool in the current session’s process list:

$ ps | grep "tarantool"
PID TTY TIME CMD
41608 ttys001 0:00.47 tarantool myapp.lua <running>

But the Tarantool instance will stop if we close the current terminal window. To detach Tarantool and
our application from the terminal window, we can launch it in the daemon mode. To do so, we add some
parameters to box.cfg{}:

¢ background = true that actually tells Tarantool to work as a daemon service,

e log = 'dir-name"' that tells the Tarantool daemon where to store its log file (other log settings are
available in Tarantool log module), and

e pid_file = 'file-name"' that tells the Tarantool daemon where to store its pid file.

For example:

box.cfg {
listen — 3301
background = true,
log = "1.log",
pid_file = "1.pid’

}

We launch our application in the same manner as before:

$ tarantool myapp.lua
Hello, world!

Tarantool executes our script, gets detached from the current shell session (you won'’t see it with ps | grep
"tarantool") and continues working in the background as a daemon attached to the global session (with SID
=0):

$ ps -ef | grep "tarantool"
PID SID TIME CMD
42178 0 0:00.72 tarantool myapp.lua <running>

Now that we have discussed how to create and launch a Lua application for Tarantool, let’s dive deeper into
programming practices.

4.4.2 Creating an application

Further we walk you through key programming practices that will give you a good start in writing Lua
applications for Tarantool. For an adventure, this is a story of implementing... a real microservice based
on Tarantool! We implement a backend for a simplified version of Pokémon Go, a location-based augmented
reality game released in mid-2016. In this game, players use a mobile device’s GPS capability to locate,

4.4. Application server 35

https://en.wikipedia.org/wiki/Pok\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 1 e\egroup \spacefactor \accent@spacefactor mon_Go

Tarantool, Release 1.10.0

capture, battle and train virtual monsters called “pokémon”, who appear on the screen as if they were in the
same real-world location as the player.

To stay within the walk-through format, let’s narrow the original gameplay as follows. We have a map with
pokémon spawn locations. Next, we have multiple players who can send catch-a-pokémon requests to the
server (which runs our Tarantool microservice). The server replies whether the pokémon is caught or not,
increases the player’s pokémon counter if yes, and triggers the respawn-a-pokémon method that spawns a
new pokémon at the same location in a while.

We leave client-side applications outside the scope of this story. Yet we promise a mini-demo in the end to
simulate real users and give us some fun. :-)

First, what would be the best way to deliver our microservice?

Modules, rocks and applications

To make our game logic available to other developers and Lua applications, let’s put it into a Lua module.

A module (called “rock” in Lua) is an optional library which enhances Tarantool functionality. So, we
can install our logic as a module in Tarantool and use it from any Tarantool application or module. Like
applications, modules in Tarantool can be written in Lua (rocks), C or C++.

Modules are good for two things:
* easier code management (reuse, packaging, versioning), and
¢ hot code reload without restarting the Tarantool instance.

Technically, a module is a file with source code that exports its functions in an API. For example, here is a
Lua module named mymodule.lua that exports one function named myfun:

local exports = {}

exports.myfun = function(input_string)
print('Hello', input_string)

end

return exports

To launch the function myfun() — from another module, from a Lua application, or from Tarantool itself, —
we need to save this module as a file, then load this module with the require() directive and call the exported
function.

For example, here’s a Lua application that uses myfun() function from mymodule.lua module:

-- loading the module
local mymodule = require("mymodule")

-- calling myfun() from within test() function
local test — function()

mymodule.myfun()
end

A thing to remember here is that the require() directive takes load paths to Lua modules from the package.
path variable. This is a semicolon-separated string, where a question mark is used to interpolate the module
name. By default, this variable contains system-wide Lua paths and the working directory. But if we put
our modules inside a specific folder (e.g. scripts/), we need to add this folder to package.path before any
calls to require():

36 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

package.path = 'scripts/7.lua;' .. package.path

For our microservice, a simple and convenient solution would be to put all methods in a Lua module (say
pokemon.lua) and to write a Lua application (say game.lua) that initializes the gaming environment and
starts the game loop.

Now let’s get down to implementation details. In our game, we need three entities:

¢ map, which is an array of pokémons with coordinates of respawn locations; in this version of the game,
let a location be a rectangle identified with two points, upper-left and lower-right;

¢ player, which has an ID, a name, and coordinates of the player’s location point;

* pokémon, which has the same fields as the player, plus a status (active/inactive, that is present on the
map or not) and a catch probability (well, let’s give our pokémons a chance to escape :-))

We'll store these entities as tuples in Tarantool spaces. But to deliver our backend application as a mi-
croservice, the good practice would be to send/receive our data in the universal JSON format, thus using
Tarantool as a document storage.

Avro schemas

To store JSON data as tuples, we will apply a savvy practice which reduces data footprint and ensures all
stored documents are valid. We will use Tarantool module avro-schema which checks the schema of a JSON
document and converts it to a Tarantool tuple. The tuple will contain only field values, and thus take a
lot less space than the original document. In avro-schema terms, converting JSON documents to tuples is
“flattening”, and restoring the original documents is “unflattening”. The usage is quite straightforward:

1. For each entity, we need to define a schema in Apache Avro schema syntax, where we list the entity’s
fields with their names and Avro data types.

2. At initialization, we call avro-schema.create() that creates objects in memory for all schema entities,
and compile() that generates flatten/unflatten methods for each entity.

3. Further on, we just call flatten/unflatten methods for a respective entity on receiving/sending the
entity’s data.

Here’s what our schema definitions for the player and pokémon entities look like:

local schema — {
player = {
type="record",
name—"player schema',
fields={
{name="id", type—"long"},
{name—"name", type="string"},

name—"location",
type= {
type—"record",
name="player location",
fields—{
{name—"x", type="double"},
{name="y", type="double"}

4.4. Application server 37

https://github.com/tarantool/avro-schema
https://en.wikipedia.org/wiki/Apache_Avro
http://avro.apache.org/docs/current/spec.html#schema_primitive

Tarantool, Release 1.10.0

}
}
}7

pokemon = {
type="record",
name—"pokemon schema",
fields—{
{name="id", type—="long"},
{name—"status", type="string"},
{name="name", type="string"},
{name="chance", type="double"},
{
name—"location",
type= {
type="record",
name="pokemon _location",
fields—{
{name="x", type="double"},
{name="y", type="double"}
}
}
}

And here’s how we create and compile our entities at initialization:

-- load avro-schema module with require()
local avro = require('avro schema'")

-- create models
local ok _m, pokemon = avro.create(schema.pokemon)
local ok p, player — avro.create(schema.player)
if ok_m and ok _p then
-- compile models
local ok cm, compiled pokemon = avro.compile(pokemon)
local ok _cp, compiled player — avro.compile(player)
if ok_cm and ok _cp then
-- start the game
else
log.error(' Schema compilation failed")
end
else
log.info(' Schema creation failed ")
end
return false

As for the map entity, it would be an overkill to introduce a schema for it, because we have only one map
in the game, it has very few fields, and — which is most important — we use the map only inside our logic,
never exposing it to external users.

Next, we need methods to implement the game logic. To simulate object-oriented programming in our Lua
code, let’s store all Lua functions and shared variables in a single local variable (let’s name it as game). This

38 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

will allow us to address functions or variables from within our module as self.func_name or self.var _name.
Like this:

local game = {
-- a local variable
num_ players — 0,

-- a method that prints a local variable
hello = function(self)

print(' Hello! Your player number is ' .. self.num_players .. '.")
end,

-- a method that calls another method and returns a local variable
sign_in = function(self)

self.num_players — self.num_players | 1

self:hello()

return self.num_ players
end

}

In OOP terms, we can now regard local variables inside game as object fields, and local functions as object
methods.

Note: In this manual, Lua examples use local variables. Use global variables with caution, since the
module’s users may be unaware of them.

To enable/disable the use of undeclared global variables in your Lua code, use Tarantool’s strict module.

So, our game module will have the following methods:

¢ catch() to calculate whether the pokémon was caught (besides the coordinates of both the player and
pokémon, this method will apply a probability factor, so not every pokémon within the player’s reach
will be caught);

¢ respawn() to add missing pokémons to the map, say, every 60 seconds (we assume that a frightened
pokémon runs away, so we remove a pokémon from the map on any catch attempt and add it back to
the map in a while);

* notify() to log information about caught pokémons (like “Player 1 caught pokémon A”);

* start() to initialize the game (it will create database spaces, create and compile avro schemas, and
launch respawn()).

Besides, it would be convenient to have methods for working with Tarantool storage. For example:
* add_pokemon() to add a pokémon to the database, and
* map() to populate the map with all pokémouns stored in Tarantool.

We'll need these two methods primarily when initializing our game, but we can also call them later, for
example to test our code.

Bootstrapping a database

Let’s discuss game initialization. In start() method, we need to populate Tarantool spaces with pokémon
data. Why not keep all game data in memory? Why use a database? The answer is: persistence. Without
a database, we risk losing data on power outage, for example. But if we store our data in an in-memory
database, Tarantool takes care to persist it on disk whenever it’s changed. This gives us one more benefit:

4.4. Application server 39

Tarantool, Release 1.10.0

quick startup in case of failure. Tarantool has a smart algorithm that quickly loads all data from disk into
memory on startup, so the warm-up takes little time.

We’ll be using functions from Tarantool built-in box module:

* box.schema.create space('pokemons') to create a space named pokemon for storing information
about pokémons (we don’t create a similar space for players, because we intend to only send/receive
player information via APT calls, so we needn’t store it);

* box.space.pokemons:create index('primary', {type = 'hash', parts = {1, 'unsigned'}}) to create
a primary HASH index by pokémon ID;

* box.space.pokemons:create index('status', {type = 'tree', parts = {2, 'str'}}) to create a secondary
TREE index by pokémon status.

Notice the parts = argument in the index specification. The pokémon ID is the first field in a Tarantool
tuple since it’s the first member of the respective Avro type. So does the pokémon status. The actual JSON
document may have ID or status fields at any position of the JSON map.

The implementation of start() method looks like this:

-- create game object
start = function(self)
-- create spaces and indexes
box.once('init ', function()
box.schema.create _space('pokemons')
box.space.pokemons:create index(
"primary", {type = "hash', parts = {1, "unsigned'}}
)

box.space.pokemons:create index(
"status", {type = "tree", parts = {2, 'str'}}
)

end)

-- create models
local ok _m, pokemon — avro.create(schema.pokemon)
local ok _p, player = avro.create(schema.player)
if ok_m and ok_p then
-- compile models
local ok cm, compiled pokemon — avro.compile(pokemon)
local ok _cp, compiled player — avro.compile(player)
if ok_cm and ok _cp then
-- start the game

else
log.error(' Schema compilation failed")

end

else
log.info(' Schema creation failed ")

end

return false

end

GIS

Now let’s discuss catch(), which is the main method in our gaming logic.

Here we receive the player’s coordinates and the target pokémon’s ID number, and we need to answer whether
the player has actually caught the pokémon or not (remember that each pokémon has a chance to escape).

40 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

First thing, we validate the received player data against its Avro schema. And we check whether such a
pokémon exists in our database and is displayed on the map (the pokémon must have the active status):

catch = function(self, pokemon _id, player)
-- check player data
local ok, tuple — self.player model.flatten(player)
if not ok then
return false
end
-- get pokemon data
local p_tuple = box.space.pokemons:get(pokemon _id)
if p_tuple == nil then
return false
end
local ok, pokemon = self.pokemon model.unflatten(p_tuple)
if not ok then
return false
end
if pokemon.status ~= self.state. ACTIVE then
return false
end
-- more catch logic to follow

Next, we calculate the answer: caught or not.
To work with geographical coordinates, we use Tarantool gis module.

To keep things simple, we don’t load any specific map, assuming that we deal with a world map. And we do
not validate incoming coordinates, assuming again that all received locations are within the planet Earth.

We use two geo-specific variables:

¢ wgs84, which stands for the latest revision of the World Geodetic System standard, W(GS84. Basically,
it comprises a standard coordinate system for the Earth and represents the Earth as an ellipsoid.

¢ nationalmap, which stands for the US National Atlas Equal Area. This is a projected coordinates
system based on WGS84. It gives us a zero base for location projection and allows positioning our
players and pokémons in meters.

Both these systems are listed in the EPSG Geodetic Parameter Registry, where each system has a unique
number. In our code, we assign these listing numbers to respective variables:

wgs84 = 4326,
nationalmap = 2163,

For our game logic, we need one more variable, catch distance, which defines how close a player must get
to a pokémon before trying to catch it. Let’s set the distance to 100 meters.

catch _distance = 100,

Now we’re ready to calculate the answer. We need to project the current location of both player (p_pos)
and pokémon (m_pos) on the map, check whether the player is close enough to the pokémon (using
catch _distance), and calculate whether the player has caught the pokémon (here we generate some ran-
dom value and let the pokémon escape if the random value happens to be less than 100 minus pokémon’s
chance value):

-- project locations
local m_pos = gis.Point(

4.4. Application server 41

https://github.com/tarantool/gis
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://epsg.io/2163

Tarantool, Release 1.10.0

{pokemon.location.x, pokemon.location.y}, self.wgs84
):transform(self.nationalmap)
local p_pos = gis.Point(

{player.location.x, player.location.y}, self.wgs84
):transform(self.nationalmap)

-- check catch distance condition
if p_pos:distance(m_pos) > self.catch distance then
return false

end
-- try to catch pokemon
local caught — math.random(100) >= 100 - pokemon.chance

if caught then
- update and notify on success
box.space.pokemons:update(
pokemon_id, {{'=", sell. STATUS, self.state. CAUGHT}}
)
self:notify(player, pokemon)
end
return caught

Index iterators

By our gameplay, all caught pokémons are returned back to the map. We do this for all pokémons on the
map every 60 seconds using respawn() method. We iterate through pokémons by status using Tarantool
index iterator function index:pairs and reset the statuses of all “caught” pokémons back to “active” using
box.space.pokemons:update().

respawn — function(self)
fiber.name(' Respawn fiber")
for _, tuple in box.space.pokemons.index.status:pairs(
self.state. CAUGHT) do
box.space.pokemons:update(
tuple[self.ID],
{{"=", sell.STATUS, self.state. ACTIVE}}
)
end
end

For readability, we introduce named fields:
ID =1, STATUS = 2,

The complete implementation of start() now looks like this:

-- create game object
start = function(self)
-- create spaces and indexes
box.once('init ', function()
box.schema.create space('pokemons')
box.space.pokemons:create _index(
"primary", {type = 'hash', parts = {1, "unsigned'}}
)

box.space.pokemons:create _index(
"status", {type = "tree", parts = {2, 'str'}}
)

end)

42 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

-- create models
local ok m, pokemon = avro.create(schema.pokemon)
local ok _p, player = avro.create(schema.player)
if ok_m and ok _p then
-- compile models
local ok _cm, compiled pokemon = avro.compile(pokemon)
local ok _cp, compiled player — avro.compile(player)
if ok _cm and ok cp then
-- start the game
self.pokemon model = compiled pokemon
self.player model — compiled player
self.respawn()
log.info(' Started ")
return true
else
log.error(' Schema compilation failed ")
end
else
log.info(' Schema creation failed ")
end
return false
end

Fibers

But wait! If we launch it as shown above — self.respawn() — the function will be executed only once, just like
all the other methods. But we need to execute respawn() every 60 seconds. Creating a fiber is the Tarantool
way of making application logic work in the background at all times.

A fiber exists for executing instruction sequences but it is not a thread. The key difference is that threads
use preemptive multitasking, while fibers use cooperative multitasking. This gives fibers the following two
advantages over threads:

¢ Better controllability. Threads often depend on the kernel’s thread scheduler to preempt a busy thread
and resume another thread, so preemption may occur unpredictably. Fibers yield themselves to run
another fiber while executing, so yields are controlled by application logic.

¢ Higher performance. Threads require more resources to preempt as they need to address the system
kernel. Fibers are lighter and faster as they don’t need to address the kernel to yield.

Yet fibers have some limitations as compared with threads, the main limitation being no multi-core mode.
All fibers in an application belong to a single thread, so they all use the same CPU core as the parent thread.
Meanwhile, this limitation is not really serious for Tarantool applications, because a typical bottleneck for
Tarantool is the HDD, not the CPU.

A fiber has all the features of a Lua coroutine and all programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

Well, performance or controllability are of little importance in our case. We’ll launch respawn() in a fiber to
make it work in the background all the time. To do so, we’ll need to amend respawn)():

respawn — function(self)
-- let 's give our fiber a name;
- this will produce neat output in fiber.info()
fiber.name(' Respawn fiber")

4.4. Application server 43

http://www.lua.org/pil/contents.html#9

Tarantool, Release 1.10.0

while true do
for _, tuple in box.space.pokemons.index.status:pairs(
self.state. CAUGHT) do
box.space.pokemons:update(

tuple[self.ID],
{{"=", self. STATUS, self.state. ACTIVE}}
)
end
fiber.sleep(self.respawn__time)
end
end

and call it as a fiber in start():

start = function(self)
-- create spaces and indexes

-- start the game
self.pokemon model = compiled pokemon
self.player model — compiled player
fiber.create(self.respawn, self)
log.info(' Started ")

-- errors if schema creation or compilation fails

end

Logging

One more helpful function that we used in start() was log.info() from Tarantool log module. We also need
this function in notify() to add a record to the log file on every successful catch:

-- event notification
notify — function(self, player, pokemon)

log.info("Player '%s"' caught '%s"'", player.name, pokemon.name)
end

We use default Tarantool log settings, so we’ll see the log output in console when we launch our application
in script mode.

Great! We've discussed all programming practices used in our Lua module (see pokemon.lua).

Now let’s prepare the test environment. As planned, we write a Lua application (see game.lua) to initialize
Tarantool’s database module, initialize our game, call the game loop and simulate a couple of player requests.

To launch our microservice, we put both pokemon.lua module and game.lua application in the current
directory, install all external modules, and launch the Tarantool instance running our game.lua application
(this example is for Ubuntu):

$ s

game.lua pokemon.lua

44 Chapter 4. User’s Guide

https://github.com/tarantool/pokemon/blob/master/src/pokemon.lua
https://github.com/tarantool/pokemon/blob/master/game.lua

Tarantool, Release 1.10.0

$ sudo apt-get install tarantool-gis
$ sudo apt-get install tarantool-avro-schema
$ tarantool game.lua

Tarantool starts and initializes the database. Then Tarantool executes the demo logic from game.lua: adds
a pokémon named Pikachu (its chance to be caught is very high, 99.1), displays the current map (it contains
one active pokémon, Pikachu) and processes catch requests from two players. Playerl is located just near
the lonely Pikachu pokémon and Player2 is located far away from it. As expected, the catch results in this
output are “true” for Playerl and “false” for Player2. Finally, Tarantool displays the current map which is
empty, because Pikachu is caught and temporarily inactive:

$ tarantool game.lua

2017-01-09 20:19:24.605 [6282] main/101/game.lua C> version 1.7.3-43-gf5falel

2017-01-09 20:19:24.605 [6282] main/101/game.lua C> log level 5

2017-01-09 20:19:24.605 [6282] main/101/game.lua I>> mapping 1073741824 bytes for tuple arena...

2017-01-09 20:19:24.609 [6282] main/101/game.lua I*> initializing an empty data directory

2017-01-09 20:19:24.634 [6282] snapshot/101/main I> saving snapshot *./00000000000000000000.snap.inprogress '
2017-01-09 20:19:24.635 [6282] snapshot/101/main I>> done

2017-01-09 20:19:24.641 [6282] main/101/game.lua I> ready to accept requests

2017-01-09 20:19:24.786 [6282] main/101/game.lua I> Started

- {'id': 1, 'status': 'active', 'location': {'y': 2, 'x': 1}, 'name': 'Pikachu', 'chance': 99.1}

2017-01-09 20:19:24.789 [6282] main/101/game.lua I> Player 'Playerl' caught 'Pikachu'’
true
false

~ 1]

2017-01-09 20:19:24.789 [6282] main C> entering the event loop

nginx

In the real life, this microservice would work over HTTP. Let’s add nginx web server to our environment
and make a similar demo. But how do we make Tarantool methods callable via REST API? We use nginx
with Tarantool nginx upstream module and create one more Lua script (app.lua) that exports three of our
game methods — add _pokemon(), map() and catch() — as REST endpoints of the nginx upstream module:

local game = require(' pokemon")
box.cfg{listen—=3301}
game:start()

-- add, map and catch functions exposed to REST API
function add(request, pokemon)
return {
result—game:add _pokemon(pokemon)

}

end

function map(request)
return {
map-—game:map()

}

end

4.4. Application server 45

https://nginx.org/en/
https://github.com/tarantool/nginx_upstream_module
https://github.com/tarantool/pokemon/blob/master/src/app.lua

Tarantool, Release 1.10.0

function catch(request, pid, player)
local id = tonumber(pid)
if id == nil then
return {result=false}
end
return {
result—game:catch(id, player)

}

end

An easy way to configure and launch nginx would be to create a Docker container based on a Docker image
with nginx and the upstream module already installed (see http/Dockerfile). We take a standard nginx.conf,
where we define an upstream with our Tarantool backend running (this is another Docker container, see
details below):

upstream tnt {
server pserver:3301 max_fails=1 fail timeout=60s;
keepalive 250000;

}

and add some Tarantool-specific parameters (see descriptions in the upstream module’s README file):

server {
server name tnt test;

listen 80 default deferred reuseport so_keepalive=on backlog=65535;

location = / {
root /usr/local /nginx/html;

}

location /api {
answers check infinity timeout
tnt _read timeout 60m;
if ($request method = GET) {
tnt _method "map";
}
tnt _http rest methods get;
tnt_http methods all;
tnt _multireturn _skip count 2;
tnt_pure_result on;
tnt _pass_http request on parse args;
tnt _pass tnt;
}
}

Likewise, we put Tarantool server and all our game logic in a second Docker container based on the official
Tarantool 1.7 image (see src/Dockerfile) and set the container’s default command to tarantool app.lua. This
is the backend.

Non-blocking 10

To test the REST API, we create a new script (client.lua), which is similar to our game.lua application, but
makes HTTP POST and GET requests rather than calling Lua functions:

46 Chapter 4. User’s Guide

https://hub.docker.com/r/tarantool/tarantool-nginx/
https://github.com/tarantool/pokemon/blob/master/http/Dockerfile
https://github.com/tarantool/pokemon/blob/master/http/nginx.conf
https://github.com/tarantool/nginx_upstream_module#directives
https://github.com/tarantool/docker
https://github.com/tarantool/docker
https://github.com/tarantool/pokemon/blob/master/src/Dockerfile
https://github.com/tarantool/pokemon/blob/master/client/client.lua

Tarantool, Release 1.10.0

local http = require(' curl').http()

local json = require('json")

local URI = os.getenv('SERVER URI")
local fiber = require(' fiber")

local playerl = {
name—"Player1",
id=1,
location = {
x=1.0001,
y=2.0003

}
}
local player2 = {
name=""Player2",
id—2,
location = {
x=30.123,
y=40.456
}
}

local pokemon — {
name=""Pikachu",
chance—99.1,
id=1,
status—"active",
location = {
x—1,
y=2
}
}

function request(method, body, id)
local resp = http:request(
method, URI, body

if id ~= nil then
print(string.format (' Player %d result: %s",
id, resp.body))
else
print(resp.body)
end
end

local players = {}
function catch(player)
fiber.sleep(math.random(5))
print(' Catch pokemon by player ' .. tostring(player.id))
request(
'"POST", "{"method": "catch",
"params": [1, '..json.encode(player).." |},
tostring(player.id)
)
table.insert(players, player.id)
end

print(' Create pokemon")

4.4. Application server 47

Tarantool, Release 1.10.0

request(' POST", "{"method": "add",
"params": ['..json.encode(pokemon).."|} ")
request('GET", ')

fiber.create(catch, playerl)
fiber.create(catch, player2)

-- wait for players
while #players ~= 2 do
fiber.sleep(0.001)

end

request('GET", ')
os.exit()

When you run this script, you’ll notice that both players have equal chances to make the first attempt at
catching the pokémon. In a classical Lua script, a networked call blocks the script until it’s finished, so
the first catch attempt can only be done by the player who entered the game first. In Tarantool, both
players play concurrently, since all modules are integrated with Tarantool cooperative multitasking and use
non-blocking I/0.

Indeed, when Playerl makes its first REST call, the script doesn’t block. The fiber running catch() function
on behalf of Player] issues a non-blocking call to the operating system and yields control to the next fiber,
which happens to be the fiber of Player2. Player2’s fiber does the same. When the network response
is received, Playerl’s fiber is activated by Tarantool cooperative scheduler, and resumes its work. All
Tarantool modules use non-blocking I/O and are integrated with Tarantool cooperative scheduler. For
module developers, Tarantool provides an API.

For our HTTP test, we create a third container based on the official Tarantool 1.7 image (see
client/Dockerfile) and set the container’s default command to tarantool client.lua.

* & &

To run this test locally, download our pokemon project from GitHub and say:

$ docker-compose build
$ docker-compose up

Docker Compose builds and runs all the three containers: pserver (Tarantool backend), phttp (nginx) and
pclient (demo client). You can see log messages from all these containers in the console, pclient saying that
it made an HTTP request to create a pokémon, made two catch requests, requested the map (empty since
the pokémon is caught and temporarily inactive) and exited:

pclient 1 | Create pokemon

<..>

pclient 1 | {"result":true}

pclient 1 | {"map":[{"id":1,"status":"active","location":{"y":2,"x":1},"name":"Pikachu","chance":99.100000}] }
pclient 1 | Catch pokemon by player 2

pclient 1 | Catch pokemon by player 1

pclient 1 | Player 1 result: {"result":true}

pclient 1 | Player 2 result: {"result":false}

pclient 1 | {"map":[]}

pokemon pclient 1 exited with code 0

Congratulations! Here’s the end point of our walk-through. As further reading, see more about installing
and contributing a module.

48 Chapter 4. User’s Guide

https://github.com/tarantool/docker
https://github.com/tarantool/pokemon/blob/master/client/Dockerfile
https://github.com/tarantool/pokemon

Tarantool, Release 1.10.0

See also reference on Tarantool modules and C API, and don’t miss our Lua cookbook recipes.

4.4.3 Installing a module

Modules in Lua and C that come from Tarantool developers and community contributors are available in
the following locations:

e Tarantool modules repository, and

* Tarantool deb/rpm repositories.

Installing a module from a repository

See README in tarantool/rocks repository for detailed instructions.

Installing a module from deb/rpm

Follow these steps:
1. Install Tarantool as recommended on the download page.

2. Install the module you need. Look up the module’s name on Tarantool rocks page and put the prefix
“tarantool-” before the module name to avoid ambiguity:

$ # for Ubuntu/Debian:
$ sudo apt-get install tarantool-<module-name>

$ # for RHEL/CentOS/Amazon:
$ sudo yum install tarantool-<module-name>

For example, to install the module shard on Ubuntu, say:

’ $ sudo apt-get install tarantool-shard

Once these steps are complete, you can:

* load any module with

’ tarantool> name = require(' module-name")

for example:

’ tarantool > shard = require('shard")

¢ search locally for installed modules using package.path (Lua) or package.cpath (C):

tarantool > package.path

- ./?.lua;./?/init.lua; /usr/local/share/tarantool/?.lua;/usr/local/share/
tarantool/? /init.lua;/usr/share/tarantool/?.lua; /usr /share/tarantool /7 /ini
t.lua;/usr/local /share/lua/5.1/?.lua; /usr/local /share/lua/5.1/7 /init.lua; /
usr/share/lua/5.1/7.lua;/usr /share/lua/5.1/7 /init.lua;

tarantool > package.cpath

4.4. Application server 49

https://github.com/tarantool/rocks#managing-modules-with-tarantool-174
http://tarantool.org/download.html
http://tarantool.org/rocks.html
http://github.com/tarantool/shard

Tarantool, Release 1.10.0

- ./?.s0;/usr/local/lib/x86 64-linux-gnu/tarantool/?.so;/usr/lib/x86 64-li
nux-gnu,/tarantool/?.so; /usr/local /lib /tarantool/?.so; /usr/local /lib/x86 64
-linux-gnu/lua/5.1/7.s0;/usr/lib/x86 _ 64-linux-gnu/lua/5.1/?.s0;/usr/local/
lib/lua/5.1/7.s0;

Note: Question-marks stand for the module name that was specified earlier when saying re-
quire('module-name").

4.4.4 Contributing a module

We have already discussed how to create a simple module in Lua for local usage. Now let’s discuss how to
create a more advanced Tarantool module and then get it published on Tarantool rocks page and included
in official Tarantool images for Docker.

To help our contributors, we have created modulekit, a set of templates for creating Tarantool modules in
Lua and C.

Note: As a prerequisite for using modulekit, install tarantool-dev package first. For example, in Ubuntu
say:

$ sudo apt-get install tarantool-dev

Contributing a module in Lua

See README in “luakit” branch of tarantool/modulekit repository for detailed instructions and examples.

Contributing a module in C

In some cases, you may want to create a Tarantool module in C rather than in Lua. For example, to work
with specific hardware or low-level system interfaces.

See README in “ckit” branch of tarantool/modulekit repository for detailed instructions and examples.

Note: You can also create modules with C++, provided that the code does not throw exceptions.

4.4.5 Reloading a module

You can reload any Tarantool application or module with zero downtime.

Reloading a module in Lua

Here’s an example that illustrates the most typical case — “update and reload”.

50 Chapter 4. User’s Guide

http://tarantool.org/rocks.html
http://github.com/tarantool/docker
http://github.com/tarantool/modulekit
http://github.com/tarantool/modulekit/blob/luakit/README.md
http://github.com/tarantool/modulekit/blob/ckit/README.md

Tarantool, Release 1.10.0

Note: In this example, we use recommended administration practices based on instance files and tarantoolctl
utility.

1. Update the application file.

For example, a module in /usr/share/tarantool/app.lua:

local function start()
-- initial version
box.once("myapp:v1.0", function()
box.schema.space.create("somedata)
box.space.somedata:create _index("primary')

end)

-- migration code from 1.0 to 1.1

box.once("myapp:v1.1", function()
box.space.somedata.index.primary:alter(...)

end)

-- migration code from 1.1 to 1.2

box.once("myapp:v1.2", function()
box.space.somedata.index.primary:alter(...)
box.space.somedata:insert(...)

end)

end

-- start some background fibers if you need

local function stop()
-- stop all background fibers and clean up resources
end

local function api_for call(xxx)
-- do some business

end

return {
start — start,
stop — stop,

api_for_call — api_for_call

}

. Update the instance file.

For example, /etc/tarantool/instances.enabled/my app.lua:

#!/usr/bin/env tarantool

-- hot code reload example

box.cfg({listen = 3302})

-- ATTENTION: unload it all properly!

4.4.

Application server

51

Tarantool, Release 1.10.0

local app = package.loaded["app'|
if app ~= nil then
-- stop the old application version
app-stop()
-- unload the application
package.loaded['app'] = nil
-- unload all dependencies
package.loaded|'somedep'| = nil
end

-- load the application
log.info('require app")

app — require('app")

-- start the application

app.start({some app options controlled by sysadmins})

The important thing here is to properly unload the application and its dependencies.

. Manually reload the application file.

For example, using tarantoolctl:

$ tarantoolctl eval my app /etc/tarantool/instances.enabled/my app.lua

Reloading a module in C

After you compiled a new version of a C module (*.so shared library), call box.schema.func.reload(‘module-

name’) from your Lua script to reload the module.

4.4.6 Developing with an IDE

You can use IntelliJ IDEA as an IDE to develop and debug Lua applications for Tarantool.

1. Download and install the IDE from the official web-site.

JetBrains provides specialized editions for particular languages: IntelliJ IDEA (Java), PHPStorm
(PHP), PyCharm (Python), RubyMine (Ruby), CLion (C/C++), WebStorm (Web) and others. So,

download a version that suits your primary programming language.
Tarantool integration is supported for all editions.

2. Configure the IDE:

(a) Start IntelliJ IDEA.

(b) Click Configure button and select Plugins.

52

Chapter 4. User’s Guide

https://www.jetbrains.com/idea/

Tarantool, Release 1.10.0

(¢) Click Browse repositories.

Welcome to Intellid IDEA

IntelliJ IDEA

Version 2017.2.3

#¢ Create New Project
¥ Import Project
= Open

¥ Check out from Version Control ~

Configure ~ Get Help ~

1 Preferences
Import Settings

Export Settings

Settings Repository...

Check for Updates
Project Defaults

»

"

4.4. Application server

53

Tarantool, Release 1.10.0

[BN Plugins
Qr Show: All plugins «
Sort by: name ¥ | GitHub
Android Support Version: 172.3968.16
m Ant Support Allows warking with GitHub, The following features are available:
w Bytecode Viewer L] g:tc:iiri‘l:;:grs:egr::Or;dse‘;i:eo;ersion Control node in the
n Copyright ® Cvailable Gitrepostones, when Gt ub s notanabied.
® When GitHub is enabled, the GitHub node appears an the VCS

s Coverage menu, and an the context menu of the editor.
s CVS Integration
s Eclipse Integration
= EditorConfig
s Git Integration

-
= Gradle
a Groovy
a hgdidea
= 118n for Java
s IntelliLang
= Java Bvtecode Decompiler
Install JetBrains plugin... Browse repositories... Install plugin from disk...

? Cancel | ol |

(d) Install EmmyLua plugin.

Note: Please don’t be confused with Lua plugin, which is less powerful than EmmyLua.

[NN] Browse Repositories

Qr 5 category: All =

Sort by: name * LANGUAGES i
LANGUALES 2 years ago 1
EmmyLua

Emma Code Coverage; 1
28563 Wiy [Install H

CODE TOOLS 12 years ago |
H

Emmet Everywh wirdrdrdr 5051 downloads I

73,969 WWAAN | Updated 24/08/2017 v1.1.8

CODE TOOLS 2 yaars ago
Support for Lua programming language.

M Pt Source Code | Gitter | Donate
- Features:

Emoji Support Plugin 4120 i ® Syntax highiighting

CODE EDITING ' P ® Highlight global value

e e ® Highlight localiparam value
EmojiPrefix o & Highlight up value
35
VS INTEGRATION ane month ago ¢ Code completion
. . & Keyword completion
Enclosing Plugin 0437 driddd & Basic completion
HTTP Proxy Settings... Manage repositories...

54 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

(e) Restart IntelliJ IDEA.
(f) Click Configure, select Project Defaults and then Run Configurations.

- ® Welcome to IntelliJ IDEA

IntelliJ IDEA

Version 2017.2.3

7 Create New Project
¥ Import Project
Open

¥ Check out from Version Control ~

Configure » Get Help ~
) Preferences y
‘ Plugins r
Import Settings
Export Settings
Settings Repository...
Check for Updates
" Settings
Project Structure

(¢) Find Lua Application in the sidebar at the left.
(h) In Program, type a path to an installed tarantool binary.
By default, this is tarantool or /usr/bin/tarantool on most platforms.

If you installed tarantool from sources to a custom directory, please specify the proper path here.

4.4. Application server 55

Tarantool, Release 1.10.0

e o Run/Debug Configurations

+ 12 Debugger: Remote Debugger(Mobdebug)

v J“Defaults
& Ant Target
= Applet Working Directory:
= Application
! Compound Entry File:

(* Gradle
™ Griffon Parameters: #

Program: tarantool

& Groovy
JAR Application ~ Before launch: Activate tool window
W JUnit
= Java Scratch
K Kotlin There are no tasks to run before launch
K Kotlin (JavaScript)
K Kotlin script
= Lua Application
= Lua Remote(Mo ug)
Maven +
Plugin
& Remote
Wi TestNG
B XSLT

? Cancel Apply m

Show this page Activate tool window

Now IntelliJ IDEA is ready to use with Tarantool.
3. Create a new Lua project.
o e New Project

= Java Project SDK: Lua New...
= Java FX

IntelliJ Platform Plugin

Additional Librari d Frameworks:

17 Maven

(2 Gradle
Nothing to show

& Groovy
(@) Griffon

‘m
K Kotlin

= Empty Project

? Cancel Previous m

4. Add a new Lua file, for example init.lua.

56 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

5. Write your code, save the file.

eee myproject - (~/ideaProjects/myproject] -
wmyproject) [src) H-renm@Q
¥ Wamyproject ~/IdeaProjects/myproject
v [w.idea
& misc.xml Lua File
& madules.xmi [Copy & Lua Tutorial
& workspace.xm! Copy Path pe o0
fsrc | Copy Reference Xo%C | .
myproject.iml (M Paste “ : :cmch File O8N
» |l External Libraries = ackage
Find Usages XF7 & FXML File
Find in Path... 0%F &= package-infojava
Replace in Path.. %R &= module-info.java
Analyze & HTML File
Refactor » i JavaFXApplication
= Singleton
Add to Favorites > 2 xsLT Style "
Show Image Thumbnails 08T
Edit File Templates...
Reformat Code 8L il Resource Bundle
Optimize Imports X0
Delete... =
Build Module 'myproject
Rebuild '<default>' 0 #®F
Local History >
@5 Synchronize 'src’
Reveal in Finder
+* Compare With... %D
Open Module Settings £
Mark Directory as »>
| Run LuaCheck
R © C**'* 05

6. To run you application, click Run -> Run in the main menu and select your source file in the list.

Or click Run -> Debug to start debugging.

(XX) ¥ init.lua - myproject - (~/IdeaProjects/myproject]
Namyproject) hw sre) 5, init.lua) W . mye- p & H B Q
B Project - D ok B I minitla
¥ hamyproject ~/IdeaProjects/myproject 1 — v
v [w.idea 2 —— Created by lenkis
& Misc.xml i o DateTime: 11/09/2017 17:09
& Modules.xm| 5
o workspace.xml 6 print(“Hello")
» mout 7
¥ busrc | Run |
= init.lua 0.[» Edit Configurations...
ik 2 nitba
» |l External Libraries %o myua K
| Hold © to Debug
Run o, my.lua et

Note:

To use Lua debugger, please upgrade Tarantool to version 1.7.5-29-gbb6170e4b or later.

4.4. Application server

57

Tarantool, Release 1.10.0

[X X] ¥ init.lua - myproject - (~/ideaProjects/myproject)
i myproject) b sre) g initdua) I minitin ~ b @ &QqQ
67 Project v Qo B 1- 2 initla

amyproject ~/ideaProjects/myproject ~
| .idea 2 Created by lenkis
H 2 misc.xml DateTime: 11/89/2017 17:89
1 o Mmodules.xml :

o Workspace.xml print("Hello")
{ out 4
! local a, b = 10, 15 a: 180 b: 15
I MR print(a, b)
aMyproject.iml P

Il External Libraries local yaml = require(modname: ‘yaml') yaml: table k|
{ LI box.cfg{}
! 1 box.once("schema”, function()
{ box, schema. space.create('memtx')

7 bax. space.memtx: index_create(‘primary’)
{ wnd
)
{
box,space.memtx:auto_increment(“Hello")

{ box. space.memtx:auto_increment(“wWorld")
| print(yaml.encode(box.space.memtx:select()))
iD!bug xs initua & L

T NN AN Y

| ¢ Debugger [E] Console +* b
H
19 [Frames 4* = Variables =

I LuaStack 2] & a = {number} 10

{ b = {number} 15

i . @ {} yaml = {table} table

£ '=

| @

! =

l g @

{D Compilation completed successfully in 2s 160ms (a minute ago) 133 F: UTF8: 3 2 Q

4.4.7 Cookbook recipes

Here are contributions of Lua programs for some frequent or tricky situations.

You can execute any of these programs by copying the code into a .lua file, and then entering chmod +x
./program-name.lua and ./program-name.lua on the terminal.

The first line is a “hashbang”:

#t! /usr/bin/env tarantool

This runs Tarantool Lua application server, which should be on the execution path.

Use freely.

hello world.lua

The standard example of a simple program.

#t! /usr/bin/env tarantool

print(' Hello, World!")

console start.lua

Use box.once() to initialize a database (creating spaces) if this is the first time the server has been run. Then
use console.start() to start interactive mode.

58 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

#!/usr/bin/env tarantool

-- Configure database
box.cfg {

listen — 3313
}

box.once("bootstrap", function()
box.schema.space.create(' tweedledum ")
box.space.tweedledum:create _index('primary"',
{ type = "TREE", parts = {1, "unsigned'}})
end)

require(' console ").start()

fio read.lua

Use the fio module to open, read, and close a file.

#!/usr/bin/env tarantool

local fio = require('fio")
local errno = require('errno")
local f — fio.open(' /tmp/xxxx.txt"', {*O RDONLY" })
if not f then

error("Failed to open file:
end
local data = firead(4096)
f:close()
print(data)

"'..errno.strerror())

fio write.lua

Use the fio module to open, write, and close a file.

#t! /usr/bin/env tarantool

local fio = require('fio")

local errno = require('errno")

local f = fio.open(' /tmp/xxxx.txt', {'O_CREAT', 'O_WRONLY', 'O _APPEND"'},
tonumber(' 0666, 8))

if not f then
error("Failed to open file:

end

frwrite("Hello\n");

f:close()

"'..errno.strerror())

ffi printf.lua

Use the LuaJIT ffi library to call a C built-in function: printf(). (For help understanding ffi, see the FF1I
tutorial.)

4.4. Application server 59

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 1.10.0

#!/usr/bin/env tarantool
local fli = require('fli")

ffi.cdef]|
int printf(const char *format, ...);
Il

ffi.C.printf("Hello, %s\n", os.getenv("USER"));

ffi gettimeofday.lua

Use the LuaJIT ffi library to call a C function: gettimeofday(). This delivers time with millisecond precision,
unlike the time function in Tarantool’s clock module.

#!/usr/bin/env tarantool

local ffi = require('fli")
ffi.cdef]|
typedef long time t;
typedef struct timeval {
time t tv_sec;
time t tv_usec;
} timeval;
int gettimeofday(struct timeval *t, void *tzp);
Il

local timeval buf = flinew("timeval")
local now = function()

ffi.C.gettimeofday(timeval _buf, nil)

return tonumber(timeval buf.tv_sec * 1000 + (timeval buf.tv_usec / 1000))
end

ffi zlib.lua

Use the LuaJIT ffi library to call a C library function. (For help understanding ffi, see the FFI tutorial.)

#!/usr/bin/env tarantool

local fi = require("ffi")

ffi.cdef]|
unsigned long compressBound (unsigned long sourceLen);
int compress2(uint8 t *dest, unsigned long *destLen,
const uint8 t *source, unsigned long sourceLen, int level);
int uncompress(uint8 _t *dest, unsigned long *destLen,
const uint8 _t *source, unsigned long sourceLen);

Il
local zlib = fi.load(ffi.os == "Windows" and "zlib1" or "z")

-- Lua wrapper for compress2()
local function compress(txt)
local n = zlib.compressBound (#txt)
local buf = fli.new("uint8 t[7]", n)
local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.compress2(buf, buflen, txt, #txt, 9)
assert(res == 0)

60 Chapter 4. User’s Guide

http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi.html
http://luajit.org/ext_ffi_tutorial.html

Tarantool, Release 1.10.0

return fli.string(buf, buflen[0])
end

-- Lua wrapper for uncompress
local function uncompress(comp, n)
local buf = fli.new("uint8 t[7]", n)

local buflen = ffi.new("unsigned long[1]", n)
local res = zlib.uncompress(buf, buflen, comp, #comp)
assert(res == 0)
return fli.string(buf, buflen[0])
end

-- Simple test code.
local txt = string.rep("abced", 1000)

print("Uncompressed size: ", #txt)
local ¢ = compress(txt)
print("Compressed size: ", #c)

local txt2 = uncompress(c, #txt)
assert(txt2 —= txt)

ffi meta.lua

Use the LuaJIT ffi library to access a C object via a metamethod (a method which is defined with a
metatable).

#t! /usr/bin/env tarantool

local fi = require("ffi")
ffi.cdef]|
typedef struct { double x, y; } point_t;

Il

local point
local mt = {
___add = function(a, b) return point(a.x+b.x, a.y-+b.y) end,
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
~_index = {
area — function(a) return a.x*a.x + a.y*a.y end,
2
}

point = fli.metatype("point t", mt)

local a = point(3, 4)

print(a.x, a.y) >3 4
print(#a) —->5
print(a:area()) --> 25
local b = a + point(0.5, 8)
print(#Db) ->12.5

print arrays.lua

Create Lua tables, and print them. Notice that for the ‘array’ table the iterator function is ipairs(), while for
the ‘map’ table the iterator function is pairs(). (ipairs() is faster than pairs(), but pairs() is recommended for
map-like tables or mixed tables.) The display will look like: “1 Apple | 2 Orange | 3 Grapefruit | 4 Banana |
k3 v3 | k1 vl | k2 v2”.

4.4. Application server 61

http://luajit.org/ext_ffi.html

Tarantool, Release 1.10.0

#!/usr/bin/env tarantool

array — { '"Apple', 'Orange', 'Grapefruit', 'Banana'}
for k, v in ipairs(array) do print(k, v) end

map — {kl = 'v1', k2 = 'v2' k3 = 'v3' }
for k, v in pairs(map) do print(k, v) end

count array.lua

Use the ‘#’ operator to get the number of items in an array-like Lua table. This operation has O(log(N))
complexity.

#!/usr/bin/env tarantool

array — { 1, 2, 3}
print(#array)

count array with nils.lua

Missing elements in arrays, which Lua treats as “nil’s, cause the simple “#” operator to deliver improper
results. The “print(#t)” instruction will print “4”; the “print(counter)” instruction will print “3”; the
“print(max)” instruction will print “10”. Other table functions, such as table.sort(), will also misbehave
when “nils” are present.

#!/usr/bin/env tarantool

local t = {}

t[1] 1

t[4] — 4

t[10] = 10

print(#t)

local counter = 0

for k,v in pairs(t) do counter = counter + 1 end
print(counter)

local max = 0

for k,v in pairs(t) do if k > max then max = k end end
print(max)

count array with nulls.lua

Use explicit NULL values to avoid the problems caused by Lua’s nil == missing value behavior. Although
json.NULL == nil is true, all the print instructions in this program will print the correct value: 10.

#!/usr/bin/env tarantool

local json = require('json")

local t = {}

t[1] = 1; t[2] = json.NULL; t[3]= json.NULL;
t[4] = 4; t[5] = json.NULL; t[6]= json.NULL;
t[6] = 4; t[7] = json.NULL; t[8]= json.NULL;
t[9] = json.NULL

£[10] = 10

62 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

print(#t)

local counter — 0

for k,v in pairs(t) do counter = counter + 1 end
print(counter)

local max = 0

for k,v in pairs(t) do if k > max then max = k end end
print(max)

count _map.lua

Get the number of elements in a map-like table.

#t! /usr/bin/env tarantool

local map = { a = 10, b = 15, ¢ = 20 }
local size — 0

for _ in pairs(map) do size — size + 1; end
print(size)

swap.lua

Use a Lua peculiarity to swap two variables without needing a third variable.

#!/usr/bin/env tarantool

local x = 1
local y = 2
X,y =Yy, X
print(x, y)

class.lua

Create a class, create a metatable for the class, create an instance of the class. Another illustration is at
http://lua-users.org/wiki/LuaClassesWithMetatable.

#!/usr/bin/env tarantool

-- define class objects

local myclass _somemethod = function(self)
print('test 1", self.data)

end

local myclass_someothermethod = function(self)
print('test 2", self.data)
end

local myclass_tostring = function(self)
return 'MyClass < '..self.data..' >"
end

local myclass_mt = {
__tostring — myclass_tostring;
__index = {

4.4. Application server 63

http://lua-users.org/wiki/LuaClassesWithMetatable

Tarantool, Release 1.10.0

somemethod = myclass_somemethod;
someothermethod — myclass someothermethod;

}
}

-- create a new object of myclass

local object = setmetatable({ data = 'data'}, myclass mt)
print(object:somemethod())

print(object.data)

garbage.lua

Force Lua garbage collection with the collectgarbage function.

#!/usr/bin/env tarantool

collectgarbage(' collect ")

fiber producer and consumer.lua

Start one fiber for producer and one fiber for consumer. Use fiber.channel() to exchange data and synchronize.
One can tweak the channel size (ch_size in the program code) to control the number of simultaneous tasks

waiting for processing.

#!/usr/bin/env tarantool

local fiber = require(' fiber")
local function consumer loop(ch, i)
-~ initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do
local data — ch:get()
if data —= nil then
break
end
print('consumed ', i, data)
fiber.sleep(math.random()) -- simulate some work
end
end

local function producer loop(ch, i)
-- initialize consumer synchronously or raise an error()
fiber.sleep(0) -- allow fiber.create() to continue
while true do
local data = math.random()
ch:put(data)
print(' produced', i, data)
end
end

local function start()
local consumer_n = 5

local producer n — 3

-- Create a channel

64

Chapter 4. User’s Guide

https://www.lua.org/manual/5.1/manual.html#2.10
https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 1.10.0

local ch_size = math.max(consumer_n, producer n)
local ch = fiber.channel(ch _size)

-- Start consumers

for i=1, consumer n,1 do
fiber.create(consumer _loop, ch, i)

end

-- Start producers
for i=1, producer _n,1 do
fiber.create(producer _loop, ch, i)
end
end

start()
print('started ")

socket _tcpconnect.lua

Use socket.tcp _connect() to connect to a remote host via TCP. Display the connection details and the result
of a GET request.

#t! /usr/bin/env tarantool

local s = require('socket ").tcp _connect(' google.com', 80)
print(s:peer().host)

print(s:peer().family)

print(s:peer().type)

print(s:peer().protocol)

print(s:peer().port)

print(s:write("GET / HT'TP/1.0\r\n\r\n"))
print(siread('\r\n"))

print(siread('\r\n"))

socket tcp echo.lua

Use socket.tcp _connect() to set up a simple TCP server, by creating a function that handles requests and
echos them, and passing the function to socket.tecp server(). This program has been used to test with
100,000 clients, with each client getting a separate fiber.

#!/usr/bin/env tarantool

local function handler(s, peer)
s:write("Welcome to test server,
while true do
local line = s:read('\n")

" .. peer.host .."\n")

if line == nil then
break -- error or eof
end

if not s:write("pong: "..line) then
break -- error or eof
end
end
end

4.4. Application server 65

Tarantool, Release 1.10.0

local server, addr — require('socket").tcp _server('localhost ', 3311, handler)

getaddrinfo.lua

Use socket.getaddrinfo() to perform non-blocking DNS resolution, getting both the AF INET6 and
AF _INET information for ‘google.com’. This technique is not always necessary for tcp connections be-
cause socket.tcp connect() performs socket.getaddrinfo under the hood, before trying to connect to the first

available address.

#! /usr/bin/env tarantool

local s = require('socket ').getaddrinfo(' google.com ', "http', { type = "SOCK STREAM" })

print(' host=",s[1].host)
print(' family="s[1].family)
print(' type=",s[1].type)

print(' protocol=",s[1].protocol)
print(' port="s[1].port)

print(' host=",s[2].host)

print(' family=",s[2].family)
print(' type=",s[2].type)

print (' protocol=",s[2].protocol)
print(' port=",s[2].port)

socket udp echo.lua

Tarantool does not currently have a udp _server function, therefore socket udp _echo.lua is more complicated

than socket tcp echo.lua. It can be implemented with sockets and fibers.

#!/usr/bin/env tarantool

local socket — require('socket ")
local errno = require('errno")
local fiber — require(' fiber")

local function udp_server loop(s, handler)
fiber.name("udp _server")
while true do
-- try to read a datagram first
local msg, peer = s:recvirom()

if msg —— "" then
-- socket was closed via s:close()
break

elseif msg ~— nil then

-- got a new datagram
handler(s, peer, msg)
else
if s:errno() == errno.EAGAIN or s:errno() == errno.EINTR then
-- socket is not ready
sireadable() -- yield, epoll will wake us when new data arrives
else
-- socket error
local msg = s:error()
s:close() -- save resources and don 't wait GC
error("Socket error: " .. msg)

66

Chapter 4. User’s Guide

Tarantool, Release 1.10.0

end
end
end
end

local function udp _server(host, port, handler)
local s = socket(' AF INET', 'SOCK_ DGRAM', 0)
if not s then
return nil - check errno:strerror()
end
if not s:bind(host, port) then
local e = s:errno() -- save errno
s:close()
errno(e) -- restore errno
return nil - check errno:strerror()
end

fiber.create(udp _server loop, s, handler) -- start a new background fiber
return s
end

A function for a client that connects to this server could look something like this ...

local function handler(s, peer, msg)
-- You don 't have to wait until socket is ready to send UDP
-- s:writable()
s:sendto(peer.host, peer.port, "Pong: " .. msg)

end

local server — udp _server('127.0.0.1", 3548, handler)
if not server then

error(' Failed to bind: ' .. errno.strerror())
end

print(' Started ")

require(' console").start()

http _get.lua

Use the http module to get data via HTTP.

#!/usr/bin/env tarantool

local http _client = require(' http.client ")
local json = require('json")
local r = http _client.get(' http://api.openweathermap.org/data/2.5/weather?q=0akland,us")
if r.status ~= 200 then
print(' Failed to get weather forecast ', r.reason)
return
end
local data — json.decode(r.body)
print(' Oakland wind speed: ', data.wind.speed)

4.4. Application server 67

Tarantool, Release 1.10.0

http send.lua

Use the http module to send data via HT'TP.

#!/usr/bin/env tarantool

local http _client = require(' http.client ")
local json = require('json")
local data — json.encode({ Key = 'Value'})
local headers = { Token = 'xxxx', ['X-Secret-Value'| = 42 }
local r = http_client.post(" http://localhost:8081 ", data, { headers — headers})
if r.status —= 200 then
print 'Success'
end

http server.lua

Use the http rock (which must first be installed) to turn Tarantool into a web server.

#t! /usr/bin/env tarantool

local function handler(self)
return selfirender{ json — { [' Your-IP-Is'] = self.peer.host } }
end

local server = require(' http.server').new(nil, 8080) -- listen *:8080
server:route({ path = ' /' }, handler)

server:start()

-- connect to localhost:8080 and see json

http _generate html.lua

Use the http rock (which must first be installed) to generate HTML pages from templates. The http rock
has a fairly simple template engine which allows execution of regular Lua code inside text blocks (like PHP).
Therefore there is no need to learn new languages in order to write templates.

#t!/usr/bin/env tarantool

local function handler(self)

local fruits = { "Apple', 'Orange', 'Grapefruit', 'Banana'}
return selfirender{ fruits = fruits }

end

local server = require(' http.server').new(nil, 8080) -- nil means '*’
server:route({ path = ' /', file = 'index.html.lua' }, handler)
server:start()

An “HTML” file for this server, including Lua, could look like this (it would produce “1 Apple | 2 Orange |
3 Grapefruit | 4 Banana”).

<html>
<body>
<table border="1">
% for i,v in pairs(fruits) do
<tr>

68 Chapter 4. User’s Guide

https://github.com/tarantool/http/
http://rocks.tarantool.org/
https://github.com/tarantool/http/
https://github.com/tarantool/http/
http://rocks.tarantool.org/

Tarantool, Release 1.10.0

<td><%= 1 %></td>
<td><%— v %></td>
< Jtr>
% end
< /table>
< /body>
< /html>

4.5 Server administration

Tarantool is designed to have multiple running instances on the same host.
Here we show how to administer Tarantool instances using any of the following utilities:
* systemd native utilities, or

* tarantoolctl, a utility shipped and installed as part of Tarantool distribution.

Note:
¢ Unlike the rest of this manual, here we use system-wide paths.

¢ Console examples here are for Fedora.

This chapter includes the following sections:

4.5.1 Instance configuration

For each Tarantool instance, you need two files:

* [Optional] An application file with instance-specific logic. Put this file into the /usr/share/tarantool/
directory.

For example, /usr/share/tarantool/my app.lua (here we implement it as a Lua module that bootstraps
the database and exports start() function for API calls):

local function start()
box.schema.space.create("somedata)
box.space.somedata:create _index("primary")

end

return {
start — start;
}

¢ An instance file with instance-specific initialization logic and parameters. Put this file, or a symlink to
it, into the instance directory (see instance dir parameter in tarantoolctl configuration file).

For example, /etc/tarantool/instances.enabled/my app.lua (here we load my app.lua module and
make a call to start() function from that module):

#!/usr/bin/env tarantool

box.cfg {

4.5. Server administration 69

Tarantool, Release 1.10.0

listen = 3301;

}

-- load my app module and call start() function
-- with some app options controlled by sysadmins
local m = require('my app').start({...})

Instance file

After this short introduction, you may wonder what an instance file is, what it is for, and how tarantoolctl
uses it. After all, Tarantool is an application server, so why not start the application stored in /usr/share/
tarantool directly?

A typical Tarantool application is not a script, but a daemon running in background mode and processing
requests, usually sent to it over a TCP /TP socket. This daemon needs to be started automatically when the
operating system starts, and managed with the operating system standard tools for service management —
such as systemd or init.d. To serve this very purpose, we created instance files.

You can have more than one instance file. For example, a single application in /usr/share/tarantool can run
in multiple instances, each of them having its own instance file. Or you can have multiple applications in
/usr/share/tarantool — again, each of them having its own instance file.

An instance file is typically created by a system administrator. An application file is often provided by a
developer, in a Lua rock or an rpm/deb package.

An instance file is designed to not differ in any way from a Lua application. It must, however, configure
the database, i.e. contain a call to box.cfg{} somewhere in it, because it’s the only way to turn a Tarantool
script into a background process, and tarantoolctl is a tool to manage background processes. Other than
that, an instance file may contain arbitrary Lua code, and, in theory, even include the entire application
business logic in it. We, however, do not recommend this, since it clutters the instance file and leads to
unnecessary copy-paste when you need to run multiple instances of an application.

tarantoolct] configuration file

While instance files contain instance configuration, tarantoolctl configuration file contains the configuration
that tarantoolctl uses to override instance configuration. In other words, it contains system-wide configura-
tion defaults.

Most of the parameters are similar to those used by box.cfg{}. Here are the default settings (installed to
/etc/default /tarantool or /etc/sysconfig/tarantool as part of Tarantool distribution — see OS-specific default
paths in Notes for operating systems):

default _cfg = {

pid_file — "/var/run/tarantool",

wal dir = "/var/lib/tarantool",
memtx _dir = " /var/lib/tarantool",
vinyl dir = "/var/lib/tarantool",
log = " /var/log/tarantool",
username — "tarantool",

}

instance dir = "

etc/tarantool /instances.enabled"

where:

e pid_file

70 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

Directory for the pid file and control-socket file; tarantoolctl will add “/instance name” to the
directory name.

wal dir

Directory for write-ahead .xlog files; tarantoolctl will add “/instance_name” to the directory name.
memtx dir

Directory for snapshot .snap files; tarantoolctl will add */instance _name” to the directory name.
vinyl dir

Directory for vinyl files; tarantoolct]l will add “/instance name” to the directory name.

log
The place where the application log will go; tarantoolct]l will add “/instance name.log” to the name.

username

The user that runs the Tarantool instance. This is the operating-system user name rather than the
Tarantool-client user name. Tarantool will change its effective user to this user after becoming a
daemon.

instance dir
The directory where all instance files for this host are stored. Put instance files in this directory, or

create symbolic links.

The default instance directory depends on Tarantool’s WITH _SYSVINIT build option: when ON; it is
/ete/tarantool /instances.enabled, otherwise (OFF or not set) it is /etc/tarantool/instances.available.
The latter case is typical for Tarantool builds for Linux distros with systemd.

To check the build options, say tarantool --version.

As a full-featured example, you can take example.lua script that ships with Tarantool and defines all con-
figuration options.

4.5.2 Starting/stopping an instance

While a Lua application is executed by Tarantool, an instance file is executed by tarantoolctl which is a
Tarantool script.

Here is what tarantoolct] does when you issue the command:

$ tarantoolctl start <instance name>

1.

Read and parse the command line arguments. The last argument, in our case, contains an instance
name.

. Read and parse its own configuration file. This file contains tarantoolctl defaults, like the path to the

directory where instances should be searched for.

The default tarantoolctl configuration file is installed in /etc/default/tarantool. This file is used when
tarantoolctl is invoked by root. When invoked by a local user, tarantoolctl first looks for its defaults
file in the current directory ($PWD/.tarantoolctl), and then in the current user’s home directory
(SHOME/ .config/tarantool/tarantool). If not found, tarantoolctl falls back to built-in defaults.

. Look up the instance file in the instance directory, e.g. /etc/tarantool/instances.enabled. To build the

instance file path, tarantoolctl takes the instance name, prepends the instance directory and appends
“lua” extension to the instance file.

. Override box.cfg{} function to pre-process its parameters and ensure that instance paths are pointing to

the paths defined in the tarantoolctl configuration file. For example, if the configuration file specifies

4.5.

Server administration 71

https://github.com/tarantool/tarantool/blob/1.10/extra/dist/example.lua

Tarantool, Release 1.10.0

that instance work directory must be in /var/tarantool, then the new implementation of box.cfg{}
ensures that work dir parameter in box.cfg{} is set to /var/tarantool/<instance name>, regardless
of what the path is set to in the instance file itself.

5. Create a so-called “instance control file”. This is a Unix socket with Lua console attached to it. This
file is used later by tarantoolctl to query the instance state, send commands to the instance and so on.

6. Finally, use Lua dofile command to execute the instance file.

If you start an instance using systemd tools, like this (the instance name is my app):

$ systemctl start tarantool@my app
$ ps axuf|grep exampl|e|
taranto+ 5350 1.3 0.3 1448872 7736 7 Ssl 20:05 0:28 tarantool my app.lua <running>

. this actually calls tarantoolctl like in case of tarantoolctl start my app.

To check the instance file for syntax errors prior to starting my app instance, say:

’ $ tarantoolctl check my app

To enable my app instance for auto-load during system startup, say:

’ $ systemctl enable tarantool@my app

To stop a running my app instance, say:

$ tarantoolctl stop my app
$ # - OR -
$ systemctl stop tarantool@my app

To restart (i.e. stop and start) a running my app instance, say:

$ tarantoolctl restart my app
$ # - OR -
$ systemctl restart tarantool@my app

Running Tarantool locally

Sometimes you may need to run a Tarantool instance locally, e.g. for test purposes. Let’s configure a local
instance, then start and monitor it with tarantoolctl.

First, we create a sandbox directory on the user’s path:

$ mkdir ~/tarantool _test

. and set default tarantoolctl configuration in $HOME/.config/tarantool/tarantool. Let the file contents
be:

default _cfg — {
pid_file = "/home/user/tarantool test/my app.pid",
wal dir = "/home/user/tarantool test",
snap dir — "/home/user/tarantool test",
vinyl dir = "/home/user/tarantool test",
log = "/home/user/tarantool _test/log",
}
instance dir = " /home/user/tarantool test"

72 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

Note:
* Specify a full path to the user’s home directory instead of “~ /7.

¢ Omit username parameter. tarantoolctl normally doesn’t have permissions to switch current user when
invoked by a local user. The instance will be running under ‘admin’.

Next, we create the instance file ~ /tarantool test/my app.lua. Let the file contents be:

box.cfg{listen = 3301}
box.schema.user.passwd (' Gx5!")
box.schema.user.grant(' guest ', ' read,write,execute ', ' universe')
fiber = require('fiber")
box.schema.space.create(' tester ")
box.space.tester:create index('primary',{})
i=0
while 0 == 0 do
fiber.sleep(5)
i—1+1

print('insert ' .. i)
box.space.tester:insert{i, 'my app tuple'}
end

Let’s verify our instance file by starting it without tarantoolctl first:

$ cd ~/tarantool test

$ tarantool my app.lua

2017-04-06 10:42:15.762 [54085] main/101/my app.lua C> version 1.7.3-489-gd86e36d5b

2017-04-06 10:42:15.763 [54085] main/101/my app.lua C> log level 5

2017-04-06 10:42:15.764 [54085] main/101/my _app.lua I>> mapping 268435456 bytes for tuple arena...
2017-04-06 10:42:15.774 [54085] iproto/101/main I> binary: bound to [::]:3301

2017-04-06 10:42:15.774 [54085] main/101/my _app.lua I>> initializing an empty data directory
2017-04-06 10:42:15.789 [54085] snapshot/101/main I>> saving snapshot *./00000000000000000000.snap.inprogress '
2017-04-06 10:42:15.790 [54085] snapshot/101/main I>> done

2017-04-06 10:42:15.791 [54085] main/101/my app.lua I>> vinyl checkpoint done

2017-04-06 10:42:15.791 [54085] main/101/my app.lua I>> ready to accept requests

insert 1

insert 2

insert 3

<...>

Now we tell tarantoolctl to start the Tarantool instance:

’ $ tarantoolctl start my app

Expect to see messages indicating that the instance has started. Then:

’ $ 1s -1 7 /tarantool test/my app

Expect to see the .snap file and the .xlog file. Then:

’ $ less ~ /tarantool test/log/my app.log

Expect to see the contents of my app‘s log, including error messages, if any. Then:

$ tarantoolctl enter my app
tarantool> box.cfg{}

4.5. Server administration 73

Tarantool, Release 1.10.0

tarantool> console = require(' console")
tarantool> console.connect('localhost:3301")
tarantool> box.space.tester:select({0}, {iterator = 'GE"'})

Expect to see several tuples that my app has created.

Stop now. A polite way to stop my app is with tarantoolctl, thus we say:

’ $ tarantoolctl stop my app

Finally, we make a cleanup.

’ $ rm -R tarantool test

4.5.3 Logs

Tarantool logs important events to a file, e.g. /var/log/tarantool/my app.log. To build the log file path,
tarantoolct] takes the instance name, prepends the instance directory and appends “.log” extension.

Let’s write something to the log file:

$ tarantoolctl enter my app
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var/run/tarantool/my _app.control> require('log").info("Hello for the manual readers")

Then check the logs:

$ tail /var/log/tarantool/my app.log

2017-04-04 15:54:04.977 [29255] main/101/tarantoolctl C> version 1.7.3-382-g68ef3f6a9

2017-04-04 15:54:04.977 [29255] main /101 /tarantoolctl C> log level 5

2017-04-04 15:54:04.978 [29255] main/101/tarantoolctl I> mapping 134217728 bytes for tuple arena...

2017-04-04 15:54:04.985 [29255] iproto/101/main I> binary: bound to [::1]:3301

2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I>> recovery start

2017-04-04 15:54:04.986 [29255] main/101/tarantoolctl I>> recovering from ° /var/lib/tarantool/my app/
—00000000000000000000.snap '

2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I>> ready to accept requests

2017-04-04 15:54:04.988 [29255] main/101/tarantoolctl I>> set 'checkpoint interval' configuration option to 3600
2017-04-04 15:54:04.988 [29255] main/101/my app I> Run console at unix/:/var/run/tarantool/my app.control
2017-04-04 15:54:04.989 [29255] main/106/console/unix/:/var/ I> started

2017-04-04 15:54:04.989 [29255] main C> entering the event loop

2017-04-04 15:54:47.147 [29255] main/107/console /unix/: I>> Hello for the manual readers

When logging to a file, the system administrator must ensure logs are rotated timely and do not take up all
the available disk space. With tarantoolctl, log rotation is pre-configured to use logrotate program, which
you must have installed.

File /etc/logrotate.d/tarantool is part of the standard Tarantool distribution, and you can modify it to
change the default behavior. This is what this file is usually like:

/var/log/tarantool/*.log {
daily
size 512k
missingok
rotate 10
compress

74 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

delaycompress
create 0640 tarantool adm
postrotate
/usr/bin/tarantoolct] logrotate * basename ${1%%.*}"
endscript

}

If you use a different log rotation program, you can invoke tarantoolctl logrotate command to request
instances to reopen their log files after they were moved by the program of your choice.

Tarantool can write its logs to a log file, syslog or a program specified in the configuration file (see log
parameter).

By default, logs are written to a file as defined in tarantoolctl defaults. tarantoolctl automatically detects if
an instance is using syslog or an external program for logging, and does not override the log destination in
this case. In such configurations, log rotation is usually handled by the external program used for logging.
So, tarantoolctl logrotate command works only if logging-into-file is enabled in the instance file.

4.5.4 Security

Tarantool allows for two types of connections:

» With console.listen() function from console module, you can set up a port which can be used to open
an administrative console to the server. This is for administrators to connect to a running instance and
make requests. tarantoolctl invokes console.listen() to create a control socket for each started instance.

» With box.cfg{listen=. ..} parameter from box module, you can set up a binary port for connections
which read and write to the database or invoke stored procedures.

When you connect to an admin console:
¢ The client-server protocol is plain text.
¢ No password is necessary.
e The user is automatically ‘admin’.
¢ Fach command is fed directly to the built-in Lua interpreter.

Therefore you must set up ports for the admin console very cautiously. If it is a TCP port, it should only
be opened for a specific IP. Ideally, it should not be a TCP port at all, it should be a Unix domain socket,
so that access to the server machine is required. Thus a typical port setup for admin console is:

’console.listen(' var/lib/tarantool /socket name.sock")

and a typical connection URI is:

’ /var/lib/tarantool /socket name.sock

if the listener has the privilege to write on /var/lib/tarantool and the connector has the privilege to read on
/var/lib/tarantool. Alternatively, to connect to an admin console of an instance started with tarantoolctl,
use tarantoolctl enter.

To find out whether a TCP port is a port for admin console, use telnet. For example:

$ telnet 0 3303
Trying 0.0.0.0...
Connected to 0.
Escape character is ' ~]".

4.5. Server administration 75

Tarantool, Release 1.10.0

Tarantool 1.10.0 (Lua console)
type "help' for interactive help

In this example, the response does not include the word “binary” and does include the words “Lua console”.
Therefore it is clear that this is a successful connection to a port for admin console, and you can now enter
admin requests on this terminal.

When you connect to a binary port:
¢ The client-server protocol is binary.
¢ The user is automatically ‘guest’.
* To change the user, it’s necessary to authenticate.

For ease of use, tarantoolctl connect command automatically detects the type of connection during handshake
and uses EVAL binary protocol command when it’s necessary to execute Lua commands over a binary
connection. To execute EVAL, the authenticated user must have global “EXECUTE” privilege.

Therefore, when ssh access to the machine is not available, creating a Tarantool user with global “EXECUTE”
privilege and non-empty password can be used to provide a system administrator remote access to an instance.

4.5.5 Server introspection
Using Tarantool as a client

Tarantool enters the interactive mode if:
¢ you start Tarantool without an instance file, or
* the instance file contains console.start().

Tarantool displays a prompt (e.g. “tarantool>") and you can enter requests. When used this way, Tarantool
can be a client for a remote server. See basic examples in Getting started.

The interactive mode is used by tarantoolctl to implement “enter” and “connect” commands.

Executing code on an instance

You can attach to an instance’s admin console and execute some Lua code using tarantoolctl:

$ # for local instances:

$ tarantoolctl enter my app

/bin/tarantoolctl: Found my app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my app.control
/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var/run/tarantool/my app.control> 1 + 1

-2
unix/:/var/run/tarantool/my app.control>

$ # for local and remote instances:
$ tarantoolctl connect username:password@127.0.0.1:3306

You can also use tarantoolctl to execute Lua code on an instance without attaching to its admin console.
For example:

76 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

$ # executing commands directly from the command line
$ <command> | tarantoolctl eval my app
<...>

$#-OR-
$ # executing commands from a script file

$ tarantoolctl eval my app script.lua
<...>

Note: Alternatively, you can use the console module or the net.box module from a Tarantool server. Also,
you can write your client programs with any of the connectors. However, most of the examples in this manual
illustrate usage with either tarantoolctl connect or using the Tarantool server as a client.

Health checks

To check the instance status, say:

$ tarantoolctl status my app
my app is running (pid: /var/run/tarantool/my app.pid)

$ # - OR -

$ systemctl status tarantool@my app

tarantool@my app.service - Tarantool Database Server

Loaded: loaded (/etc/systemd/system /tarantool@.service; disabled; vendor preset: disabled)
Active: active (running)

Docs: man:tarantool(1)

Process: 5346 ExecStart=/usr/bin/tarantoolctl start %I (code=exited, status=0/SUCCESS)
Main PID: 5350 (tarantool)

Tasks: 11 (limit: 512)

CGroup: /system.slice/system-tarantool.slice/tarantool@my app.service

+ 5350 tarantool my app.lua <running>

To check the boot log, on systems with systemd, say:

$ journalctl -u tarantool@my app -n 5

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:17:47 MSK. --

Jan 21 21:17:47 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:17:47 localhost.localdomain systemd[1]: Starting Tarantool Database Server...

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Found my app.lua in /etc/
—tarantool/instances.available

Jan 21 21:17:47 localhost.localdomain tarantoolctl[5969]: /usr/bin/tarantoolctl: Starting instance...

Jan 21 21:17:47 localhost.localdomain systemd[1]: Started Tarantool Database Server

For more details, use the reports provided by functions in the following submodules:
* box.cfg submodule (check and specify all configuration parameters for the Tarantool server)

* box.slab submodule (monitor the total use and fragmentation of memory allocated for storing data in
Tarantool)

* box.info submodule (introspect Tarantool server variables, primarily those related to replication)

* box.stat submodule (introspect Tarantool request and network statistics)

4.5. Server administration 77

Tarantool, Release 1.10.0

You can also try tarantool/prometheus, a Lua module that makes it easy to collect metrics (e.g. memory
usage or number of requests) from Tarantool applications and databases and expose them via the Prometheus
protocol.

Example

A very popular administrator request is box.slab.info(), which displays detailed memory usage statistics for
a Tarantool instance.

tarantool > box.slab.info()

- items_ size: 228128
items_used ratio: 1.8%
quota_size: 1073741824
quota_used ratio: 0.8%
arena_used ratio: 43.2%
items_used: 4208
quota_ used: 8388608
arena_ size: 2325176
arena_ used: 1003632

Profiling performance issues

Tarantool can at times work slower than usual. There can be multiple reasons, such as disk issues, CPU-
intensive Lua scripts or misconfiguration. Tarantool’s log may lack details in such cases, so the only indica-
tions that something goes wrong are log entries like this: W> too long DELETE: 8.546 sec. Here are tools
and techniques that can help you collect Tarantool’s performance profile, which is helpful in troubleshooting
slowdowns.

Note: Most of these tools — except fiber.info() — are intended for generic GNU/Linux distributions, but not
FreeBSD or Mac OS.

fiber.info()

The simplest profiling method is to take advantage of Tarantool’s built-in functionality. fiber.info() returns
information about all running fibers with their corresponding C stack traces. You can use this data to see
how many fibers are running and which C functions are executed more often than others.

First, enter your instance’s interactive administrator console:

’ $ tarantoolctl enter NAME

Once there, load the fiber module:

tarantool> fiber = require(' fiber")

After that you can get the required information with fiber.info().

At this point, you console output should look something like this:

tarantool> fiber = require(' fiber")

78 Chapter 4. User’s Guide

https://github.com/tarantool/prometheus

Tarantool, Release 1.10.0

tarantool > fiber.info()
- 360:
csw: 2098165
backtrace:
- '4£0 0x4d1b77 in wal _write(journal®, journal entry*)-4+487"
- '#1 0x4bbf68 in txn commit(txn*)+152"
- '#2 0x4bd5d8 in process rw(request®, space®, tuple**)+136"
- '#3 0x4bed48 in box process1+104"'
- '#4 0x4d72f8 in lbox replace+120'
- 15 0x50£317 in j_BC_FUNCC+52"
fid: 360
memory:
total: 61744
used: 480
name: main
129:
csw: 113
backtrace: ||
fid: 129
memory:
total: 57648
used: 0

name: 'console/unix/:"

We highly recommend to assign meaningful names to fibers you create so that you can find them in the
fiber.info() list. In the example below, we create a fiber named myworker:

tarantool > fiber = require(' fiber")

tarantool > f = fiber.create(function() while true do fiber.sleep(0.5) end end)

tarantool> finame(' myworker') <!-- assigning the name to a fiber

tarantool > fiber.info()
- 102:
csw: 14
backtrace:
- '#0 0x501ala in fiber yield timeout+90'
- '#1 0x4f2008 in lbox_fiber sleep+72"
- "#2 0x5112a7 in lj BC_FUNCC+52"
fid: 102
memory:
total: 57656
used: 0
name: myworker <!-- newly created background fiber
101:
csw: 284
backtrace: ||
fid: 101
memory:
total: 57656
used: 0

4.5. Server administration 79

Tarantool, Release 1.10.0

name: interactive

You can kill any fiber with fiber.kill(fid):

tarantool > fiber.kill(102)

tarantool > fiber.info()

- 101:
csw: 324
backtrace: []
fid: 101
memory:
total: 57656
used: 0

name: interactive

If you want to dynamically obtain information with fiber.info(), the shell script below may come in handy.
It connects to a Tarantool instance specified by NAME every 0.5 seconds, grabs the fiber.info() output and
writes it to the fiber-info.txt file:

$ rm -f fiber.info.txt
$ watch -n 0.5 "echo 'require(\ "fiber\").info()" | tarantoolctl enter NAME | tee -a fiber-info.txt"

If you can’t understand which fiber causes performance issues, collect the metrics of the fiber.info() output
for 10-15 seconds using the script above and contact the Tarantool team at support@tarantool.org.

Poor man’s profilers

pstack <pid>

To use this tool, first install it with a package manager that comes with your Linux distribution. This
command prints an execution stack trace of a running process specified by the PID. You might want to run
this command several times in a row to pinpoint the bottleneck that causes the slowdown.

Once installed, say:

’ $ pstack $(pidof tarantool INSTANCENAME .lua)

Next, say:

’ $ echo $(pidof tarantool INSTANCENAME.lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME.lua file.

You should get similar output:

Thread 19 (Thread 0x7f09d1bff700 (LWP 24173)):

#0 0x00007f0alab423f2 in 77 () from /lib64/libgomp.so.1

#1 0x00007f0alab3fdcO in 77 () from /lib64/libgomp.so.1

#2 0x00007f0alad5adch in start thread () from /lib64/libpthread.so.0
#3 0x00007f0ala050ced in clone () from /1ib64/libc.so.6

Thread 18 (Thread 0x7f09d13fe700 (LWP 24174)):

#0 0x00007f0ala5423f2 in 77 () from /lib64/libgomp.so.1

80 Chapter 4. User’s Guide

mailto:support@tarantool.org

Tarantool, Release 1.10.0

#1 0x00007f0alab3fdcO in ?? () from /1ib64/libgomp.so.1

#2 0x00007f0aladbadch in start _thread () from /lib64/libpthread.so.0

#3 0x00007f0ala050ced in clone () from /1ib64/libc.so.6

<..>

Thread 2 (Thread 0x7f09¢8bfe700 (LWP 24191)):

#0 0x00007f0alad5e6d5 in pthread cond wait@QGLIBC 2.3.2 () from /1ib64/libpthread.so.0
#1 0x000000000045d901 in wal writer pop(wal writer*) ()

#2 0x000000000045db01 in wal writer f(_ va_list tag*) ()

#3 0x0000000000429abc in fiber cxx_invoke(int (*)(va list tag®), va list tag*) ()
#4 0x00000000004b52a0 in fiber loop ()

#5 0x00000000006099cf in coro_init ()

Thread 1 (Thread 0x7f0alc47fd80 (LWP 24172)):

#0 0x00007f0ala0512¢3 in epoll _wait () from /1ib64/libc.so.6

#1 0x00000000006051c8 in epoll _poll ()

#2 0x0000000000607533 in ev_run ()

#3 0x0000000000428¢13 in main ()

gdb -ex “bt” -p <pid>

As with pstack, the GNU debugger (also known as gdb) needs to be installed before you can start using it.
Your Linux package manager can help you with that.

Once the debugger is installed, say:

$ gdb -ex "set pagination 0" -ex "thread apply all bt" --batch -p $(pidof tarantool INSTANCENAME .lua)

Next, say:

$ echo $(pidof tarantool INSTANCENAME.lua)

to show the PID of the Tarantool instance that runs the INSTANCENAME lua file.
After using the debugger, your console output should look like this:

[Thread debugging using libthread _db enabled|
Using host libthread _db library "/lib/x86 64-linux-gnu/libthread db.so.1".

[CUT]

Thread 1 (Thread 0x7{72289ba940 (LWP 20535)):

#0 _int_malloc (av=avQentry=0x7{7226e0eb20 <main arena>, bytes=bytes@entry=>504) at malloc.c:3697

#1 0x00007f7226acf21a in _ libc calloc (n=<optimized out>, elem size=<optimized out>>) at malloc.c:3234
#2 0x00000000004631f8 in vy merge iterator reserve (capacity=3, itr=0x7{72264af9e0) at /usr/src/tarantool/
—sre/box/vinyl.c: 7629

#3 vy merge iterator add (itr=itr@entry=0x7f72264af9¢0, is mutable=is mutable@Qentry=true, belong
—range=belong range@entry=false) at /usr/src/tarantool/src/box/vinyl.c:7660

#4 0x00000000004703df in vy read iterator add mem (itr=0x7{72264af990) at /usr/src/tarantool/src/box/
—vinyl.c:8387

#5 vy read iterator use range (itr=0x7f72264af990) at /usr/src/tarantool/src/box/vinyl.c:8453

#6 0x000000000047657d in vy read iterator start (itr=<optimized out>) at /usr/src/tarantool/src/box/vinyl.
—c:8501

#7 0x00000000004766b5 in vy read iterator next (itr=itr@Qentry=0x7{72264af990,_
oresult=result@entry=0x7{72264afad8) at /usr/src/tarantool/src/box/vinyl.c:8592

#8 0x000000000047689d in vy index get (tx=tx@entry=0x7{7226468158, index=index@entry=0x2563860, key=
— <optimized out>, part count=<optimized out>>, result=result@entry=0x7{72264afad8) at /usr/src/tarantool/
—src/box/vinyl.c:5705

#9 0x0000000000477601 in vy replace impl (request=<optimized out>>, request=<optimized out>,_
—stmt=0x7{72265a7150, space=0x2567ea0, tx=0x7{7226468158) at /usr/src/tarantool/src/box/vinyl.c:5920

#10 vy replace (tx=0x7{7226468158, stmt=stmt@Qentry=0x7{72265a7150, space=0x2567eal, request=<optimized_

£~) HAKR
=Oott—

4 4 4 1 1. L3 1 ra
[y SIS0 7 Tal AtvOuUT/SIC 70U vIITyT.C.O0U0

4.5. Server administration 81

Tarantool, Release 1.10.0

#11 0x00000000004615a9 in VinylSpace::executeReplace (this=<optimized out>, txn=<optimized out>, space=
—<optimized out>, request=<optimized out>) at /usr/src/tarantool/src/box/vinyl space.cc:108

#12 0x00000000004bd 723 in process rw (request=request@entry=0x7{72265a70£8,_
—space=space@entry=0x2567ea0, result=result@entry=0x7{72264afbc8) at /usr/src/tarantool/src/box/box.cc:182
#13 0x00000000004bed48 in box processl (request=0x7{72265a70f8, result=result@entry—=0x7{72264afbc8) at /
—usr/src/tarantool /src/box/box.cc:700

#14 0x00000000004bf389 in box _replace (space id=space id@entry=>513, tuple=<optimized out>, tuple end=
—<optimized out>, result=result@entry=0x7{72264afbc8) at /usr/src/tarantool/src/box/box.cc:754

#15 0x00000000004d72£8 in 1box replace (L=0x413c5780) at /usr/src/tarantool/src/box/lua/index.c:72

#16 0x000000000050£317 in 1lj BC_FUNCC ()

#17 0x00000000004d37c7 in execute lua_call (L=0x413c5780) at /usr/src/tarantool/src/box/lua/call.c:282

#18 0x000000000050£317 in lj. BC FUNCC ()

#19 0x0000000000529¢7b in lua_cpcall ()

#20 0x00000000004f6aa3 in luaT cpcall (L=L@entry=0x413c5780, func=func@entry=0x4d36d0 <execute lua
—call>, ud=ud@entry=0x7{72264afde0) at /usr/src/tarantool/src/lua/utils.c:962

#21 0x00000000004d3fe7 in box_process_lua (handler=0x4d36d0 <execute lua_call>,_
—out=out@entry=0x7{7213020600, request=request@entry—=0x413c5780) at /usr/src/tarantool/src/box/lua/call.
—c:382

#22 box_lua_call (request=request@entry=0x7{72130401d8, out=out@entry=0x7{7213020600) at /usr/src/
—tarantool /src/box /lua/call.c:405

#23 0x00000000004c0f27 in box process call (request=request@entry=0x7{72130401d8,_
—out=out@entry=0x7{7213020600) at /usr/src/tarantool/src/box/box.cc:1074

#24 0x000000000041326¢ in tx_process misc (m=0x7f7213040170) at /usr/src/tarantool/src/box/iproto.cc:942
#25 0x0000000000504554 in cmsg_ deliver (msg=0x7{7213040170) at /usr/src/tarantool/src/cbus.c:302

#26 0x0000000000504c2e in fiber _pool f (ap=<error reading variable: value has been optimized out>) at /usr/
—sre/tarantool /sre/fiber pool.c:64

#27 0x000000000041122¢ in fiber cxx_invoke(fiber func, typedef — va list tag va list tag *) (f=
—<optimized out>, ap=<optimized out>) at /usr/src/tarantool/src/fiber.h:645

#28 0x00000000005011a0 in fiber loop (data=<optimized out>) at /usr/src/tarantool/src/fiber.c:641

#29 0x0000000000688fbf in coro_init () at /usr/src/tarantool/third party/coro/coro.c:110

Run the debugger in a loop a few times to collect enough samples for making conclusions about why Tarantool
demonstrates suboptimal performance. Use the following script:

$ rm -f stack-trace.txt
$ watch -n 0.5 "gdb -ex 'set pagination 0' -ex 'thread apply all bt' --batch -p $(pidof tarantool_
—INSTANCENAME.lua) | tee -a stack-trace.txt"

Structurally and functionally, this script is very similar to the one used with fiber.info() above.

If you have any difficulties troubleshooting, let the script run for 10-15 seconds and then send the resulting
stack-trace.txt file to the Tarantool team at support@tarantool.org.

Warning: Use the poor man’s profilers with caution: each time they attach to a running process, this
stops the process execution for about a second, which may leave a serious footprint in high-load services.

gperftools

To use the CPU profiler from the Google Performance Tools suite with Tarantool, first take care of the
prerequisites:

¢ For Debian/Ubuntu, run:

$ apt-get install libgoogle-perftools4

82 Chapter 4. User’s Guide

mailto:support@tarantool.org

Tarantool, Release 1.10.0

» For RHEL/CentOS/Fedora, run:

’ $ yum install gperftools-libs

Once you do this, install Lua bindings:

’ $ tarantoolctl rocks install gperftools

Now you're ready to go. Enter your instance’s interactive administrator console:

’ $ tarantoolctl enter NAME

To start profiling, say:

tarantool> cpuprof = require(' gperftools.cpu")
tarantool> cpuprof.start(' /home/<username> /tarantool-on-production.prof")

It takes at least a couple of minutes for the profiler to gather performance metrics. After that, save the
results to disk (you can do that as many times as you need):

tarantool> cpuprof.flush()

To stop profiling, say:

tarantool> cpuprof.stop()

You can now analyze the output with the pprof utility that comes with the gperftools package:

’ $ pprof --text /usr/bin/tarantool /home/<username>/tarantool-on-production.prof

Note: On Debian/Ubuntu, the pprof utility is called google-pprof.

Your output should look similar to this:

Total: 598 samples

83 13.9% 13.9% 83 13.9% epoll _wait
54 9.0% 22.9% 102 17.1%

vy mem _tree insert.constprop.35

32 5.4% 28.3% 34 5.7% __write_nocancel

28 4.7% 32.9% 42 7.0% vy mem _iterator start from
26 4.3% 37.3% 26 4.3% 10 _str seekoff

21 3.5% 40.8% 21 3.5% tuple compare field

19 3.2% 44.0% 19 3.2%

::TupleCompareWithKey::compare

19 3.2% 47.2% 38 6.4% tuple compare _slowpath
12 2.0% 49.2% 23 3.8% __libc_calloc
9 1.5% 50.7% 9 1.5%

::TupleCompare::compare@42efcO

9 1.5% 52.2% 9 1.5% vy cache on_write

9 1.5% 53.7% 57 9.5% vy merge iterator next key
8 1.3% 55.0% 8 1.3% __nss_passwd_lookup

6 1.0% 56.0% 25 4.2% gc__onestep

6 1.0% 57.0% 6 1.0% 1j _tab_next

50.8% 57.9% 5 0.8% 1j _alloc_malloc

5 0.8% 58.7% 131 21.9% vy _prepare

4.5.

Server administration

83

Tarantool, Release 1.10.0

perf

This tool for performance monitoring and analysis is installed separately via your package manager. Try
running the perf command in the terminal and follow the prompts to install the necessary package(s).

Note: By default, some perf commands are restricted to root, so, to be on the safe side, either run all
commands as root or prepend them with sudo.

To start gathering performance statistics, say:

$ perf record -g -p $(pidof tarantool INSTANCENAME.lua)

This command saves the gathered data to a file named perf.data inside the current working directory. To
stop this process (usually, after 10-15 seconds), press ctrl+C. In your console, you’ll see:

~C| perf record: Woken up 1 times to write data |
[perf record: Captured and wrote 0.225 MB perf.data (1573 samples) |

Now run the following command:

$ perf report -n -g --stdio | tee perf-report.txt

It formats the statistical data in the perf.data file into a performance report and writes it to the perf-report.
txt file.

The resulting output should look similar to this:

Samples: 14K of event 'cycles’
Event count (approx.): 9927346847

Children Self Samples Command Shared Object Symbol

35.50% 0.55% 79 tarantool tarantool |.| 1j gc_step

--34.95%--1j gc_step

|--29.26%--gc_onestep

|

| |--13.85%--gc_sweep
-5.59%--1j alloc_ free
|

|

}_

|--1.33%--1j tab_free

} --1.01%--1j _alloc_free
‘__1,17%--1j_cdata_free
-5.41%--gc_finalize
}--1.06%--1j_obj_equal
‘__0.95‘7-—lj_tab_set

-4.97%--rehashtab

84 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

--3.65%--1j tab_resize
\

|--0.74%--1j _tab_set

\

|

|

|

|

| --0.72%--1j tab_newkey
|

|--0.91%--propagatemark

|

|
|
|
|
|
|
|
|
| --0.67%--1j cdata_free
|

--5.43%--propagatemark

--0.73%--gc_mark

Unlike the poor man’s profilers, gperftools and perf have low overhead (almost negligible as compared with
pstack and gdb): they don’t result in long delays when attaching to a process and therefore can be used
without serious consequences.

4.5.6 Daemon supervision
Server signals

Tarantool processes these signals during the event loop in the transaction processor thread:

Signal Effect

SIGHUP May cause log file rotation. See the example in reference on Tarantool
logging parameters.

SIGUSR1 May cause a database checkpoint. See box.snapshot.

SIGTERM May cause graceful shutdown (information will be saved first).

SIGINT (also known as keyboard | May cause graceful shutdown.

interrupt)

SIGKILL Causes an immediate shutdown.

Other signals will result in behavior defined by the operating system. Signals other than SIGKILL may be
ignored, especially if Tarantool is executing a long-running procedure which prevents return to the event
loop in the transaction processor thread.

Automatic instance restart

On systemd-enabled platforms, systemd automatically restarts all Tarantool instances in case of failure. To
demonstrate it, let’s try to destroy an instance:

$ systemctl status tarantool@my app|grep PID

Main PID: 5885 (tarantool)

$ tarantoolctl enter my app

/bin/tarantoolctl: Found my app.lua in /etc/tarantool/instances.available
/bin/tarantoolctl: Connecting to /var/run/tarantool/my app.control

/bin/tarantoolctl: connected to unix/:/var/run/tarantool/my app.control
unix/:/var/run/tarantool/my app.control> os.exit(-1)

/bin/tarantoolctl: unix/:/var/run/tarantool/my app.control: Remote host closed connection

Now let’s make sure that systemd has restarted the instance:

4.5. Server administration 85

Tarantool, Release 1.10.0

$ systemctl status tarantool@my app|grep PID
Main PID: 5914 (tarantool)

Finally, let’s check the boot logs:

$ journalctl -u tarantool@my app -n 8

-- Logs begin at Fri 2016-01-08 12:21:53 MSK, end at Thu 2016-01-21 21:09:45 MSK. --

Jan 21 21:09:45 localhost.localdomain systemd|[1]: tarantool@my app.service: Unit entered failed state.

Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my app.service: Failed with result 'exit-code’.
Jan 21 21:09:45 localhost.localdomain systemd[1]: tarantool@my app.service: Service hold-off time over,_
—scheduling restart.

Jan 21 21:09:45 localhost.localdomain systemd[1]: Stopped Tarantool Database Server.

Jan 21 21:09:45 localhost.localdomain systemd[1]: Starting Tarantool Database Server...

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Found my app.lua in /etc/
—tarantool /instances.available

Jan 21 21:09:45 localhost.localdomain tarantoolctl[5910]: /usr/bin/tarantoolctl: Starting instance...

Jan 21 21:09:45 localhost.localdomain systemd|[1]: Started Tarantool Database Server.

Core dumps
Tarantool makes a core dump if it receives any of the following signals: SIGSEGV, SIGFPE, SIGABRT or
SIGQUIT. This is automatic if Tarantool crashes.

On systemd-enabled platforms, coredumpctl automatically saves core dumps and stack traces in case of a
crash. Here is a general “how to” for how to enable core dumps on a Unix system:

1. Ensure session limits are configured to enable core dumps, i.e. say ulimit -¢ unlimited. Check “man 5
core” for other reasons why a core dump may not be produced.

2. Set a directory for writing core dumps to, and make sure that the directory is writable. On Linux, the
directory path is set in a kernel parameter configurable via /proc/sys/kernel/core pattern.

3. Make sure that core dumps include stack trace information. If you use a binary Tarantool distribution,
this is automatic. If you build Tarantool from source, you will not get detailed information if you pass
-DCMAKE BUILD TYPE=Release to CMake.

To simulate a crash, you can execute an illegal command against a Tarantool instance:

$ # !l please never do this on a production system !!!

$ tarantoolctl enter my app

unix/:/var/run/tarantool/my app.control> require('fli").cast('char *', 0)[0] = 48
/bin/tarantoolctl: unix/:/var/run/tarantool/my app.control: Remote host closed connection

Alternatively, if you know the process ID of the instance (here we refer to it as $PID), you can abort a
Tarantool instance by running gdb debugger:

’ $ gdb -batch -ex "generate-core-file" -p $PID

or manually sending a SIGABRT signal:

’ $ kill -SIGABRT $P1D

Note: To find out the process id of the instance ($PID), you can:
¢ look it up in the instance’s box.info.pid,

e find it with ps -A | grep tarantool, or

86 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

* say systemctl status tarantool@my app|grep PID.

On a systemd-enabled system, to see the latest crashes of the Tarantool daemon, say:

$ coredumpctl list /usr/bin/tarantool

MTIME PID UID GID SIG PRESENT EXE

Sat 2016-01-23 15:21:24 MSK 20681 1000 1000 6 /usr/bin/tarantool
Sat 2016-01-23 15:51:56 MSK 21035 995 992 6 /usr/bin/tarantool

To save a core dump into a file, say:

$ coredumpctl -o filename.core info <pid>

Stack traces

Since Tarantool stores tuples in memory, core files may be large. For investigation, you normally don’t need
the whole file, but only a “stack trace” or “backtrace”.

To save a stack trace into a file, say:

$ gdb -se "tarantool" -ex "bt full" -ex "thread apply all bt" --batch -c core> /tmp/tarantool _trace.txt

where:
e “tarantool” is the path to the Tarantool executable,
¢ “core” is the path to the core file, and

* “/tmp/tarantool trace.txt” is a sample path to a file for saving the stack trace.

Note: Occasionally, you may find that the trace file contains output without debug symbols — the lines will
contain 7?77 instead of names. If this happens, check the instructions on these Tarantool wiki pages: How
to debug core dump of stripped tarantool and How to debug core from different OS.

To see the stack trace and other useful information in console, say:

$ coredumpctl info 21035
PID: 21035 (tarantool)
UID: 995 (tarantool)
GID: 992 (tarantool)
Signal: 6 (ABRT)
Timestamp: Sat 2016-01-23 15:51:42 MSK (4h 36min ago)
Command Line: tarantool my app.lua <running>
Executable: /usr/bin/tarantool
Control Group: /system.slice/system-tarantool.slice/tarantool@my _app.service
Unit: tarantool@my app.service
Slice: system-tarantool.slice
Boot ID: 7c686e2ef4ddc4e3eab9122757e3067e2
Machine ID: a4a878729c654c¢7093dc6693f6a8e5ee
Hostname: localhost.localdomain
Message: Process 21035 (tarantool) of user 995 dumped core.

Stack trace of thread 21035:

#0 0x00007849932a618 raise (libc.so.6)

#1 0x00007f84993ac21a abort (libc.so.6)

#2 0x0000560d0a9e9233 ZL12sig fatal cbi (tarantool)

4.5. Server administration 87

https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-dump-of-stripped-tarantool
https://github.com/tarantool/tarantool/wiki/How-to-debug-core-from-different-OS

Tarantool, Release 1.10.0

73 0x00007f849a211220 _ restore rt (libpthread.so.0)
4 0x0000560d0aaabd9d 1j cconv_ct_ct (tarantool)
75 0x0000560d0aaa687f 1j cconv_ct_tv (tarantool)
#6 0x0000560d0aaabe33 1j cf fi meta newindex (tarantool)
7 0x0000560d0aaae2f7 1j BC_ FUNCC (tarantool)
#8 0x0000560d0aa9aabd lua_pcall (tarantool)
#9 0x0000560d0aa71400 lbox call (tarantool)
10 0x0000560d0aa6ce36 lua_fiber run f (tarantool)
711 0x0000560d0a9e8d0c _ ZL16fiber cxx invokePFiP13 va list tagES0O (tarantool)
712 0x0000560d0aa7b255 fiber loop (tarantool)
13 0x0000560d0ab38ed1 coro init (tarantool)

Debugger

To start gdb debugger on the core dump, say:

’ $ coredumpctl gdb <pid>

It is highly recommended to install tarantool-debuginfo package to improve gdb experience, for example:

’ $ dnf debuginfo-install tarantool

gdb also provides information about the debuginfo packages you need to install:

$ gdb -p <pid>

Missing separate debuginfos, use: dnf debuginfo-install
glibc-2.22.90-26.fc24.x86 64 krb5-libs-1.14-12.fc24.x86 64
libgee-5.3.1-3.1c24.x86 64 libgomp-5.3.1-3.fc24.x86 64
libselinux-2.4-6.fc24.x86_ 64 libstdc+-+-5.3.1-3.fc24.x86 64
libyaml-0.1.6-7.£c23.x86 64 ncurses-libs-6.0-1.20150810.fc24.x86 64
openssl-libs-1.0.2e-3.fc24.x86 64

Symbolic names are present in stack traces even if you don’t have tarantool-debuginfo package installed.

4.5.7 Disaster recovery
The minimal fault-tolerant Tarantool configuration would be a replication cluster that includes a master and
a replica, or two masters.

The basic recommendation is to configure all Tarantool instances in a cluster to create snapshot files at a
regular basis.

Here follow action plans for typical crash scenarios.

Master-replica

Configuration: One master and one replica.
Problem: The master has crashed.
Your actions:

1. Ensure the master is stopped for good. For example, log in to the master machine and use systemctl
stop tarantool@<instance name>.

88 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2. Switch the replica to master mode by setting box.cfg.read only parameter to false and let the load be
handled by the replica (effective master).

3. Set up a replacement for the crashed master on a spare host, with replication parameter set to replica
(effective master), so it begins to catch up with the new master’s state. The new instance should have
box.cfg.read only parameter set to true.

You lose the few transactions in the master write ahead log file, which it may have not transferred to the
replica before crash. If you were able to salvage the master .xlog file, you may be able to recover these. In
order to do it:

1. Find out the position of the crashed master, as reflected on the new master.

(a) Find out instance UUID from the crashed master xlog:

$ head -5 *.xlog | grep Instance
Instance: ed607cad-8b6d-48d8-ba0b-dae371b79155

(b) On the new master, use the UUID to find the position:

tarantool > box.info.vclock[box.space. _cluster.index.uuid:select{ ' ed607cad-8b6d-48d8-ba0b-
—dae371b79155 ' }1][1]]

- 23425

<...>

2. Play the records from the crashed .xlog to the new master, starting from the new master position:

(a) Issue this request locally at the new master’s machine to find out instance ID of the new master:

tarantool > box.space. _cluster:select{}

- - [1, "88580b5¢-4474-43ab-bd2b-2409a9af80d2 " |

(b) Play the records to the new master:

’ $ tarantoolctl <new master uri> <xlog file> play --from-lsn 23425 --replica 1

Master-master

Configuration: Two masters.
Problem: Master#1 has crashed.
Your actions:
1. Let the load be handled by master#2 (effective master) alone.

2. Follow the same steps as in the master-replica recovery scenario to create a new master and salvage lost
data.

Data loss

Configuration: Master-master or master-replica.

Problem: Data was deleted at one master and this data loss was propagated to the other node (master or
replica).

The following steps are applicable only to data in memtx storage engine. Your actions:

4.5. Server administration 89

Tarantool, Release 1.10.0

1. Put all nodes in read-only mode and disable checkpointing with box.backup.start(). Disabling the
checkpointing is necessary to prevent automatic garbage collection of older checkpoints.

2. Get the latest valid .snap file and use tarantoolctl cat command to calculate at which lsn the data loss
occurred.

3. Start a new instance (instance#1) and use tarantoolctl play command to play to it the contents of
.snap/.xlog files up to the calculated lsn.

4. Bootstrap a new replica from the recovered master (instance#1).

4.5.8 Backups

Tarantool storage architecture is append-only: files are only appended to, and are never overwritten. Old
files are removed by garbage collection after a checkpoint. You can configure the amount of past checkpoints
preserved by garbage collection by configuring Tarantool’s checkpoint daemon. Backups can be taken at any
time, with minimal overhead on database performance.

Hot backup (memtx)

This is a special case when there are only in-memory tables.

The last snapshot file is a backup of the entire database; and the WAL files that are made after the last
snapshot are incremental backups. Therefore taking a backup is a matter of copying the snapshot and WAL
files.

1. Use tar to make a (possibly compressed) copy of the latest .snap and .xlog files on the memtx dir and
wal dir directories.

2. If there is a security policy, encrypt the .tar file.
3. Copy the .tar file to a safe place.

Later, restoring the database is a matter of taking the .tar file and putting its contents back in the memtx _dir
and wal _dir directories.

Hot backup (vinyl/memtx)

Vinyl stores its files in vinyl dir, and creates a folder for each database space. Dump and compaction
processes are append-only and create new files. Old files are garbage collected after each checkpoint.

To take a mixed backup:

1. Issue box.backup.start() on the administrative console. This will suspend garbage collection till the
next box.backup.stop() and will return a list of files to backup.

2. Copy the files from the list to a safe location. This will include memtx snapshot files, vinyl run and
index files, at a state consistent with the last checkpoint.

3. Resume garbage collection with box.backup.stop().

Continuous remote backup (memtx)

The replication feature is useful for backup as well as for load balancing.

Therefore taking a backup is a matter of ensuring that any given replica is up to date, and doing a cold
backup on it. Since all the other replicas continue to operate, this is not a cold backup from the end user’s
point of view. This could be done on a regular basis, with a cron job or with a Tarantool fiber.

90 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

Continuous backup (memtx)

The logged changes done since the last cold backup must be secured, while the system is running.

For this purpose, you need a file copy utility that will do the copying remotely and continuously, copying
only the parts of a write ahead log file that are changing. One such utility is rsync.

Alternatively, you need an ordinary file copy utility, but there should be frequent production of new snapshot
files or new WAL files as changes occur, so that only the new files need to be copied.

4.5.9 Upgrades
Upgrading a Tarantool database

If you created a database with an older Tarantool version and have now installed a newer version, make
the request box.schema.upgrade(). This updates Tarantool system spaces to match the currently installed
version of Tarantool.

For example, here is what happens when you run box.schema.upgrade() with a database created with Taran-
tool version 1.6.4 to version 1.7.2 (only a small part of the output is shown):

tarantool > box.schema.upgrade()

alter index primary on _space set options to {"unique":true}, parts to [[0,"unsigned"||
alter space _schema set options to {}

create view _vindex...

grant read access to 'public' role for _vindex view

set schema version to 1.7.0

Upgrading a Tarantool instance

Tarantool is backward compatible between two adjacent versions. For example, you should have no or little
trouble when upgrading from Tarantool 1.6 to 1.7, or from Tarantool 1.7 to 1.8. Meanwhile Tarantool 1.8
may have incompatible changes when migrating from Tarantool 1.6. to 1.8 directly.

How to upgrade from Tarantool 1.6 to 1.7 / 1.10

This procedure is for upgrading a standalone Tarantool instance in production from 1.6.x to 1.7.x (or to
1.10.x). Notice that this will always imply a downtime. To upgrade without downtime, you need several
Tarantool servers running in a replication cluster (see below).

Tarantool 1.7 has an incompatible .snap and .xlog file format: 1.6 files are supported during upgrade, but
you won’t be able to return to 1.6 after running under 1.7 for a while. It also renames a few configuration
parameters, but old parameters are supported. The full list of breaking changes is available in release notes
for Tarantool 1.7 / 1.9 / 1.10.

To upgrade from Tarantool 1.6 to 1.7 (or to 1.10.x):

1. Check with application developers whether application files need to be updated due to incompatible
changes (see 1.7 / 1.9 / 1.10 release notes). If yes, back up the old application files.

2. Stop the Tarantool server.

3. Make a copy of all data (see an appropriate hot backup procedure in Backups) and the package from
which the current (old) version was installed (for rollback purposes).

4.5. Server administration 91

https://en.wikipedia.org/wiki/Rsync
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases
https://github.com/tarantool/tarantool/releases

Tarantool, Release 1.10.0

4. Update the Tarantool server. See installation instructions at Tarantool download page.

5. Update the Tarantool database. Put the request box.schema.upgrade() inside a box.once() function
in your Tarantool initialization file. On startup, this will create new system spaces, update data type
names (e.g. num -> unsigned, str -> string) and options in Tarantool system spaces.

6. Update application files, if needed.

7. Launch the updated Tarantool server using tarantoolctl or systemctl.

Upgrading Tarantool in a replication cluster

Tarantool 1.7 (as well as Tarantool 1.9 and 1.10) can work as a replica for Tarantool 1.6 and vice versa.
Replicas perform capability negotiation on handshake, and new 1.7 replication features are not used with
1.6 replicas. This allows upgrading clustered configurations.

This procedure allows for a rolling upgrade without downtime and works for any cluster configuration:
master-master or master-replica.

1. Upgrade Tarantool at all replicas (or at any master in a master-master cluster). See details in Upgrading
a Tarantool instance.

2. Verify installation on the replicas:

(a) Start Tarantool.

(b) Attach to the master and start working as before.

The master runs the old Tarantool version, which is always compatible with the next major version.

3. Upgrade the master. The procedure is similar to upgrading a replica.
4. Verify master installation:

(a) Start Tarantool with replica configuration to catch up.

(b) Switch to master mode.

5. Upgrade the database on any master node in the cluster. Make the request box.schema.upgrade().
This updates Tarantool system spaces to match the currently installed version of Tarantool. Changes
are propagated to other nodes via the regular replication mechanism.

4.5.10 Notes for operating systems
Mac OS

On Mac OS, you can administer Tarantool instances only with tarantoolctl. No native system tools are
supported.

FreeBSD

To make tarantoolct]l work along with init.d utilities on FreeBSD, use paths other than those suggested in
Instance configuration. Instead of /usr/share/tarantool/ directory, use /usr/local/etc/tarantool/ and create
the following subdirectories:

¢ default for tarantoolctl defaults (see example below),
* instances.available for all available instance files, and

¢ instances.enabled for instance files to be auto-started by sysvinit.

92 Chapter 4. User’s Guide

http://tarantool.org/download.html

Tarantool, Release 1.10.0

Here is an example of tarantoolctl defaults on FreeBSD:

default _cfg — {

pid_file = "/var/run/tarantool", -- /var/run/tarantool/${INSTANCE}.pid
wal_dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
snap dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
vinyl dir = "/var/db/tarantool", -- /var/db/tarantool/${INSTANCE}
logger = "/var/log/tarantool", -- /var/log/tarantool/${INSTANCE}.log
username = "tarantool",

}

-- instances.available - all available instances
-- instances.enabled - instances to autostart by sysvinit

instance dir — " /usr/local/etc/tarantool /instances.available"

Gentoo Linux
The section below is about a dev-db/tarantool package installed from the official layman overlay (named
tarantool).

The default instance directory is /etc/tarantool/instances.available, can be redefined in /etc/default/
tarantool.

Tarantool instances can be managed (start/stop/reload/status/...) using OpenRC. Consider the example
how to create an OpenRC-managed instance:

$ cd /etc/init.d
$ In -s tarantool your service name
$ In -s /usr/share/tarantool/your service name.lua /etc/tarantool/instances.available/your service name.lua

Checking that it works:

$ /etc/init.d/your service name start
$ tail -f -n 100 /var/log/tarantool/your service name.log

4.5.11 Bug reports

If you found a bug in Tarantool, you're doing us a favor by taking the time to tell us about it.

Please create an issue at Tarantool repository at GitHub. We encourage you to include the following
information:

¢ Steps needed to reproduce the bug, and an explanation why this differs from the expected behavior
according to our manual. Please provide specific unique information. For example, instead of “I can’t
get certain information”, say “box.space.x:delete() didn’t report what was deleted”.

* Your operating system name and version, the Tarantool name and version, and any unusual details
about your machine and its configuration.

* Related files like a stack trace or a Tarantool log file.
If this is a feature request or if it affects a special category of users, be sure to mention that.

Usually within one or two workdays a Tarantool team member will write an acknowledgment, or some
questions, or suggestions for a workaround.

4.5. Server administration 93

Tarantool, Release 1.10.0

4.5.12 Troubleshooting guide

For this guide, you need to install Tarantool stat module:

$ sudo yum install tarantool-stat
$ # -- OR -
$ sudo apt-get install tarantool-stat

Problem: INSERT /UPDATE-requests result in ER_ MEMORY ISSUE error

Possible reasons

* Lack of RAM (parameters arena_used ratio and quota_used ratio in box.slab.info() report are get-
ting close to 100%).

To check these parameters, say:

$ # attaching to a Tarantool instance
$ tarantoolct] enter <instance name>
$ # -- OR --

$ tarantoolctl connect <URI>

-- requesting arena_used ratio value
tarantool > require('stat').stat()['slab.arena used ratio']

-- requesting quota_used ratio value
tarantool> require('stat').stat()['slab.quota used ratio']

Solution
Try either of the following measures:

* In Tarantool’s instance file, increase the value of box.cfg{memtx memory} (if memory resources are
available).

Tarantool needs to be restarted to change this parameter. The Tarantool server will be unavailable
while restarting from .xlog files, unless you restart it using hot standby mode. In the latter case, nearly
100% server availability is guaranteed.

¢ Clean up the database.

¢ Check the indicators of memory fragmentation:

-- requesting quota_used ratio value
tarantool> require('stat').stat()['slab.quota used ratio']

-- requesting items used ratio value
tarantool™> require('stat').stat()['slab.items used ratio']

In case of heavy memory fragmentation (quota_used ratio is getting close to 100%, items used _ratio
is about 50%), we recommend restarting Tarantool in the hot standby mode.

Problem: Tarantool generates too heavy CPU load

Possible reasons

The transaction processor thread consumes over 60% CPU.

94 Chapter 4. User’s Guide

https://github.com/tarantool/stat

Tarantool, Release 1.10.0

Solution

Attach to the Tarantool instance with tarantoolctl utility, analyze the query statistics with box.stat() and
spot the CPU consumption leader. The following commands can help:

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # - OR -

$ tarantoolctl connect <URI>

-- checking the RPS of calling stored procedures
tarantool> require('stat').stat()['stat.op.call.rps']

The critical RPS value is 75 000, boiling down to 10 000 - 20 000 for a rich Lua application (a Lua module
of 200+ lines).

-- checking RPS per query type
tarantool> require('stat").stat()['stat.op.<query type>.rps’|

The critical RPS value for SELECT /INSERT /UPDATE/DELETE requests is 100 000.

If the load is mostly generated by SELECT requests, we recommend adding a slave server and let it process
part of the queries.

If the load is mostly generated by INSERT/UPDATE/DELETE requests, we recommend sharding the
database.

Problem: Query processing times out

Possible reasons

Note: All reasons that we discuss here can be identified by messages in Tarantool’s log file, all starting with
the words 'Too long...".

1. Both fast and slow queries are processed within a single connection, so the readahead buffer is cluttered
with slow queries.

Solution
Try either of the following measures:
* Increase the readahead buffer size (box.cfg{readahead} parameter).

This parameter can be changed on the fly, so you don’t need to restart Tarantool. Attach to the
Tarantool instance with tarantoolctl utility and call box.cfg{} with a new readahead value:

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # - OR -

$ tarantoolct]l connect <URI>

-- changing the readahead value
tarantool> box.cfg{readahead — 10 * 1024 * 1024}

Example: Given 1000 RPS, 1 Kbyte of query size, and 10 seconds of maximal query processing
time, the minimal readahead buffer size must be 10 Mbytes.

4.5. Server administration 95

Tarantool, Release 1.10.0

¢ On the business logic level, split fast and slow queries processing by different connections.
2. Slow disks.
Solution

Check disk performance (use iostat, iotop or strace utility to check iowait parameter) and try to put
.xlog files and snapshot files on different physical disks (i.e. use different locations for wal dir and
memtx _dir).

Problem: Replication “lag” and “idle” contain negative values

This is about box.info.replication.(upstream.)lag and box.info.replication.(upstream.)idle values in
box.info.replication section.

Possible reasons

Operating system clock on the hosts is not synchronized, or the NTP server is faulty.

Solution

Check NTP server settings.

If you found no problems with the NTP server, just do nothing then. Lag calculation uses operating system
clock from two different machines. If they get out of sync, the remote master clock can get consistently
behind the local instance’s clock.

Problem: Replication “idle” keeps growing, but no related log messages appear

This is about box.info.replication.(upstream.)idle value in box.info.replication section.
Possible reasons

Some server was assigned different IP addresses, or some server was specified twice in box.cfg{}, so duplicate
connections were established.

Solution

Upgrade Tarantool 1.6 to 1.9+, where this error is fixed: in case of duplicate connections, replication is
stopped and the following message is added to the log: 'Incorrect value for option ' 'replication source' ':
duplicate connection with the same replica UUID'.

Problem: Replication statistics differ on replicas within a replica set

This is about a replica set that consists of one master and several replicas. In a replica set of this type,
values in box.info.replication section, like box.info.replication.lsn, come from the master and must be the
same on all replicas within the replica set. The problem is that they get different.

Possible reasons
Replication is broken.
Solution

Restart replication.

96 Chapter 4. User’s Guide

https://linux.die.net/man/1/iostat
https://linux.die.net/man/1/iotop
https://linux.die.net/man/1/strace

Tarantool, Release 1.10.0

Problem: Master-master replication is stopped

This is about box.info.replication(.upstream).status = stopped.
Possible reasons

In a master-master replica set of two Tarantool instances, one of the masters has tried to perform an action
already performed by the other server, for example re-insert a tuple with the same unique key. This would
cause an error message like 'Duplicate key exists in unique index 'primary' in space <space name>"'.

Solution

Restart replication with the following commands (at each master instance):

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # -—- OR --

$ tarantoolctl connect <URI>

-- restarting replication

tarantool> original value = box.cfg.replication
tarantool > box.cfg{replication—={}}

tarantool > box.cfg{replication—original value}

We also recommend using text primary keys or setting up master-slave replication.

Problem: Tarantool works much slower than before

Possible reasons
Inefficient memory usage (RAM is cluttered with a huge amount of unused objects).
Solution

Call the Lua function collectgarbage(‘count’) and measure its execution time with Tarantool functions
clock.bench() or clock.proc().

Example of calculating memory usage statistics:

$ # attaching to a Tarantool instance
$ tarantoolctl enter <instance name>
$ # -- OR --

$ tarantoolctl connect <URI>

-- loading Tarantool's "clock" module with time-related routines
tarantool> local clock = require 'clock"

-- starting the timer

tarantool> local b = clock.proc()

-- launching garbage collection

tarantool> local ¢ = collectgarbage(' count ")

-- stopping the timer after garbage collection is completed
tarantool > return ¢, clock.proc() - b

If the returned clock.proc() value is greater than 0.001, this may be an indicator of inefficient memory usage
(no active measures are required, but we recommend to optimize your Tarantool application code).

If the value is greater than 0.01, your application definitely needs thorough code analysis aimed at optimizing
memory usage.

4.5. Server administration 97

https://www.lua.org/manual/5.1/manual.html#pdf-collectgarbage

Tarantool, Release 1.10.0

4.6 Replication

Replication allows multiple Tarantool instances to work on copies of the same databases. The databases are
kept in sync because each instance can communicate its changes to all the other instances.

This chapter includes the following sections:

4.6.1 Replication architecture
Replication mechanism

A pack of instances which operate on copies of the same databases make up a replica set. Each instance in
a replica set has a role, master or replica.

A replica gets all updates from the master by continuously fetching and applying its write ahead log (WAL).
Each record in the WAL represents a single Tarantool data-change request such as INSERT, UPDATE
or DELETE, and is assigned a monotonically growing log sequence number (LSN). In essence, Tarantool
replication is row-based: each data-change request is fully deterministic and operates on a single tuple.
However, unlike a classical row-based log, which contains entire copies of the changed rows, Tarantool’s
WAL contains copies of the requests. For example, for UPDATE requests, Tarantool only stores the primary
key of the row and the update operations, to save space.

Invocations of stored programs are not written to the WAL. Instead, records of the actual data-change
requests, performed by the Lua code, are written to the WAL. This ensures that possible non-determinism
of Lua does not cause replication to go out of sync.

Data definition operations on temporary spaces, such as creating/dropping, adding indexes, truncating, etc.,
are written to the WAL, since information about temporary spaces is stored in non-temporary system spaces,
such as box.space. _space. Data change operations on temporary spaces are not written to the WAL and are
not replicated.

To create a valid initial state, to which WAL changes can be applied, every instance of a replica set requires
a start set of checkpoint files, such as .snap files for memtx and .run files for vinyl. A replica joining an
existing replica set, chooses an existing master and automatically downloads the initial state from it. This
is called an initial join.

When an entire replica set is bootstrapped for the first time, there is no master which could provide the
initial checkpoint. In such case, replicas connect to each other, elect a master, which then creates the starting
set of checkpoint files, and distributes it across all other replicas. This is called an automatic bootstrap of a
replica set.

When a replica contacts a master (there can be many masters) for the first time, it becomes part of a replica
set. On subsequent occasions, it should always contact a master in the same replica set. Once connected
to the master, the replica requests all changes that happened after the latest local LSN (there can be many
LSNs — each master has its own LSN).

Each replica set is identified by a globally unique identifier, called replica set UUID. The identifier is created
by the master which creates the very first checkpoint, and is part of the checkpoint file. It is stored in system
space box.space. schema. For example:

tarantool > box.space. schema:select{ ' cluster'}

- - ['cluster', '6308ach9-9788-42fa~-8101-2e0ch9d3c9al ']

Additionally, each instance in a replica set is assigned its own UUID, when it joins the replica set. It is called
an instance UUID and is a globally unique identifier. This UUID is used to ensure that instances do not join

98 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

a different replica set, e.g. because of a configuration error. A unique instance identifier is also necessary to
apply rows originating from different masters only once, that is, implement multi-master replication. This is
why each row in the write ahead log, in addition to its log sequence number, stores the instance identifier of
the instance on which it was created. But using UUID as such an identifier would take too much space in the
write ahead log, thus a shorter integer number is assigned to the instance when it joins a replica set. This
number is then used to refer to the instance in the write ahead log. It is called instance id. All identifiers
are stored in system space box.space. cluster. For example:

tarantool > box.space. _cluster:select{}

- - [1, "88580b5¢-4474-43ab-bd2b-2409a9af80d2 " |

Here the instance ID is 1 (unique within the replica set), and the instance UUID is 88580b5c-4474-43ab-
bd2b-2409a9af80d2 (globally unique).

Using shorter numeric identifiers is also handy to track the state of the entire replica set. For example,
box.info.vclock describes the state of replication in regard to each connected peer.

tarantool> box.info.vclock

- {1: 827, 2: 584}

Here vclock contains log sequence numbers (827 and 584) for instances with short identifiers 1 and 2.

Starting in Tarantool 1.7.7, it is possible for administrators to assign the instance UUID and the replica
set UUID values, rather than let the system generate them — see the description of the replicaset uuid
configuration parameter.

Replication setup

To enable replication, you need to specify two parameters in a box.cfg{} request:
* replication parameter which defines the replication source(s), and
e read only parameter which is true for a replica and false for a master.

Both these parameters are “dynamic”. This allows a replica to become a master and vice versa on the fly
with the help of a box.cfg{} request.

Further we’re giving a detailed example of bootstrapping a replica set.

Replication roles: master and replica
Replication role (master or replica) is set in read only configuration parameter. The recommended role for
all-but-one instances in a replica set is “read-only” (replica).

In a master-replica configuration, every change that happens on the master will be visible on the replicas,
but not vice versa.

4.6. Replication 99

Tarantool, Release 1.10.0

~P replica #1
master #1 <

p replica #2

A simple two-instance replica set with the master on one machine and the replica on a different machine
provides two benefits:

« failover, because if the master goes down then the replica can take over, and
¢ load balancing, because clients can connect to either the master or the replica for read requests.

In a master-master configuration (also called “multi-master”), every change that happens on either instance
will be visible on the other one.

master #1 4+—>» master #2

e master #3 +—

The failover benefit in this case is still present, and the load-balancing benefit is enhanced, because any
instance can handle both read and write requests. Meanwhile, for multi-master configurations, it is necessary
to understand the replication guarantees provided by the asynchronous protocol that Tarantool implements.

Tarantool multi-master replication guarantees that each change on each master is propagated to all instances
and is applied only once. Changes from the same instance are applied in the same order as on the originating
instance. Changes from different instances, however, can mix and apply in a different order on different
instances. This may lead to replication going out of sync in certain cases.

For example, assuming the database is only appended to (i.e. it contains only insertions), it is safe to set each
instance to a master. If there are also deletions, but it is not mission critical that deletion happens in the

100 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

same order on all replicas (e.g. the DELETE is used to prune expired data), a master-master configuration
is also safe.

UPDATE operations, however, can easily go out of sync. For example, assignment and increment are not
commutative, and may yield different results if applied in different order on different instances.

More generally, it is only safe to use Tarantool master-master replication if all database changes are commu-
tative: the end result does not depend on the order in which the changes are applied. You can start learning
more about conflict-free replicated data types here.

Replication topologies: cascade, ring and full mesh

Replication topology is set in replication configuration parameter. The recommended topology is a full mesh,
because it makes potential failover easy.

Some database products offer cascading replication topologies: creating a replica on a replica. Tarantool
does not recommend such setup.

MNANNNNNNNNNNN

instance 1 instance #2 instance #3

k N\ SCRRCEET | SCRCER

SO\ ‘\ ©

NERNERAY

The problem with a cascading replica set is that some instances have no connection to other instances and
may not receive changes from them. One essential change that must be propagated across all instances in a
replica set is an entry in box.space. cluster system space with replica set UUID. Without knowing a replica
set UUID, a master refuses to accept connections from such instances when replication topology changes.
Here is how this can happen:

Instance #1 instance #1 instance #1
instarce #2 instanca #2 instance #2
instance #3 DC#2 | instance #3

instance #1 L] Instance #2 + instance #3

We have a chain of three instances. Instance #1 contains entries for instances #1 and #2 in its _ cluster
space. Instances #2 and #3 contain entries for instances #1, #2 and #3 in their _cluster spaces.

4.6. Replication 101

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

Tarantool, Release 1.10.0

Instanca instance #1 instance #1
Inctanca ig instance #2 instance #2
instance #3 DC #2 | instance #3

instance #1 L Instance #2 + instance #3

Now instance #2 is faulty. Instance #3 tries connecting to instance #1 as its new master, but the master
refuses the connection since it has no entry for instance #3.

Ring replication topology is, however, supported:

DC#1 DC#2

instance #1 4— instance #2 +— instance #3

So, if you need a cascading topology, you may first create a ring to ensure all instances know each other’s
UUID, and then disconnect the chain in the place you desire.

A stock recommendation for a master-master replication topology, however, is a full mesh:

master #1 +—>» master #2

S master #3 +~

102 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

You then can decide where to locate instances of the mesh — within the same data center, or spread across a
few data centers. Tarantool will automatically ensure that each row is applied only once on each instance.
To remove a degraded instance from a mesh, simply change replication configuration parameter.

This ensures full cluster availability in case of a local failure, e.g. one of the instances failing in one of the
data centers, as well as in case of an entire data center failure.

The maximal number of replicas in a mesh is 32.

4.6.2 Bootstrapping a replica set
Master-replica bootstrap

Let’s first bootstrap a simple master-replica set containing two instances, each located on its own machine.
For easier administration, we make the instance files almost identical.

master #1 —p replica #1

Here is an example of the master’s instance file:

-- instance file for the master
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301", -- master URI
'replicator:password@192.168.0.102:3301 ' }, -- replica URI
read _only — false
}
box.once("schema", function()
box.schema.user.create(' replicator', {password = 'password'})
box.schema.user.grant(' replicator', 'replication') - grant replication role
box.schema.space.create("test'")
box.space.test:create index("primary")
print(' box.once executed on master ')

end)

where:

¢ listen parameter from box.cfg{} defines a URI (port 3301 in our example), on which the master can
accept connections from replicas.

4.6. Replication 103

Tarantool, Release 1.10.0

« replication parameter defines the URIs at which all instances in the replica set can accept connections.
It includes the replica’s URI as well, although the replica is not a replication source right now.

Note: For security reasons, we recommend to prevent unauthorized replication sources by associating
a password with every user that has a replication role. That way, the URI for replication parameter
must have the long form username:password@host:port.

* read only parameter enables data-change operations on the instance and makes this Tarantool instance
act as a master, not as a replica. That’s the only parameter in our instance files that will differ.

* box.once() function contains database initialization logic that should be executed only once during the
replica set lifetime.

In this example, we create a space with a primary index, and a user for replication purposes. We also say
print(' box.once executed on master') to see later in console whether box.once() is executed.

Note: Replication requires privileges. We can grant privileges for accessing spaces directly to the user who
will start the instance. However, it is more usual to grant privileges for accessing spaces to a role, and then
grant the role to the user who will start the replica.

Here we use Tarantool’s predefined role named “replication” which by default grants “read” privileges for all
database objects (“universe”), and we can further set up privileges for this role as required.

In the replica’s instance file, we only set read-only parameter to “true”, and say print('box.once executed on
replica') to make sure that box.once() is not executed more than once. Otherwise the replica’s instance file
is fully identical to the master’s instance file.

-- instance file for the replica
box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301 ", -- master URI
'replicator:password@192.168.0.102:3301 ' }, -- replica URI
read only = true

box.once("schema", function()
box.schema.user.create(' replicator ', {password = 'password'})
box.schema.user.grant(' replicator ', 'replication') -- grant replication role

box.schema.space.create("test")

box.space.test:create index("primary")

print(' box.once executed on replica")
end)

Note: The replica does not inherit the master’s configuration parameters, such as those making the check-
point daemon run on the master. To get the same behavior, please set the relevant parameters explicitly so
that they are the same on both master and replica.

Now we can launch the two instances. The master. ..

$ # launching the master

$ tarantool master.lua

2017-06-14 14:12:03.847 [18933] main/101/master.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:12:03.848 [18933] main/101/master.lua C> log level 5

2017-06-14 14:12:03.849 [18933] main/101/master.lua I>> mapping 268435456 bytes for tuple arena...
2017-06-14 14:12:03.859 [18933] iproto/101/main I> binary: bound to [::]:3301

104 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2017-06-14 14:12:03.861 [18933] main/105/applier /replicator@192.168.0. I>> can't connect to master
2017-06-14 14:12:03.861 [18933] main/105/applier /replicator@192.168.0. coio.cc:105 !> SystemError connect,_
—called on fd 14, aka 192.168.0.102:56736: Connection refused

2017-06-14 14:12:03.861 [18933] main/105/applier/replicator@192.168.0. I>> will retry every 1 second
2017-06-14 14:12:03.861 [18933] main/104/applier /replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 14:12:19.878 [18933] main/105/applier /replicator@192.168.0. I>> remote master is 1.7.4 at 192.168.0.
—102:3301

2017-06-14 14:12:19.879 [18933] main/101 /master.lua I>> initializing an empty data directory

2017-06-14 14:12:19.908 [18933] snapshot /101 /main I>> saving snapshot * /var/lib/tarantool/master/
—00000000000000000000.snap.inprogress '

2017-06-14 14:12:19.914 [18933] snapshot/101/main I>> done

2017-06-14 14:12:19.914 [18933] main/101/master.lua I>> vinyl checkpoint done

2017-06-14 14:12:19.917 [18933] main/101/master.lua I> ready to accept requests

2017-06-14 14:12:19.918 [18933] main/105/applier /replicator@192.168.0. I> failed to authenticate

2017-06-14 14:12:19.918 [18933] main/105/applier /replicator@192.168.0. xrow.cc:431 E> ER LOADING: Instance_
—bootstrap hasn't finished yet

box.once executed on master

2017-06-14 14:12:19.920 [18933] main C> entering the event loop

(vep, box.once() got executed on the master) — and the replica:

$ # launching the replica

$ tarantool replica.lua

2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:12:19.486 [18934] main/101/replica.lua C> log level 5

2017-06-14 14:12:19.487 [18934] main /101 /replica.lua I> mapping 268435456 bytes for tuple arena...
2017-06-14 14:12:19.494 [18934] iproto/101/main I>> binary: bound to [::]:3311

2017-06-14 14:12:19.495 [18934] main/104/applier /replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 14:12:19.495 [18934] main/105/applier /replicator@192.168.0. I>> remote master is 1.7.4 at 192.168.0.
—102:3302

2017-06-14 14:12:19.496 [18934] main /104 /applier /replicator@192.168.0. I> failed to authenticate

2017-06-14 14:12:19.496 [18934] main,/104/applier /replicator@192.168.0. xrow.cc:431 E> ER_LOADING: Instance_
—bootstrap hasn't finished yet

In both logs, there are messages saying that the replica got bootstrapped from the master:

$ # bootstrapping the replica (from the master 's log)

<..>

2017-06-14 14:12:20.503 [18933] main/106/main I>> initial data sent.

2017-06-14 14:12:20.505 [18933] relay /[::ffff:192.168.0.101]: /101 /main I> recover from /var/lib/tarantool /master/
~00000000000000000000.xlog '

2017-06-14 14:12:20.505 [18933] main/106/main I>> final data sent.

2017-06-14 14:12:20.522 [18933] relay /[::ffff:192.168.0.101]: /101 /main I> recover from * /Users/e.shebunyaeva/
—work /tarantool-test-repl/master__dir/00000000000000000000.xlog "

2017-06-14 14:12:20.922 [18933] main/105/applier /replicator@192.168.0. I>> authenticated

$ # bootstrapping the replica (from the replica 's log)

<...>

2017-06-14 14:12:20.498 [18934| main/104/applier /replicator@192.168.0. I> authenticated

2017-06-14 14:12:20.498 [18934] main /101 /replica.lua I> bootstrapping replica from 192.168.0.101:3301
2017-06-14 14:12:20.512 [18934] main/104/applier /replicator@192.168.0. I> initial data received
2017-06-14 14:12:20.512 [18934] main/104/applier /replicator@192.168.0. I> final data received
2017-06-14 14:12:20.517 [18934] snapshot/101/main I>> saving snapshot * /var/lib/tarantool/replica/
—00000000000000000005.snap.inprogress '

2017-06-14 14:12:20.518 [18934]| snapshot /101 /main I*> done

2017-06-14 14:12:20.519 [18934] main /101 /replica.lua I> vinyl checkpoint done

4.6. Replication 105

Tarantool, Release 1.10.0

2017-06-14 14:12:20.520 [18934] main /101 /replica.lua I> ready to accept requests
2017-06-14 14:12:20.520 [18934] main/101/replica.lua I> set 'read only' configuration option to true
2017-06-14 14:12:20.520 [18934] main C> entering the event loop

Notice that box.once() was executed only at the master, although we added box.once() to both instance files.

We could as well launch the replica first:

$ # launching the replica

$ tarantool replica.lua

2017-06-14 14:35:36.763 [18952] main /101 /replica.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:35:36.765 [18952] main/101/replica.lua C> log level 5

2017-06-14 14:35:36.765 [18952] main /101 /replica.lua I>> mapping 268435456 bytes for tuple arena...
2017-06-14 14:35:36.772 [18952] iproto/101/main I> binary: bound to [::]:3301

2017-06-14 14:35:36.772 [18952] main/104/applier /replicator@192.168.0. I>> can't connect to master
2017-06-14 14:35:36.772 [18952] main /104 /applier/replicator@192.168.0. coio.cc:105 !> SystemError connect,_
—called on fd 13, aka 192.168.0.101:56820: Connection refused

2017-06-14 14:35:36.772 [18952] main/104/applier /replicator@192.168.0. I> will retry every 1 second
2017-06-14 14:35:36.772 [18952] main/105/applier /replicator@192.168.0. I > remote master is 1.7.4 at 192.168.0.
—102:3301

. and the master later:

$ # launching the master

$ tarantool master.lua

2017-06-14 14:35:43.701 [18953] main/101/master.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:35:43.702 [18953] main/101/master.lua C> log level 5

2017-06-14 14:35:43.702 [18953] main/101/master.lua I>> mapping 268435456 bytes for tuple arena...

2017-06-14 14:35:43.709 [18953] iproto/101/main I>> binary: bound to |[::]:3301

2017-06-14 14:35:43.709 [18953] main/105/applier /replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
—102:3301

2017-06-14 14:35:43.709 [18953] main/104/applier /replicator@192.168.0. I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 14:35:43.709 [18953] main/101/master.lua I>> initializing an empty data directory

2017-06-14 14:35:43.721 [18953] snapshot/101/main I>> saving snapshot * /var/lib/tarantool/master/
—00000000000000000000.snap.inprogress '

2017-06-14 14:35:43.722 [18953] snapshot/101/main I>> done

2017-06-14 14:35:43.723 [18953] main/101/master.lua I>> vinyl checkpoint done

2017-06-14 14:35:43.723 [18953] main/101/master.lua I>> ready to accept requests

2017-06-14 14:35:43.724 [18953] main/105/applier /replicator@192.168.0. I>> failed to authenticate

2017-06-14 14:35:43.724 [18953] main/105/applier /replicator@192.168.0. xrow.cc:431 E> ER LOADING: Instance_
—bootstrap hasn't finished yet

box.once executed on master

2017-06-14 14:35:43.726 [18953] main C> entering the event loop

2017-06-14 14:35:43.779 [18953] main/103/main I>> initial data sent.

2017-06-14 14:35:43.780 [18953] relay /[::ffff:192.168.0.101]: /101 /main I> recover from /var/lib/tarantool /master/
—00000000000000000000.xlog "

2017-06-14 14:35:43.780 [18953] main/103/main I>> final data sent.

2017-06-14 14:35:43.796 [18953] relay /[::ffff:192.168.0.102]: /101 /main I> recover from * /var/lib/tarantool /master/
—00000000000000000000.xlog "

2017-06-14 14:35:44.726 [18953] main/105/applier /replicator@192.168.0. I> authenticated

In this case, the replica would wait for the master to become available, so the launch order doesn’t matter.
Our box.once() logic would also be executed only once, at the master.

$ # the replica has eventually connected to the master

$ # and got bootstrapped (from the replica 's log)

2017-06-14 14:35:43.777 [18952] main/104/applier /replicator@192.168.0. I > remote master is 1.7.4 at 192.168.0.
101:3301

106 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2017-06-14 14:35:43.777 [18952] main/104/applier /replicator@192.168.0. I>> authenticated

2017-06-14 14:35:43.777 [18952] main /101 /replica.lua I> bootstrapping replica from 192.168.0.199:3310
2017-06-14 14:35:43.788 [18952] main/104/applier /replicator@192.168.0. I> initial data received
2017-06-14 14:35:43.789 [18952] main /104 /applier /replicator@192.168.0. I> final data received
2017-06-14 14:35:43.793 [18952] snapshot/101/main I>> saving snapshot * /var/lib/tarantool /replica/
—00000000000000000005.snap.inprogress '

2017-06-14 14:35:43.793 [18952] snapshot/101/main I>> done

2017-06-14 14:35:43.795 [18952] main/101/replica.lua I> vinyl checkpoint done

2017-06-14 14:35:43.795 [18952] main /101 /replica.lua I>> ready to accept requests

2017-06-14 14:35:43.795 [18952] main /101 /replica.lua I> set 'read only' configuration option to true
2017-06-14 14:35:43.795 [18952] main C> entering the event loop

Controlled failover

To perform a controlled failover, that is, swap the roles of the master and replica, all we need to do is to
set read _only=true at the master, and read only=false at the replica. The order of actions is important
here. If a system is running in production, we don’t want concurrent writes happen both at the replica and
the master. Nor do we want the new replica to accept any writes until it has finished fetching all replication

data from the old master. To compare replica and master state, we can use box.info.signature.

1. Set read only=true at the master.

at the master
tarantool > box.cfg{read only—true}

2. Record the master’s current position with box.info.signature, containing the sum of all LSNs in the

master’s vector clock.

at the master
tarantool> box.info.signature

3. Wait until the replica’s signature is the same as the master’s.

at the replica
tarantool > box.info.signature

4. Set read only=false at the replica to enable write operations.

at the replica
tarantool> box.cfg{read _only—false}

These 4 steps ensure that the replica doesn’t accept new writes until it’s done fetching writes from the

master.

Master-master bootstrap

Now let’s bootstrap a two-instance master-master set. For easier administration, we make master#1 and

master#2 instance files fully identical.

4.6. Replication

107

Tarantool, Release 1.10.0

master #1 +—r master #2

We re-use the master’s instance file from the master-replica example above.

-- instance file for any of the two masters

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301", -- masterl URI
'replicator:password@192.168.0.102:3301 ' }, -- master2 URI
read_only — false
}
box.once("schema", function()
box.schema.user.create(' replicator', {password = 'password'})

box.schema.user.grant(' replicator', 'replication') - grant replication role
box.schema.space.create("test")

box.space.test:create _index("primary')

print(' box.once executed on master #1")

end)

In replication parameter, we define the URIs of both masters in the replica set and say print('box.once
executed on master #1') to see when and where the box.once() logic is executed.

Now we can launch the two masters. Again, the launch order doesn’t matter. The box.once() logic will also
be executed only once, at the master which is elected as the replica set leader at bootstrap.

$ # launching master #1

$ tarantool masterl.lua

2017-06-14 15:39:03.062 [47021] main/101/masterl.lua C> version 1.7.4-52-g980d30092

2017-06-14 15:39:03.062 [47021] main/101/masterl.lua C> log level 5

2017-06-14 15:39:03.063 [47021] main/101/masterl.lua I>> mapping 268435456 bytes for tuple arena...

2017-06-14 15:39:03.065 [47021] iproto/101/main I> binary: bound to [::]:3301

2017-06-14 15:39:03.065 [47021] main/105/applier /replicator@192.168.0.10 I> can't connect to master
2017-06-14 15:39:03.065 [47021] main/105/applier /replicator@192.168.0.10 coio.cc:107 !> SystemError connect,_
—called on fd 14, aka 192.168.0.102:57110: Connection refused

2017-06-14 15:39:03.065 [47021] main/105/applier /replicator@192.168.0.10 I> will retry every 1 second
2017-06-14 15:39:03.065 [47021] main/104/applier /replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 15:39:08.070 [47021] main/105/applier /replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
—102:3301

2017-06-14 15:39:08.071 [47021] main/105/applier /replicator@192.168.0.10 I>> authenticated

108 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2017-06-14 15:39:08.071 [47021] main/101/masterl.lua I> bootstrapping replica from 192.168.0.102:3301
2017-06-14 15:39:08.073 [47021] main/105/applier /replicator@192.168.0.10 I*> initial data received

2017-06-14 15:39:08.074 [47021] main/105/applier /replicator@192.168.0.10 I> final data received

2017-06-14 15:39:08.074 [47021] snapshot/101/main I>> saving snapshot * /Users/e.shebunyaeva/work/tarantool-
—test-repl/masterl _dir/00000000000000000008.snap.inprogress '

2017-06-14 15:39:08.074 [47021] snapshot/101/main I>> done

2017-06-14 15:39:08.076 [47021] main/101/masterl.lua I> vinyl checkpoint done

2017-06-14 15:39:08.076 [47021] main/101/masterl.lua I> ready to accept requests

box.once executed on master #1

2017-06-14 15:39:08.077 [47021] main C> entering the event loop

$ # launching master #2

$ tarantool master2.lua

2017-06-14 15:39:07.452 [47022] main/101/master2.lua C> version 1.7.4-52-g980d30092

2017-06-14 15:39:07.453 [47022] main/101/master2.lua C> log level 5

2017-06-14 15:39:07.453 [47022] main/101/master2.lua I>> mapping 268435456 bytes for tuple arena...
2017-06-14 15:39:07.455 [47022] iproto/101/main I> binary: bound to [::]:3301

2017-06-14 15:39:07.455 [47022] main/104/applier /replicator@192.168.0.19 I>> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 15:39:07.455 [47022] main/105/applier /replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
—102:3301

2017-06-14 15:39:07.455 [47022] main/101/master2.lua I>> initializing an empty data directory

2017-06-14 15:39:07.457 [47022] snapshot/101/main I>> saving snapshot * /Users/e.shebunyaeva/work/tarantool-
—test-repl/master2 dir/00000000000000000000.snap.inprogress "

2017-06-14 15:39:07.457 [47022] snapshot/101/main I>> done

2017-06-14 15:39:07.458 [47022] main/101/master2.lua I>> vinyl checkpoint done

2017-06-14 15:39:07.459 [47022] main/101/master2.lua I> ready to accept requests

2017-06-14 15:39:07.460 [47022] main C> entering the event loop

2017-06-14 15:39:08.072 [47022] main/103/main I>> initial data sent.

2017-06-14 15:39:08.073 [47022] relay /[::ffff:192.168.0.102]: /101 /main I> recover from * /Users/e.shebunyaeva/
—work /tarantool-test-repl/master2 _dir/00000000000000000000.xlog "

2017-06-14 15:39:08.073 [47022] main/103/main 1> final data sent.

2017-06-14 15:39:08.077 [47022] relay /[::ffff:192.168.0.102]: /101 /main I> recover from * /Users/e.shebunyaeva/
—work /tarantool-test-repl/master2 _dir/00000000000000000000.xlog "

2017-06-14 15:39:08.461 [47022] main/104/applier /replicator@192.168.0.10 I>> authenticated

4.6.3 Adding instances

4.6. Replication 109

Tarantool, Release 1.10.0

Adding a replica

master #1 +—> replica #1

replica #2

To add a second replica instance to the master-replica set from our bootstrapping example, we need an
analog of the instance file that we created for the first replica in that set:

-- instance file for replica #2
box.cfg{
listen = 3301,
replication = ('replicator:password@192.168.0.101:3301", -- master URI
'replicator:password@192.168.0.102:3301 ", -- replica #1 URI
'replicator:password@192.168.0.103:3301 "), -- replica #2 URI
read _only — true

box.once("schema", function()
box.schema.user.create(' replicator', {password = 'password'})
box.schema.user.grant(' replicator', 'replication’) - grant replication role

box.schema.space.create("test")

box.space.test:create _index("primary")

print(' box.once executed on replica #2")
end)

Here we add replica #2 URI to replication parameter, so now it contains three URIs.

After we launch the new replica instance, it gets connected to the master instance and retrieves the master’s
write ahead log and snapshot files:

$ # launching replica #2

$ tarantool replica2.lua

2017-06-14 14:54:33.927 [46945] main/101/replica2.lua C> version 1.7.4-52-g980d30092

2017-06-14 14:54:33.927 [46945] main /101 /replica2.lua C> log level 5

2017-06-14 14:54:33.928 [46945] main /101 /replica2.lua I>> mapping 268435456 bytes for tuple arena...
2017-06-14 14:54:33.930 [46945] main/104/applier /replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 14:54:33.930 [46945] main/104/applier /replicator@192.168.0.10 I>> authenticated

2017-06-14 14:54:33.930 [46945] main /101 /replica2.lua I> bootstrapping replica from 192.168.0.101:3301
2017-06-14 14:54:33.933 [46945] main /104 /applier/replicator@192.168.0.10 I*> initial data received
2017-06-14 14:54:33.933 [46945] main/104/applier /replicator@192.168.0.10 I>> final data received
2017-06-14 14:54:33.934 [46945] snapshot /101 /main I>> saving snapshot * /var/lib/tarantool/replica2/
—00000000000000000010.snap.inprogress '

110 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

2017-06-14 14:54:33.934 [46945] snapshot/101/main I>> done

2017-06-14 14:54:33.935 [46945] main/101/replica2.lua I> vinyl checkpoint done

2017-06-14 14:54:33.935 [46945] main /101 /replica2.lua I> ready to accept requests

2017-06-14 14:54:33.935 [46945] main /101 /replica2.lua I> set 'read only' configuration option to true
2017-06-14 14:54:33.936 [46945] main C> entering the event loop

Since we’re adding a read-only instance, there is no need to dynamically update replication parameter on
the other running instances. This update would be required if we added a master instance.

However, we recommend to specify replica #3 URI in all instance files of the replica set. This will keep
all the files consistent with each other and with the current replication topology, and so will help to avoid
configuration errors in case of further reconfigurations and replica set restart.

Adding a master

master #1 +—> master #2

master #3

To add a third master instance to the master-master set from our bootstrapping example, we need an analog
of the instance files that we created to bootstrap the other master instances in that set:

-- instance file for master #3

box.cfg{
listen = 3301,
replication = {'replicator:password@192.168.0.101:3301", -- master#1 URI
'replicator:password@192.168.0.102:3301 ", -- master#2 URI
'replicator:password@192.168.0.103:3301 ' }, -- master#3 URI
read only = true, -- temporarily read-only
}
box.once("schema", function()
box.schema.user.create(' replicator ', {password = 'password'})
box.schema.user.grant(' replicator ', 'replication’) - grant "replication" role

box.schema.space.create("test")
box.space.test:create index("primary")
end)

Here we make the following changes:

¢ Add master#3 URI to replication parameter.

4.6. Replication 111

Tarantool, Release 1.10.0

e Temporarily specify read _only=true to disable data-change operations on the instance. After launch,
master #3 will act as a replica until it retrieves all data from the other masters in the replica set.

After we launch the third master instance, it gets connected to the other master instances and retrieves their
write ahead logs and snapshot files:

$ # launching master #3

$ tarantool master3.lua

2017-06-14 17:10:00.556 [47121] main/101/master3.lua C> version 1.7.4-52-g980d30092

2017-06-14 17:10:00.557 [47121] main/101/master3.lua C> log level 5

2017-06-14 17:10:00.557 [47121] main/101/master3.lua I>> mapping 268435456 bytes for tuple arena...

2017-06-14 17:10:00.559 [47121] iproto/101/main I>> binary: bound to |[::]:3301

2017-06-14 17:10:00.559 [47121] main/104/applier /replicator@192.168.0.10 I> remote master is 1.7.4 at 192.168.0.
—101:3301

2017-06-14 17:10:00.559 [47121] main/105/applier /replicator@192.168.0.10 I*> remote master is 1.7.4 at 192.168.0.
—102:3301

2017-06-14 17:10:00.559 [47121] main/106/applier /replicator@192.168.0.10 I > remote master is 1.7.4 at 192.168.0.
—103:3301

2017-06-14 17:10:00.559 [47121] main/105/applier /replicator@192.168.0.10 I>> authenticated

2017-06-14 17:10:00.559 [47121] main/101/master3.lua I> bootstrapping replica from 192.168.0.102:3301
2017-06-14 17:10:00.562 [47121] main/105/applier/replicator@192.168.0.10 I*> initial data received

2017-06-14 17:10:00.562 [47121] main/105/applier /replicator@192.168.0.10 I> final data received

2017-06-14 17:10:00.562 [47121] snapshot/101/main I>> saving snapshot * /Users/e.shebunyaeva/work/tarantool-
—test-repl/master3__dir/00000000000000000009.snap.inprogress '

2017-06-14 17:10:00.562 [47121] snapshot/101/main I*> done

2017-06-14 17:10:00.564 [47121] main/101/master3.lua I> vinyl checkpoint done

2017-06-14 17:10:00.564 [47121] main/101/master3.lua I>> ready to accept requests

2017-06-14 17:10:00.565 [47121] main/101/master3.lua I>> set 'read only' configuration option to true
2017-06-14 17:10:00.565 [47121] main C> entering the event loop

2017-06-14 17:10:00.565 [47121] main/104/applier /replicator@192.168.0.10 I>> authenticated

Next, we add master#3 URI to replication parameter on the existing two masters. Replication-related
parameters are dynamic, so we only need to make a box.cfg{} request on each of the running instances:

adding master #3 URI to replication sources
tarantool > box.cfg{replication —
> {'replicator:password@192.168.0.101:3301 ",
> 'replicator:password@192.168.0.102:3301 ",
> 'replicator:password@192.168.0.103:3301 ' } }

When master #3 catches up with the other masters’ state, we can disable read-only mode for this instance:

making master #3 a real master
tarantool > box.cfg{read only—false}

We also recommend to specify master #3 URI in all instance files in order to keep all the files consistent
with each other and with the current replication topology.

4.6.4 Removing instances

To politely remove an instance from a replica set, follow these steps:

1. On the instance, run box.cfg{} with a blank replication source:

112 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

tarantool > box.cfg{replication—""}

The other instances in the replica set will carry on. If later the removed instance rejoins, it will receive
all the updates that the other instances made while it was away.

2. If the instance is decommissioned forever, delete the instance’s record from the following locations:

(a) replication parameter at all running instances in the replica set:

’ta‘ra‘ntool box.cfg{replication—...}

(b) box.space. cluster on any master instance in the replica set. For example, a record with instance
id = 3:

tarantool > box.space. _cluster:select{}

- - [1, '913f99¢8-ace3-47f2-b414-53ed0ec5bf27]
- [2, 'eaclaeeT-cfeb-46cc-8503-3f8ebdc7dele]
- [3, '97f2d65f-2¢03-4dc8-8df3-2469bd9ceble ' |

tarantool> box.space. _cluster:delete(3)

- [3, "97£2d65f-2e03-4dc8-8df3-2469bd9ceb1e ' |

4.6.5 Monitoring a replica set

To learn what instances belong in the replica set, and obtain statistics for all these instances, use
box.info.replication request:

tarantool > box.info.replication
replication:
1:
id: 1
uuid: b8a7db60-745{-41b3-bf68-5fcce7ale019
Isn: 88
2:
id: 2
uuid: cd3c7da2-a638-4c5d-ae63-e7767c3a6896
Isn: 31
upstream:
status: follow
idle: 43.187747001648
peer: replicator@192.168.0.102:3301
lag: 0
downstream:
vclock: {1: 31}
3:
id: 3
uuid: e38ef895-5804-43b9-81ac-9f2cd872b9c4
Isn: 54
upstream:
status: follow
idle: 43.187621831894

4.6. Replication 113

Tarantool, Release 1.10.0

peer: replicator@192.168.0.103:3301
lag: 2
downstream:

velock: {1: 54}

This report is for a master-master replica set of three instances, each having its own instance id, UUID and
log sequence number.

master #1 e master #2

e master #3 +

The request was issued at master #1, and the reply includes statistics for the other two masters, given in
regard to master #1.

The primary indicators of replication health are:
* idle, the time (in seconds) since the instance received the last event from a master.

A replica sends heartbeat messages to the master every second, and the master is programmed to
reconnect automatically if it doesn’t see heartbeat messages more often than replication timeout
seconds.

Therefore, in a healthy replication setup, idle should never exceed replication timeout: if it does,
either your replication is lagging seriously behind, because the master is running ahead of the replica,
or the network link between the instances is down.

¢ lag, the time difference between the local time at the instance, recorded when the event was received,
and the local time at another master recorded when the event was written to the write ahead log on
that master.

Since lag calculation uses operating system clock from two different machines, don’t be surprised if
it’s negative: a time drift may lead to the remote master clock being consistently behind the local
instance’s clock.

For multi-master configurations, this is the maximal lag.

4.6.6 Recovering from a degraded state

“Degraded state” is a situation when the master becomes unavailable — due to hardware or network failure,
or due to a programming bug.

114 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

n:asver #1 +——» replica #1
i’ T
I
i repiica #2 «

In a master-replica set, if a master disappears, error messages appear on the replicas stating that the
connection is lost:

$ # messages from a replica 's log

2017-06-14 16:23:10.993 [19153] main/105/applier /replicator@192.168.0. I> can't read row

2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. coio.cc:349 !> SystemError

unexpected EOF when reading from socket, called on fd 17, aka 192.168.0.101:57815,

peer of 192.168.0.101:3301: Broken pipe

2017-06-14 16:23:10.993 [19153] main/105/applier/replicator@192.168.0. I>> will retry every 1 second

2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]: /101 /main I> the replica has closed its socket, exiting
2017-06-14 16:23:10.993 [19153] relay/[::ffff:192.168.0.101]: /101 /main C> exiting the relay loop

. and the master’s status is reported as “disconnected”:

report from replica #1
tarantool > box.info.replication
- 1:
id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
Isn: 542
upstream:
peer: replicator@192.168.0.101:3301
lag: 0.00026607513427734
status: disconnected
idle: 182.36929893494
message: connect, called on fd 13, aka 192.168.0.101:58244
2:
id: 2
uuid: fb252ac7-5¢34-4459-84d0-54d248b8c87e
Isn: 0
3:
id: 3
uuid: fd7681d8-255f-4237-b8bb-c4fb9d99024d
Isn: 0
downstream:

vclock: {1: 542}

4.6. Replication 115

Tarantool, Release 1.10.0

report from replica #2
tarantool > box.info.replication
- 1:
id: 1
uuid: 70e8e9dc-e38d-4046-99e5-d25419267229
lsn: 542
upstream:
peer: replicator@192.168.0.101:3301
lag: 0.00027203559875488
status: disconnected
idle: 186.76988101006
message: connect, called on fd 13, aka 192.168.0.101:58253

id: 2
uuid: fb252ac7-5¢34-4459-84d0-54d248b8c87e
Isn: 0
upstream:
status: follow
idle: 186.76960110664
peer: replicator@192.168.0.102:3301
lag: 0.00020599365234375
3:
id: 3
uuid: fd7681d8-255{-4237-b&8bb-c4fb9d99024d
Isn: 0

To declare that one of the replicas must now take over as a new master:

1. Make sure that the old master is gone for good:

¢ change network routing rules to avoid any more packets being delivered to the master, or

¢ shut down the master instance, if you have access to the machine, or

¢ power off the container or the machine.

2. Say box.cfg{read only=false, listen=URI} on the replica, and box.cfg{replication=URI} on the other

replicas in the set.

Note: If there are updates on the old master that were not propagated before the old master went down,
re-apply them manually to the new master using tarantoolctl cat and tarantoolctl play commands.

There is no automatic way for a replica to detect that the master is gone forever, since sources of failure and
replication environments vary significantly. So the detection of degraded state requires an external observer.

4.6.7 Reseeding a replica

If any of a replica’s .xlog/.snap/.run files are corrupted or deleted, you can “re-seed” the replica:

1. Stop the replica and destroy all local database

.xlog/.snap/.run/.inprogress).

2. Delete the replica’s record from the following locations:

(a) replication parameter at all running instances in the replica set.

ones with extensions

116

Chapter 4. User’s Guide

Tarantool, Release 1.10.0

(b) box.space. cluster on the master instance.
See section Removing instances for details.

3. Restart the replica with the same instance file to contact the master again. The replica will then catch
up with the master by retrieving all the master’s tuples.

Note: Remember that this procedure works only if the master’s WAL files are present.

4.6.8 Preventing duplicate actions
Tarantool guarantees that every update is applied only once at every replica. However, due to asynchronous

nature of the replication, the order of updates is not guaranteed. Further we analyse this problem in more
details, provide examples of replication going out of sync, and suggest solutions.

Replication stops

In a replica set of two masters, suppose master #1 tries to do something that master #2 has already done.
For example, try to simultaneously insert a tuple with the same unique key:

tarantool > box.space.tester:insert{1, 'data’'}

This would cause an error saying Duplicate key exists in unique index 'primary' in space 'tester' and the
replication would be stopped.

$ # error messages from master #1

2017-06-26 21:17:03.233 [30444] main/104/applier/rep user@100.96.166.1 I> can't read row

2017-06-26 21:17:03.233 [30444] main/104/applier/rep user@100.96.166.1 memtx hash.cc:226 E> ER_TUPLE
—FOUND:

Duplicate key exists in unique index 'primary' in space 'tester’

2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178] /101 /main I> the replica has closed its socket, exiting
2017-06-26 21:17:03.233 [30444] relay/[::ffff:100.96.166.178] /101 /main C> exiting the relay loop

$ # error messages from master #2

2017-06-26 21:17:03.233 [30445] main/104/applier/rep user@100.96.166.1 I> can't read row

2017-06-26 21:17:03.233 [30445] main/104/applier/rep user@100.96.166.1 memtx hash.cc:226 E> ER_TUPLE _
—FOUND:

Duplicate key exists in unique index 'primary' in space 'tester"'

2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178] /101 /main I> the replica has closed its socket, exiting
2017-06-26 21:17:03.234 [30445] relay/[::ffff:100.96.166.178] /101 /main C> exiting the relay loop

If we check replication statuses with box.info, we’ll see that replication at master #1 is stopped (1.upstream.
status = stopped). Additionally, no data is replicated from that master (section 1.downstream is missing in
the report), because the downstream has encountered the same error:

replication statuses (report from master #3)
tarantool > box.info
- version: 1.7.4-52-g980d30092

id: 3

ro: false

velock: {1: 9, 2: 1000000, 3: 3}

uptime: 557

Isn: 3

4.6. Replication 117

Tarantool, Release 1.10.0

vinyl: ||
cluster:
uuid: 34d13b1a-f851-45bb-8f57-57489d3b3c8b
pid: 30445
status: running
signature: 1000012
replication:
1:
id: 1
uuid: 7ab6dee7-dc0f-4477-af2b-0e63452573cf
Isn: 9
upstream:
peer: replicator@192.168.0.101:3301
lag: 0.00050592422485352
status: stopped
idle: 445.8626639843
message: Duplicate key exists in unique index 'primary' in space 'tester'
2:
id: 2
uuid: 9afbe2d9-db84-4d05-9a7b-e0cbbf861e28
Isn: 1000000
upstream:
status: follow
idle: 201.99915885925
peer: replicator@192.168.0.102:3301
lag: 0.0015020370483398

downstream:
velock: {1: 8, 2: 1000000, 3: 3}
3:
id: 3
uuid: e826a667-eed7-48d5-a290-64299b159571
Isn: 3

uuid: e826a667-eed7-48d5-a290-64299b159571

When replication is later manually resumed:

resuming stopped replication (at all masters)
tarantool> original value — box.cfg.replication
tarantool > box.cfg{replication—{}}

tarantool > box.cfg{replication—original _value}

. the faulty row in the write ahead log files is skipped.

Replication runs out of sync

In a master-master cluster of two instances, suppose we make the following operation:

tarantool > box.space.tester:upsert({1}, {{'=", 2, box.info.uuid}})

When we get this operation applied on both instances in the replica set:

7+ at master #1

tarantool > box.space.tester:upsert({1}, {{'=", 2, box.info.uuid}})
at master #2
tarantool > box.space.tester:upsert({1}, {{'=", 2, box.info.uuid}})

118 Chapter 4. User’s Guide

Tarantool, Release 1.10.0

. we can have the following results, depending on the order of execution:
¢ each master’s row contains the uuid from master #1,
¢ each master’s row contains the uuid from master #2,

e master #1 has the uuid of master #2, and vice versa.

Commutative changes

The cases described in previous paragraphs represent examples of non-commutative operations, i.e. op-
erations, which result depends on the execution order. On the contrary, for commutative operations, the
execution order doesn’t matter.

Consider for example the following command:

tarantool > box.space.tester:upsert{{1, 0}, {{'+', 2, 1)}

This operation is commutative: we get the same result no matter in which order the update is applied on
the other masters.

4.7 Connectors

This chapter documents APIs for various programming languages.

4.7.1 Protocol

Tarantool’s binary protocol was designed with a focus on asynchronous I/0O and easy integration with proxies.
Each client request starts with a variable-length binary header, containing request id, request type, instance
id, log sequence number, and so on.

The mandatory length, present in request header simplifies client or proxy I/O. A response to a request is
sent to the client as soon as it is ready. It always carries in its header the same type and id as in the request.
The id makes it possible to match a request to a response, even if the latter arrived out of order.

Unless implementing a client driver, you needn’t concern yourself with the complications of the binary
protocol. Language-specific drivers provide a friendly way to store domain language data structures in
Tarantool. A complete description of the binary protocol is maintained in annotated Backus-Naur form in
the source tree: please see the page about Tarantool’s binary protocol.

4.7.2 Packet example

The Tarantool APT exists so that a client program can send a request packet to a server instance, and receive
a response. Here is an example of a what the client would send for box.space[513|:insert{'A", 'BB'}. The
BNF description of the components is on the page about Tarantool’s binary protocol.

4.7. Connectors 119

Tarantool, Release 1.10.0

Component Byte #0 | Byte #1 | Byte #2 | Byte #3
code for insert 02

rest of header e e .

2-digit number: space id cd 02 01

code for tuple 21

1-digit number: field count = 2 | 92

1-character string: field[1] al 41

2-character string: field|2] a2 42 42

Now, you could send that packet to the Tarantool instance, and interpret the response (the page about
Tarantool’s binary protocol has a description of the packet format for responses as well as requests). But
it would be easier, and less error-prone, if you could invoke a routine that formats the packet according to
typed parameters. Something like response = tarantool routine("insert", 513, "A", "B");. And that is why
APIs exist for drivers for Perl, Python, PHP, and so on.

4.7.3 Setting up the server for connector examples

This chapter has examples that show how to connect to a Tarantool instance via the Perl, PHP, Python,
node.js, and C connectors. The examples contain hard code that will work if and only if the following
conditions are met:

¢ the Tarantool instance (tarantool) is running on localhost (127.0.0.1) and is listening on port 3301
(box.cfg.listen = '3301"),

* space examples has id = 999 (box.space.examples.id = 999) and has a primary-key index for a numeric
field (box.space[999].index[0].parts[1].type = "unsigned"),

 user ‘guest’ has privileges for reading and writing.

It is easy to meet all the conditions by starting the instance and executing this script:

box.cfg{listen—3301}
box.schema.space.create(' examples',{id=999})

box.space.examples:create _index('primary', {type = "hash', parts = {1, "unsigned'}})
box.schema.user.grant('guest ', 'read,write','space', ' examples")

box.schema.user.grant(' guest','read ', 'space',' space')

4.7.4 Java

See http://github.com/tarantool /tarantool-java,/.

4.7.5 Go

Please see https://github.com /mialinx /go-tarantool.

476 R

See https://github.com/thekvs/tarantoolr.

120 Chapter 4. User’s Guide

http://github.com/tarantool/tarantool-java/
https://github.com/mialinx/go-tarantool
https://github.com/thekvs/tarantoolr

Tarantool, Release 1.10.0

4.7.7 Erlang

See Erlang tarantool driver.

4.7.8 Perl
The most commonly used Perl driver is tarantool-perl. It is not supplied as part of the Tarantool repository;
it must be installed separately. The most common way to install it is by cloning from GitHub.

To avoid minor warnings that may appear the first time tarantool-perl is installed, start with installing some
other modules that tarantool-perl uses, with CPAN, the Comprehensive Perl Archive Network:

$ sudo cpan install AnyEvent
$ sudo cpan install Devel::GlobalDestruction

Then, to install tarantool-perl itself, say:

$ git clone https://github.com/tarantool/tarantool-perl.git tarantool-perl
$ cd tarantool-perl

$ git submodule init

$ git submodule update --recursive

$ perl Makefile.PL

$ make

$ sudo make install

Here is a complete Perl program that inserts [99999,'BB'| into space[999] via the Perl API. Before trying
to run, check that the server instance is listening at localhost:3301 and that the space examples exists, as
described earlier. To run, paste the code into a file named example.pl and say perl example.pl. The program
will connect using an application-specific definition of the space. The program will open a socket connection
with the Tarantool instance at localhost:3301, then send an space object:INSERT request, then — if all is
well — end without displaying any messages. If Tarantool is not running on localhost with listen port =
3301, the program will print “Connection refused”.

#!/usr /bin /perl

use DR::Tarantool ':constant', 'tarantool';
use DR::Tarantool ':all';

use DR::Tarantool::MsgPack::SyncClient;

my $tnt = DR::Tarantool::MsgPack::SyncClient->connect(

host —> '127.0.0.1", # look for tarantool on localhost
port —> 3301, # on port 3301
user — > 'guest', # username. for 'guest ' we do not also say 'password=>...'
spaces —> {
999 => { # definition of space[999] ...

name — > 'examples', # space[999] name = 'examples '

default _type => 'STR", # space[999] field type is 'STR ' if undefined

fields => [{ # definition of space[999].fields ...

name => 'fieldl', type => 'NUM"' } |, # space[999].field[1] name= 'fieldl ' ,type= 'NUM '
indexes —> { # definition of space[999] indexes ...
0=>{

name = > 'primary', fields => ['fieldl' |} } } });

$tnt->insert('examples' => [99999, 'BB" |);

The example program uses field type names ‘STR’ and ‘NUM’ instead of ‘string’” and ‘unsigned’; due to a
temporary Perl limitation.

4.7. Connectors 121

https://github.com/stofel/taran
https://github.com/tarantool/tarantool-perl
https://en.wikipedia.org/wiki/Cpan

Tarantool, Release 1.10.0

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see the tarantool-perl repository.

4.79 PHP

The most commonly used PHP driver is tarantool-php. It is not supplied as part of the Tarantool repository;
it must be installed separately, for example with git. See installation instructions. in the driver’s README
file.

Here is a complete PHP program that inserts [99999,'BB']| into a space named examples via the PHP
API. Before trying to run, check that the server instance is listening at localhost:3301 and that the space
examples exists, as described earlier. To run, paste the code into a file named example.php and say php -d
extension=""/tarantool-php /modules/tarantool.so example.php. The program will open a socket connection
with the Tarantool instance at localhost:3301, then send an INSERT request, then — if all is well — print
“Insert succeeded”. If the tuple already exists, the program will print “Duplicate key exists in unique index

‘primary’ in space ‘examples’”.

<Tphp
$tarantool = new Tarantool('localhost ', 3301);

try {
$tarantool->insert('examples', array(99999, 'BB'));
echo "Insert succeeded\n";

} catch (Exception $e) {
echo "Exception: ", $e->getMessage(),

}

n 11”;

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see tarantool/tarantool-php project at GitHub.

Besides, you can use an alternative PHP driver from another GitHub project: it includes a client (see
tarantool-php/client) and a mapper for that client (see tarantool-php/mapper).

4.7.10 Python

Here is a complete Python program that inserts [99999,' Value',' Value'] into space examples via the high-
level Python APIL.

#!/usr /bin /python
from tarantool import Connection

¢ = Connection("127.0.0.1", 3301)
result = c.insert("examples",(99999,' Value', 'Value'))
print result

To prepare, paste the code into a file named example.py and install the tarantool-python connector with
either pip install tarantool>0.4 to install in /usr (requires root privilege) or pip install tarantool>0.4 --user
to install in ~ i.e. user’s default directory. Before trying to run, check that the server instance is listening
at localhost:3301 and that the space examples exists, as described earlier. To run the program, say python
example.py. The program will connect to the Tarantool server, will send the INSERT request, and will not
throw any exception if all went well. If the tuple already exists, the program will throw tarantool.error.
DatabaseError: (3, "Duplicate key exists in unique index 'primary' in space 'examples'").

The example program only shows one request and does not show all that’s necessary for good practice.
For that, please see tarantool-python project at GitHub. For an example of using Python API with queue
managers for Tarantool, see queue-python project at GitHub.

122 Chapter 4. User’s Guide

https://github.com/tarantool/tarantool-perl
https://github.com/tarantool/tarantool-php
https://github.com/tarantool/tarantool-php/blob/master/#installing-and-building
https://github.com/tarantool/tarantool-php
https://github.com/tarantool-php/client
https://github.com/tarantool-php/mapper
http://github.com/tarantool/tarantool-python
https://github.com/tarantool/queue
https://github.com/tarantool/queue
https://github.com/tarantool/queue-python

Tarantool, Release 1.10.0

4.7.11 Node.js

The most commonly used node.js driver is the Node Tarantool driver. It is not supplied as part of the
Tarantool repository; it must be installed separately. The most common way to install it is with npm. For
example, on Ubuntu, the installation could look like this after npm has been installed:

$ npm install tarantool-driver --global

Here is a complete node.js program that inserts [99999,'BB'| into space[999] via the node.js API. Before
trying to run, check that the server instance is listening at localhost:3301 and that the space examples
exists, as described earlier. To run, paste the code into a file named example.rs and say node example.rs.
The program will connect using an application-specific definition of the space. The program will open a
socket connection with the Tarantool instance at localhost:3301, then send an INSERT request, then — if
all is well — end after saying “Insert succeeded”. If Tarantool is not running on localhost with listen port =
3301, the program will print “Connect failed”. If user ‘guest’ user does not have authorization to connect,
the program will print “Auth failed”. If the insert request fails for any reason, for example because the tuple
already exists, the program will print “Insert failed”.

var TarantoolConnection = require(' tarantool-driver");

var conn — new TarantoolConnection({port: 3301});

var insertTuple = [99999, "BB"];

conn.connect().then(function() {

conn.auth("guest", "").then(function() {
conn.insert(999, insert Tuple).then(function() {

console.log("Insert succeeded");
process.exit(0);

}, function(e) { console.log("Insert failed"); process.exit(1); });
}, function(e) { console.log("Auth failed"); process.exit(1); });
}, function(e) { console.log("Connect failed"); process.exit(1); });

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see The node.js driver repository.

4712 C#

The most commonly used C# driver is progaudi.tarantool, previously named tarantool-csharp. It is not
supplied as part of the Tarantool repository; it must be installed separately. The makers recommend cross-
platform installation using Nuget.

To be consistent with the other instructions in this chapter, here is a way to install the driver directly on
Ubuntu 16.04.

1. Install .net core from Microsoft. Follow .net core installation instructions.

Note:
¢ Mono will not work, nor will .Net from xbuild. Only .net core supported on Linux and Mac.

* Read the Microsoft End User License Agreement first, because it is not an ordinary open-source
agreement and there will be a message during installation saying “This software may collect information
about you and your use of the software, and send that to Microsoft.” Still you can set environment
variables to opt out from telemetry.

2. Create a new console project.

4.7. Connectors 123

https://github.com/KlonD90/node-tarantool-driver
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://github.com/KlonD90/node-tarantool-driver
https://github.com/progaudi/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.nuget.org/packages/progaudi.tarantool
https://www.microsoft.com/net/core#ubuntu
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior
https://docs.microsoft.com/en-us/dotnet/core/tools/telemetry#behavior

Tarantool, Release 1.10.0

$ed~

$ mkdir progaudi.tarantool.test
$ cd progaudi.tarantool.test

$ dotnet new console

3. Add progaudi.tarantool reference.

$ dotnet add package progaudi.tarantool

4. Change code in Program.cs.

$ cat <<EOT > Program.cs
using System;

using System.Threading.Tasks;
using ProGaudi.Tarantool.Client;

public class HelloWorld
{
static public void Main ()
{
Test().GetAwaiter().GetResult();

}

static async Task Test()

{
var box = await Box.Connect("127.0.0.1:3301");
var schema = box.GetSchemal();
var space = await schema.GetSpace("examples");
await space.Insert((99999, "BB"));

}

}

EOT

5. Build and run your application.

Before trying to run, check that the server is listening at localhost:3301 and that the space examples
exists, as described earlier.

$ dotnet restore
$ dotnet run

The program will:
e connect using an application-specific definition of the space,
¢ open a socket connection with the Tarantool server at localhost:3301,
e send an INSERT request, and — if all is well — end without saying anything.

If Tarantool is not running on localhost with listen port = 3301, or if user ‘guest’ does not have
authorization to connect, or if the INSERT request fails for any reason, the program will print an error
message, among other things (stacktrace, etc).

The example program only shows one request and does not show all that’s necessary for good practice. For
that, please see the progaudi.tarantool driver repository.

4.7.13 C

Here follow two examples of using Tarantool’s high-level C API.

124 Chapter 4. User’s Guide

https://github.com/progaudi/progaudi.tarantool

Tarantool, Release 1.10.0

Example 1

Here is a complete C program that inserts [99999,'B '] into space examples via the high-level C API.

#include <stdio.h>
#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt net.h>

#include <tarantool/tnt opt.h>

void main() {

struct tnt_stream *tnt = tnt_net(NULL); * See note = SETUP *
tnt_set(tnt, TNT _OPT_URI, "localhost:3301");
if (tnt_connect(tnt) < 0) { * See note = CONNECT *
printf("Connection refused\n");
exit(-1);
}

struct tnt_stream *tuple — tnt_object(NULL); * See note = MAKE REQUEST *
tnt_object format(tuple, "[%d%s|", 99999, "B");
tnt_insert(tnt, 999, tuple); * See note = SEND REQUEST *
tnt_flush(tnt);
struct tnt_reply reply; tnt reply init(&reply); /* See note — GET REPLY *
tnt->read _reply(tnt, &reply);
if (reply.code != 0) {

printf("Insert failed %lu.\n
}

tnt_ close(tnt); * See below = TEARDOWN *
tnt_stream_free(tuple);
tnt _stream free(tnt);

n

, reply.code);

}

Paste the code into a file named example.c and install tarantool-c. One way to install tarantool-c (using
Ubuntu) is:

$ git clone git://github.com/tarantool/tarantool-c.git ~/tarantool-c
$ c¢d T /tarantool-c

$ git submodule init

$ git submodule update

$ cmake .

$ make

$ make install

To compile and link the program, say:

$ # sometimes this is necessary:
$ export LD LIBRARY PATH=/usr/local/lib
$ gee -0 example example.c -ltarantool

Before trying to run, check that a server instance is listening at localhost:3301 and that the space examples
exists, as described earlier. To run the program, say ./example. The program will connect to the Tarantool
instance, and will send the request. If Tarantool is not running on localhost with listen address = 3301,
the program will print “Connection refused”. If the insert fails, the program will print “Insert failed” and an
error number (see all error codes in the source file /src/box/errcode.h).

Here are notes corresponding to comments in the example program.

SETUP: The setup begins by creating a stream.

4.7. Connectors 125

https://github.com/tarantool/tarantool/blob/1.10/src/box/errcode.h

Tarantool, Release 1.10.0

struct tnt_stream *tnt = tnt_net(NULL);
tnt_set(tnt, TNT OPT URI, "localhost:3301");

In this program, the stream will be named tnt. Before connecting on the tnt stream, some options may have
to be set. The most important option is TNT OPT _URI. In this program, the URI is localhost:3301, since
that is where the Tarantool instance is supposed to be listening.

Function description:

struct tnt_stream *tnt _net(struct tnt _stream *s)
int tnt_set(struct tnt_stream *s, int option, variant option-value)

CONNECT: Now that the stream named tnt exists and is associated with a URI, this example program can
connect to a server instance.

if (tnt__connect(tnt) < 0)
{ printf("Connection refused\n"); exit(-1); }

Function description:

’ int tnt _connect(struct tnt _stream *s)

The connection might fail for a variety of reasons, such as: the server is not running, or the URI contains
an invalid password. If the connection fails, the return value will be -1.

MAKE REQUEST: Most requests require passing a structured value, such as the contents of a tuple.

struct tnt_stream *tuple = tnt _object(NULL);
tnt_object format(tuple, "[%d%s|", 99999, "B");

In this program, the request will be an INSERT, and the tuple contents will be an integer and a string. This
is a simple serial set of values, that is, there are no sub-structures or arrays. Therefore it is easy in this
case to format what will be passed using the same sort of arguments that one would use with a C printf()
function: %d for the integer, %s for the string, then the integer value, then a pointer to the string value.

Function description:

ssize_t tnt _object format(struct tnt stream *s, const char *fmt, ...)

SEND REQUEST: The database-manipulation requests are analogous to the requests in the box library.

tnt_insert(tnt, 999, tuple);
tnt _flush(tnt);

In this program, the choice is to do an INSERT request, so the program passes the tnt stream that was
used for connection (tnt) and the tnt stream that was set up with tnt object format() (tuple).

Function description:

ssize t tnt insert(struct tnt stream *s, uint32 t space, struct tnt_stream *tuple)
ssize_t tnt_replace(struct tnt_stream *s, uint32 t space, struct tnt_stream *tuple)
ssize_t tnt select(struct tnt stream *s, uint32 t space, uint32 t index,

uint32 _t limit, uint32_t offset, uint8 t iterator,

struct tnt_stream \ *key)
ssize t tnt update(struct tnt _stream *s, uint32_t space, uint32_t index,

struct tnt__stream *key, struct tnt_stream *ops)

GET REPLY: For most requests, the client will receive a reply containing some indication whether the result
was successful, and a set of tuples.

126 Chapter 4. User’s Guide

http://tarantool.github.io/tarantool-c/msgpackobject.html#c.tnt_object_format

Tarantool, Release 1.10.0

struct tnt_reply reply; tnt reply init(&reply);
tnt->read _reply(tnt, &reply);
if (reply.code != 0)

{ printf("Insert failed %lu.\n", reply.code); }

This program checks for success but does not decode the rest of the reply.

Function description:

struct tnt_reply *tnt _reply init(struct tnt_reply *r)
tnt->read _reply(struct tnt_stream *s, struct tnt_reply *r)
void tnt_reply free(struct tnt_reply *r)

TEARDOWN: When a session ends, the connection that was made with tnt connect() should be closed,
and the objects that were made in the setup should be destroyed.

tnt_close(tnt);
tnt_stream _free(tuple);
tnt _stream free(tnt);

Function description:

void tnt _close(struct tnt _stream *s)
void tnt _stream_ free(struct tnt _stream *s)

Example 2

Here is a complete C program that selects, using index key [99999], from space examples via the high-level
C API. To display the results, the program uses functions in the MsgPuck library which allow decoding of
MessagePack arrays.

F##include <stdio.h>

#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt net.h>
#include <tarantool/tnt opt.h>

#define MP_SOURCE 1

#include <msgpuck.h>

void main() {

struct tnt_stream *tnt — tnt net(NULL);
tnt_set(tnt, TNT OPT_ URI, "localhost:3301");
if (tnt__connect(tnt) < 0) {

printf(" Connection refused\n");

exit(1);
}
struct tnt_stream *tuple — tnt object(NULL);
tnt_object format(tuple, "[%d]", 99999); /* tuple = search key *
tnt_select(tnt, 999, 0, (2732) - 1, 0, 0, tuple);
tnt_flush(tnt);
struct tnt_reply reply; tnt _reply init(&reply);
tnt- >read _reply(tnt, &reply);
if (reply.code != 0) {

printf("Select failed.\n");

exit(1);

4.7. Connectors 127

http://tarantool.github.io/tarantool-c/connection.html#c.tnt_connect
http://rtsisyk.github.io/msgpuck/
https://en.wikipedia.org/wiki/MessagePack

Tarantool, Release 1.10.0

char field _type;
field type — mp_typeof(*reply.data);
if (field type != MP_ARRAY) {
printf("no tuple array\n");
exit(1);
}
long unsigned int row_count;
uint32 t tuple count — mp decode array(&reply.data);
printf("tuple count=%u'\n", tuple count);
unsigned int i, j;
for (i = 0;1 < tuple_count; ++i) {
field type — mp_typeof(*reply.data);
if (field _type !|= MP_ARRAY) {
printf("no field array\n");
exit(1);
}
uint32 t field count = mp decode array(&reply.data);
printf(" field count=%u\n", field count);
for (j = 0; j < field_count; ++j) {
field type — mp_typeof(*reply.data);
if (field_type == MP_UINT) {
uint64 t num_value — mp _decode uint(&reply.data);
printf(" value=%lu.\n", num _value);
} else if (field _type == MP_STR) {
const char *str_value;
uint32 t str_value length;
str_value = mp_decode _str(&reply.data, &str _value length);
printf(" value=%.%s.\n", str_value length, str value);
} else {
printf("wrong field type\n");
exit(1);
}
}
}

tnt_close(tnt);
tnt__stream_free(tuple);
tnt_stream_ free(tnt);

}

Similarly to the first example, paste the code into a file named example2.c.

To compile and link the program, say:

$ gee -0 example2 example2.c -ltarantool

To run the program, say ./example2.

The two example programs only show a few requests and do not show all that’s necessary for good practice.
See more in the tarantool-c documentation at GitHub.

4.7.14 Interpreting function return values

For all connectors, calling a function via Tarantool causes a return in the MsgPack format. If the function is
called using the connector’s API, some conversions may occur. All scalar values are returned as tuples (with
a MsgPack type-identifier followed by a value); all non-scalar values are returned as a group of tuples (with

128 Chapter 4. User’s Guide

http://github.com/tarantool/tarantool-c

Tarantool, Release 1.10.0

a MsgPack array-identifier followed by the scalar values). If the function is called via the binary protocol
command layer — “eval” — rather than via the connector’s API, no conversions occur.

In the following example, a Lua function will be created. Since it will be accessed externally by a ‘guest’ user,
a grant of an execute privilege will be necessary. The function returns an empty array, a scalar string, two
booleans, and a short integer. The values are the ones described in the table Common Types and MsgPack
Encodings.

tarantool > box.cfg{listen—3301}
2016-03-03 18:45:52.802 [27381] main/101/interactive I> ready to accept requests

tarantool> function f() return {},'a’ false,true,127; end

tarantool > box.schema.func.create('f")

tarantool > box.schema.user.grant(' guest','execute', ' function','f")

Here is a C program which calls the function. Although C is being used for the example, the result would
be precisely the same if the calling program was written in Perl, PHP, Python, Go, or Java.

#include <stdio.h>

#include <stdlib.h>

#include <tarantool/tarantool.h>
#include <tarantool/tnt net.h>

#include <tarantool/tnt opt.h>

void main() {

struct tnt_stream *tnt — tnt net(NULL); /* SETUP *
tnt_set(tnt, TNT OPT _URI, "localhost:3301");
if (tnt__connect(tnt) < 0) { /* CONNECT *
printf("Connection refused\n");
exit(-1);
}

struct tnt_stream *arg; arg — tnt_object(NULL); * MAKE REQUEST ¥,
tnt _object _add _array(arg, 0);
struct tnt_request *reql = tnt_request call(NULL); /* CALL function f() */
tnt _request set funcz(reql, "f");
uint64 _t syncl = tnt_request compile(tnt, reql);
tnt_flush(tnt); /* SEND REQUEST *,
struct tnt_reply reply; tnt reply init(&reply); /* GET REPLY *,
tnt->read _reply(tnt, &reply);
if (reply.code != 0) {

printf("Call failed %lu.\n", reply.code);

exit(-1);

const unsigned char *p= (unsigned char*)reply.data; /* PRINT REPLY *
while (p < (unsigned char *) reply.data_end)

printf("%x ", *p);

hps
}
printf("\n");
tnt_close(tnt); * TEARDOWN *

tnt_stream_free(arg);
tnt _stream free(tnt);

4.7. Connectors 129

Tarantool, Release 1.10.0

}

When this program is executed, it will print:

’dd00059091a16191c291c3917f

The first five bytes — dd 0 0 0 5 — are the MsgPack encoding for “32-bit array header with value 5 (see
MsgPack specification). The rest are as described in the table Common Types and MsgPack Encodings.

4.8 FAQ

Q Why Tarantool?

A Tarantool is the latest generation of a family of in-memory data servers developed for web
applications. It is the result of practical experience and trials within Mail.Ru since devel-
opment began in 2008.

Q Why Lua?

A Lua is a lightweight, fast, extensible multi-paradigm language. Lua also happens to be very
easy to embed. Lua coroutines relate very closely to Tarantool fibers, and Lua architec-
ture works well with Tarantool internals. Lua acts well as a stored program language for
Tarantool, although connecting with other languages is also easy.

Q What’s the key advantage of Tarantool?
A

Tarantool provides a rich database feature set (HASH, TREE, RTREE, BITSET indexes,
secondary indexes, composite indexes, transactions, triggers, asynchronous replication) in
a flexible environment of a Lua interpreter.

These two properties make it possible to be a fast, atomic and reliable in-memory data
server which handles non-trivial application-specific logic. The advantage over traditional
SQL servers is in performance: low-overhead, lock-free architecture means Tarantool can
serve an order of magnitude more requests per second, on comparable hardware. The
advantage over NoSQL alternatives is in flexibility: Lua allows flexible processing of data
stored in a compact, denormalized format.

Q Who is developing Tarantool?

A There is an engineering team employed by Mail.Ru — check out our commit logs on
github.com /tarantool. The development is fully open. Most of the connectors’ authors,
and the maintainers for different distributions, come from the wider community.

Q Are there problems associated with being an in-memory server?

A The principal storage engine (memtx) is designed for RAM plus persistent storage. It is im-
mune to data loss because there is a write-ahead log. Its memory-allocation and compression
techniques ensure there is no waste. And if Tarantool runs out of memory, then it will stop
accepting updates until more memory is available, but will continue to handle read and
delete requests without difficulty. However, for databases which are much larger than the
available RAM space, Tarantool has a second storage engine (vinyl) which is only limited
by the available disk space.

Q Can I store (large) BLOBs in Tarantool?

A Starting with Tarantool 1.7, there is no “hard” limit for the maximal tuple size. Tarantool,
however, is designed for high-velocity workload with a lot of small chunks. For example,

130 Chapter 4. User’s Guide

http://github.com/msgpack/msgpack/blob/master/spec.md
http://github.com/tarantool/

Tarantool, Release 1.10.0

when you change an existing tuple, Tarantool creates a new version of the tuple in memory.
Thus, an optimal tuple size is within kilobytes.

Q I delete data from vinyl, but disk usage stays the same. What gives?

A Data you write to vinyl is persisted in append-only run files. These files are immutable, and to
perform a delete, a deletion marker (tombstone) is written to a newer run file instead. On
compaction, new and old run files are merged, and a new run file is produced. Independently,

the checkpoint manager keeps track of all run files involved in a checkpoint, and deletes
obsolete files once they are no longer needed.

4.8. FAQ 131

CHAPTER O

Reference

5.1 Built-in modules reference

This reference covers Tarantool’s built-in Lua modules.

Note: Some functions in these modules are analogs to functions from standard Lua libraries. For better
results, we recommend using functions from Tarantool’s built-in modules.

5.1.1 Module box

As well as executing Lua chunks or defining their own functions, you can exploit Tarantool’s storage func-
tionality with the box module and its submodules.

The contents of the box module can be inspected at runtime with box, with no arguments. The box module
contains:

Submodule box.cfg

The box.cfg submodule is for administrators to specify all the server configuration parameters.

Say box.cfg without braces to view the current configuration, for example:

tarantool> box.cfg

- checkpoint count: 2
too_long threshold: 0.5
slab_alloc_factor: 1.1
memtx_ max_tuple_size: 1048576
background: false
<..>

132

http://www.lua.org/manual/

Tarantool, Release 1.10.0

To set the parameters, say box.cfg{...}, for example:

tarantool > box.cfg{listen = 3301}

If you say box.cfg{} with no parameters, Tarantool applies default settings:

tarantool> box.cfg{}

tarantool> box.cfg

- listen = nil
memtx memory = 256 * 1024 *1024
memtx_min_tuple size = 16
memtx_max_tuple size = 1024 * 1024
slab_alloc_factor = 1.05
work _dir = nil
memtx _dir ="

wal _dir ="

vinyl dir ="'

vinyl memory = 128 * 1024 * 1024
vinyl cache = 128 * 1024 * 1024
vinyl max_tuple size = 1024 * 1024
vinyl read threads =1

vinyl write threads = 2

vinyl timeout = 60

vinyl run_count per level = 2

vinyl run_size ratio = 3.5

vinyl range size = 1024 * 1024 * 1024
vinyl page size =8 * 1024

vinyl bloom fpr = 0.05

log = nil

log _nonblock = true

log_level =5

log_ format = "plain"

io_collect interval = nil

readahead = 16320
snap io_rate limit = nil
too_long threshold = 0.5
wal _mode = "write"
rows_ per_wal = 500000
wal max_ size = 256 * 1024 * 1024
wal dir rescan_delay = 2
force recovery = false
replication = nil
custom_proc_title = nil
pid_file = nil
background = false
username = nil
coredump = false
read _only = false
hot_standby = false
checkpoint _interval = 3600
checkpoint count =2
worker pool threads = 4
replication timeout =1

The first call to box.cfg{...} (with or without parameters) initiates Tarantool’s database module box. To
perform any database operations, you must call box.cfg{...} first.

5.1. Built-in modules reference 133

Tarantool, Release 1.10.0

box.cfg{...} is also the command that reloads persistent data files into RAM upon restart once we have data.

Submodule box.ctl
The box.ctl submodule contains two functions: wait ro (wait until read-only) and wait rw (wait until
read-write). The functions are useful during initialization of a server.

A particular use is for box once(). For example, when a replica is initializing, it may call a box.once()
function while the server is still in read-only mode, and fail to make changes that are necessary only once
before the replica is fully initialized. This could cause conflicts between a master and a replica if the master
is in read-write mode and the replica is in read-only mode. Waiting until “read only mode = false” solves
this problem.

To see whether a function is already in read-only or read-write mode, check box.info.ro.

box.ctl.wait_ro([timeout])
Wait until box.info.ro is true.

Parameters
* timeout (number) — maximum number of seconds to wait
Return nil, or error (errors may be due to timeout or fiber cancellation)

Example:

tarantool > box.info().ro

- false

tarantool> n = box.ctl.wait _ro(0.1)

- error: timed out

box.ctl.wait _rw([timeout])
Wait until box.info.ro is false.

Parameters
* timeout (number) — maximum number of seconds to wait
Return nil, or error (errors may be due to timeout or fiber cancellation)

Example:

tarantool> box.ctl.wait_rw(0.1)

Submodule box.index

Overview

The box.index submodule provides read-only access for index definitions and index keys. Indexes are con-
tained in box.space.space-name.index array within each space object. They provide an API for ordered
iteration over tuples. This API is a direct binding to corresponding methods of index objects of type box.
index in the storage engine.

134 Chapter 5. Reference

Tarantool, Release 1.10.0

Index

Below is a list of all box.index functions and members.

Name Use
index object.unique Flag, true if an index is unique
index object.type Index type

index object.parts

Array of index key fields

index_object:pairs()

Prepare for iterating

index_object:select()

Select one or more tuples via index

index_object:get()

Select a tuple via index

index object:min()

Find the minimum value in index

index object:max()

Find the maximum value in index

index_object:random/()

Find a random value in index

index_object:count()

Count tuples matching key value

index object:update()

Update a tuple

index object:delete()

Delete a tuple by key

index object:alter()

Alter an index

index_object:drop()

Drop an index

index object:rename()

Rename an index

index _object:bsize()

Get count of bytes for an index

object index object

index object.unique

True if the index is unique, false if the index is not unique.

Rtype boolean

index object.type

Index type, ‘TREE’ or ‘HASH’ or ‘BITSET’ or ‘RTREE’.

index object.parts
An array describing the index fields. To learn more about the index field types, refer to this table.

Rtype table

Example:

tarantool > box.space.tester.index.primary

- unique: true
parts:

- type: unsigned
is_nullable: false
fieldno: 1

id: 0

space_id: 513

name: primary

type: TREE

index__object:pairs([key [, iterator-type]])
Search for a tuple or a set of tuples via the given index, and allow iterating over one tuple at a
time.

5.1. Built-in modules reference 135

Tarantool, Release 1.10.0

The key parameter specifies what must match within the index.

Note: key is only used to find the first match. Do not assume all matched tuples will contain
the key.

The iterator parameter specifies the rule for matching and ordering. Different index types support
different iterators. For example, a TREE index maintains a strict order of keys and can return
all tuples in ascending or descending order, starting from the specified key. Other index types,
however, do not support ordering.

To understand consistency of tuples returned by an iterator, it’s essential to know the principles
of the Tarantool transaction processing subsystem. An iterator in Tarantool does not own a
consistent read view. Instead, each procedure is granted exclusive access to all tuples and spaces
until there is a “context switch”™ which may happen due to the implicit yield rules, or by an
explicit call to fiber.yield. When the execution flow returns to the yielded procedure, the data
set could have changed significantly. Iteration, resumed after a yield point, does not preserve the
read view, but continues with the new content of the database. The tutorial Indexed pattern
search shows one way that iterators and yields can be used together.

Parameters
* index object (index object) — an object reference.

* key (scalar/table) — value to be matched against the index key, which may be
multi-part

e iterator — as defined in tables below. The default iterator type is ‘EQ’
Return iterator which can be used in a for/end loop or with totable()
Possible errors:
* no such space; wrong type;
* selected iteration type is not supported for the index type;
* key is not supported for the iteration type.
Complexity factors: Index size, Index type; Number of tuples accessed.

A search-key-value can be a number (for example 1234), a string (for example "abed'), or a table
of numbers and strings (for example {1234, 'abcd'}). Each part of a key will be compared to
each part of an index key.

Iterator types for TREE indexes

136

Chapter 5. Reference

https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Release 1.10.0

Type Ar- Description

gu-

ments
box.index.H@earch) The comparison operator is ‘==’ (equal to). If an index key is equal to a
or ‘EQ’ value | search value, it matches. Tuples are returned in ascending order by index

key. This is the default.

box.index.REs€ehrch| Matching is the same as for box.index.EQ. Tuples are returned in descend-
or ‘REQ’ | value | ing order by index key.

box.index.(iBearch| The comparison operator is ‘>’ (greater than). If an index key is greater
or ‘GT’ value | than a search value, it matches. Tuples are returned in ascending order
by index key.

box.index.(GiBearch| The comparison operator is ‘>=" (greater than or equal to). If an index
or ‘GE’ value | key is greater than or equal to a search value, it matches. Tuples are
returned in ascending order by index key.

box.index.Algkarch| Same as box.index.GE.

or ‘ALL’ value
box.index.IiTsearchl The comparison operator is ‘<’ (less than). If an index key is less than a

or ‘LT’ value | search value, it matches. Tuples are returned in descending order by index
key.

box.index.I}Esearch| The comparison operator is ‘<=’ (less than or equal to). If an index key

or ‘LE’ value | is less than or equal to a search value, it matches. Tuples are returned in

descending order by index key.

Informally, we can state that searches with TREE indexes are generally what users will find is
intuitive, provided that there are no nils and no missing parts. Formally, the logic is as follows. A
search key has zero or more parts, for example {}, {1,2,3},{1,nil,3}. An index key has one or more
parts, for example {1}, {1,2,3},{1,2,3}. A search key may contain nil (but not msgpack.NULL,
which is the wrong type). An index key may not contain nil or msgpack.NULL, although a later
version of Tarantool will have different rules — the behavior of searches with nil is subject to
change. Possible iterators are LT, LE, EQ, REQ, GE, GT. A search key is said to “match” an
index key if the following statements, which are pseudocode for the comparison operation, return
TRUE.

If (number-of-search-key-parts > number-of-index-key-parts) return ERROR
If (number-of-search-key-parts == 0) return TRUE
for (i = 155 +-+1)

{

if (i > number-of-search-key-parts) OR (search-key-part[i] is nil)

if (iterator is LT or GT) return FALSE
return TRUE

}
if (type of search-key-part|[i] is not compatible with type of index-key-part|i])
{

return ERROR

}
i

f (search-key-part[i] == index-key-part|[i])

{

if (iterator is LT or GT) return FALSE
continue

if (search-key-part[i] > index-key-part[i])

if (iterator is EQ or REQ or LE or LT) return FALSE
return TRUE

5.1. Built-in modules reference 137

Tarantool, Release 1.10.0

if (search-key-part[i] < index-key-part[i])

if (iterator is EQ or REQ or GE or GT) return FALSE
return TRUE

}
}

Tterator types for HASH indexes

Type

Ar- | Description

gu-
ments

box.indemAIAll index keys match. Tuples are returned in ascending order by hash of index

key, which will appear to be random.

or

LEQ7

box.indearHl{'he comparison operator is ‘==’ (equal to). If an index key is equal to a search

valug value, it matches. The number of returned tuples will be 0 or 1. This is the
default.

or
‘GT

box.indear@iT'he comparison operator is ‘>’ (greater than). If a hash of an index key is greater

valu¢ than a hash of a search value, it matches. Tuples are returned in ascending order
by hash of index key, which will appear to be random. Provided that the space is
not being updated, one can retrieve all the tuples in a space, N tuples at a time,
by using {iterator="GT’, limit=N} in each search, and using the last returned
value from the previous result as the start search value for the next search.

Iterator types for BITSET indexes

Type Ar- Description
gu-
ments
box.index.ALL none | All index keys match. Tuples are returned in their order within
or ‘ALL’ the space.
box.index.EQ or | bit- If an index key is equal to a bitset value, it matches. Tuples are
‘EQ’ set returned in their order within the space. This is the default.
value

box.index.BITS AIHit- SE[L'If all of the bits which are 1 in the bitset value are 1 in the index

set key, it matches. Tuples are returned in their order within the
value | space.

box.index.BITS ANY¥- SETIf any of the bits which are 1 in the bitset value are 1 in the index

set key, it matches. Tuples are returned in their order within the
value | space.

box.index.BITS ATHit- NQTIf SIEGf the bits which are 1 in the bitset value are 0 in the index

set key, it matches. Tuples are returned in their order within the
value | space.

Tterator types for RTREE indexes

138

Chapter 5. Reference

Tarantool, Release 1.10.0

Type Ar- | Description
gu-
ments
box.index.Alzlone| All keys match. Tuples are returned in their order within the space.
or ‘ALL’
box.index.F(geardhlf all points of the rectangle-or-box defined by the search value are the
or ‘EQ’ valug same as the rectangle-or-box defined by the index key, it matches. Tuples

are returned in their order within the space. “Rectangle-or-box” means
“rectangle-or-box as explained in section about RTREE”. This is the de-

fault.
box.index.GT8eardhlf all points of the rectangle-or-box defined by the search value are within
or ‘GT’ valug the rectangle-or-box defined by the index key, it matches. Tuples are re-

turned in their order within the space.

box.index.GEeardhlIf all points of the rectangle-or-box defined by the search value are within,
or ‘GE’ valug or at the side of, the rectangle-or-box defined by the index key, it matches.
Tuples are returned in their order within the space.

box.index.IjT'seardhlIf all points of the rectangle-or-box defined by the index key are within the
or ‘LT’ valug rectangle-or-box defined by the search key, it matches. Tuples are returned
in their order within the space.

box.index.ljEseardhlIf all points of the rectangle-or-box defined by the index key are within, or
or ‘LE’ valug at the side of, the rectangle-or-box defined by the search key, it matches.
Tuples are returned in their order within the space.

box.index. QVEERENPS me points of the rectangle-or-box defined by the search value are within

or val- | the rectangle-or-box defined by the index key, it matches. Tuples are re-
‘OVER- ues | turned in their order within the space.

LAPS’

box.index. NE@HBIDRBome points of the rectangle-or-box defined by the defined by the key are
or valug within, or at the side of, defined by the index key, it matches. Tuples are
‘NEIGH- returned in order: nearest neighbor first.

BOR’

First example of index pairs():

Default ‘TREE’ Index and pairs() function:

tarantool> s = box.schema.space.create('spacel7")

tarantool > s:create index('primary ', {
parts — {1, 'string"', 2, 'string"'}

)

tarantool > s:insert{'C"', 'C'}

-[cr, e

tarantool > s:insert{'B', "A'}

T A

tarantool> s:nsert{'C', '!'}

_ [VCI, V!l]

5.1. Built-in modules reference 139

Tarantool, Release 1.10.0

tarantool > s:insert{'A", 'C'}

S Tel

tarantool> function example()
for _, tuple in
s.index.primary:pairs(nil, {
iterator = box.index.ALL}) do
print(tuple)
end
end

tarantool> example()

[|A|7 |C|]
lle’ IAV]
[|C|7 l!l]

o e

tarantool > s:drop()

Second example of index pairs():

This Lua code finds all the tuples whose primary key values begin with ‘XY’. The assumptions
include that there is a one-part primary-key TREE index on the first field, which must be a string.
The iterator loop ensures that the search will return tuples where the first value is greater than
or equal to ‘XY’. The conditional statement within the loop ensures that the looping will stop
when the first two letters are not ‘XY’.

for _, tuple in

box.space.t.index.primary:pairs("XY" {iterator — "GE"}) do
if (string.sub(tuple[1], 1, 2) "= "XY") then break end
print(tuple)

end

Third example of index pairs():

This Lua code finds all the tuples whose primary key values are greater than or equal to 1000, and
less than or equal to 1999 (this type of request is sometimes called a “range search” or a “between
search”). The assumptions include that there is a one-part primary-key TREE index on the first
field, which must be a number. The iterator loop ensures that the search will return tuples where
the first value is greater than or equal to 1000. The conditional statement within the loop ensures
that the looping will stop when the first value is greater than 1999.

for _, tuple in
box.space.t2.index.primary:pairs(1000,{iterator — "GE"}) do
if (tuple[l] > 1999) then break end
print(tuple)
end

index_object:select(search-key, options)
This is an alternative to box.space...select() which goes via a particular index and can make
use of additional parameters that specify the iterator type, and the limit (that is, the maximum
number of tuples to return) and the offset (that is, which tuple to start with in the list).

140 Chapter 5. Reference

Tarantool, Release 1.10.0

Parameters
* index object (index object) — an object reference.
* key (scalar/table) — values to be matched against the index key
* options (table/nil) — none, any or all of next parameters
¢ options.iterator — type of iterator
* options.limit (number) — maximum number of tuples
* options.offset (number) — start tuple number
Return the tuple or tuples that match the field values.
Rtype array of tuples

Example:

-- Create a space named tester.
tarantool> sp = box.schema.space.create(' tester")
- Create a unique index 'primary"'
-- which won't be needed for this example.
tarantool> sp:create index('primary', {parts = {1, "unsigned' }})
-- Create a non-unique index 'secondary’
-- with an index on the second field.
tarantool > sp:create index('secondary', {

type — "tree',

unique — false,

parts = {2, 'string'}
-- Insert three tuples, values in field|2]
—equal to 'X", 'Y' and 'Z".
tarantool> sp:insert{1, 'X', 'Row with field[2]=X"}
tarantool> sp:insert{2, 'Y, 'Row with field[2]=Y '}
tarantool> sp:insert{3, 'Z', 'Row with field[2]|=Z"}
-- Select all tuples where the secondary index
-- keys are greater than 'X'."
tarantool > sp.index.secondary:select({' X"}, {

iterator = 'GT'",
> limit = 1000

The result will be a table of tuple and will look like this:

--[2, 'Y, 'Row with field[2]=Y"]
-[3, 'Z", 'Row with field[2]=Z"]

Note: index.index-name is optional. If it is omitted, then the assumed index is the first (primary-
key) index. Therefore, for the example above, box.space.tester:select({1}, {iterator = 'GT"'})
would have returned the same two rows, via the ‘primary’ index.

Note: iterator = iterator-type is optional. If it is omitted, then iterator = 'EQ"' is assumed.

5.1. Built-in modules reference 141

Tarantool, Release 1.10.0

Note: field-value [, field-value ...]| is optional. If it is omitted, then every key in the index
is considered to be a match, regardless of iterator type. Therefore, for the example above, box.
space.tester:select{} will select every tuple in the tester space via the first (primary-key) index.

Note: box.space.space-name.index.index-name:select(...)[1]*. can be replaced by box.space.
space-name.index.index-name:get(...). That is, get can be used as a convenient shorthand to
get the first tuple in the tuple set that would be returned by select. However, if there is more
than one tuple in the tuple set, then get returns an error.

Example with BITSET index:

The following script shows creation and search with a BITSET index. Notice: BITSET cannot
be unique, so first a primary-key index is created. Notice: bit values are entered as hexadecimal
literals for easier reading.

tarantool > s = box.schema.space.create('space with bitset")
tarantool > s:create index('primary index', {
parts = {1, 'string'},
unique — true,
> type = "TREE"’
- 1)
tarantool > s:create _index('bitset index', {
parts — {2, 'unsigned'},
unique = false,
> type = 'BITSET"
=}
tarantool> s:insert{ ' Tuple with bit value = 01", 0x01}
tarantool> s:insert{ ' Tuple with bit value = 10", 0x02}
tarantool> s:insert{ ' Tuple with bit value = 11", 0x03}
tarantool> s.index.bitset index:select(0x02, {
iterator — box.index.EQ

)

- - [' Tuple with bit value = 10", 2

tarantool > s.index.bitset _index:select(0x02, {
> iterator — box.index.BITS ANY SET
)
- - [' Tuple with bit value = 10", 2
- [* Tuple with bit value = 11", 3]

tarantool > s.index.bitset _index:select(0x02, {
iterator — box.index.BITS ALL_SET

-

- - [* Tuple with bit value = 10", 2]
- [Tuple with bit value = 11", 3]

tarantool > s.index.bitset _index:select(0x02, {
iterator = box.index.BITS ALL NOT_ SET

Y

- - [Tuple with bit value = 01", 1]

142

Chapter 5. Reference

Tarantool, Release 1.10.0

[

index object:get(key)
Search for a tuple via the given index, as described earlier.

Parameters
* index object (index object) — an object reference.
¢ key (scalar/table) — values to be matched against the index key
Return the tuple whose index-key fields are equal to the passed key values.
Rtype tuple
Possible errors:
¢ no such index;
e wrong type;
¢ more than one tuple matches.
Complexity factors: Index size, Index type. See also space object:get().

Example:

tarantool > box.space.tester.index.primary:get(2)

- [2, "Music']

index _object:min([key])
Find the minimum value in the specified index.

Parameters
* index object (index object) — an object reference.
* key (scalar/table) — values to be matched against the index key

Return the tuple for the first key in the index. If optional key-value is supplied, returns
the first key which is greater than or equal to key-value.

Rtype tuple
Possible errors: index is not of type ‘TREE’.
Complexity factors: Index size, Index type.

Example:

tarantool > box.space.tester.index.primary:min()

- ["Alphal', 55, ' This is the first tuple!']

index _object:max([key])
Find the maximum value in the specified index.

Parameters
* index object (index object) — an object reference.

¢ key (scalar/table) — values to be matched against the index key

Built-in modules reference 143

Tarantool, Release 1.10.0

Return the tuple for the last key in the index. If optional key-value is supplied, returns
the last key which is less than or equal to key-value.

Rtype tuple
Possible errors: index is not of type ‘TREE’.
Complexity factors: Index size, Index type.

Example:

tarantool > box.space.tester.index.primary:max()

- ['Gammal!', 55, ' This is the third tuple!']

index_object:random(seed)
Find a random value in the specified index. This method is useful when it’s important to get
insight into data distribution in an index without having to iterate over the entire data set.

Parameters
* index object (index object) — an object reference.
¢ seed (number) — an arbitrary non-negative integer
Return the tuple for the random key in the index.
Rtype tuple
Complexity factors: Index size, Index type.
Note re storage engine: vinyl does not support random().

Example:

tarantool > box.space.tester.index.secondary:random(1)

- ['Betal', 66, ' This is the second tuple!']

index _object:count([key] [, iterator])
Iterate over an index, counting the number of tuples which match the key-value.

Parameters
* index object (index object) — an object reference.
¢ key (scalar/table) — values to be matched against the index key
e iterator — comparison method

Return the number of matching index keys.

Rtype number

Example:

tarantool > box.space.tester.index.primary:count(999)

-0

tarantool > box.space.tester.index.primary:count(' Alphal! ', { iterator = 'LE" })

144 Chapter 5. Reference

Tarantool, Release 1.10.0

index object:update(key, {{operator, field no, value}, ...})
Update a tuple.

Same as box.space. .. update(), but key is searched in this index instead of primary key. This

index ought to be unique.
Parameters
¢ index object (index object) — an object reference.
¢ key (scalar/table) — values to be matched against the index key
* operator (string) — operation type represented in string

¢ field no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

¢ value (lua_value) — what value will be applied
Return the updated tuple.
Rtype tuple

index_object:delete(key)
Delete a tuple identified by a key.

Same as box.space. . .delete(), but key is searched in this index instead of in the primary-key

index. This index ought to be unique.
Parameters
* index object (index object) — an object reference.
* key (scalar/table) — values to be matched against the index key
Return the deleted tuple.
Rtype tuple
Note re storage engine: vinyl will return nil, rather than the deleted tuple.

index_object:alter({options})
Alter an index.

Parameters
* index object (index object) — an object reference.

* options (table) — options list, same as the options list for create index, see the
chart named Options for space object:create index().

Return nil
Possible errors:
¢ index does not exist,
* the first index cannot be changed to {unique = false},

Example:

5.1.

Built-in modules reference

145

Tarantool, Release 1.10.0

tarantool > box.space.spaceb5.index.primary:alter({type = 'HASH' })

tarantool > box.space.vinyl _space.index.i:alter({page size—4096})

index_object:drop()
Drop an index. Dropping a primary-key index has a side effect: all tuples are deleted.

Parameters
¢ index_object (index object) — an object reference.
Return nil.
Possible errors:
¢ index does not exist,
¢ a primary-key index cannot be dropped while a secondary-key index exists.

Example:

tarantool> box.space.space55.index.primary:drop()

index _object:rename(index-name)
Rename an index.

Parameters
* index object (index object) — an object reference.
* index-name (string) — new name for index
Return nil
Possible errors: index object does not exist.

Example:

tarantool > box.space.spacebb.index.primary:rename(' secondary ')

Complexity factors: Index size, Index type, Number of tuples accessed.

index_object:bsize()
Return the total number of bytes taken by the index.

Parameters

* index object (index object) — an object reference.
Return number of bytes

Rtype number

146 Chapter 5. Reference

Tarantool, Release 1.10.0

Example showing use of the box functions

This example will work with the sandbox configuration described in the preface. That is, there is a space
named tester with a numeric primary key. The example function will:

* select a tuple whose key value is 1000;
¢ return an error if the tuple already exists and already has 3 fields;
¢ Insert or replace the tuple with:

— field[1] = 1000

— field[2] = a uuid

— field[3] = number of seconds since 1970-01-01;

Get field[3] from what was replaced;
» Format the value from field[3] as yyyy-mm-dd hh:mm:ss.fIff;
* Return the formatted value.

The function uses Tarantool box functions box.space. . . select, box.space. . . replace, fiber.time, uuid.str. The
function uses Lua functions os.date() and string.sub().

function example()
local a, b, c, table _of selected tuples, d
local replaced _tuple, time field
local formatted time field
local fiber = require(' fiber")
table of selected tuples — box.space.tester:select{1000}
if table of selected tuples ~— nil then
if table _of selected tuples[l] ~= nil then
if #table of selected tuples[1] == 3 then
box.error({code—1, reason—"This tuple already has 3 fields'})
end
end
end
replaced tuple — box.space.tester:replace
{1000, require('uuid").str(), tostring(fiber.time())}
time field = tonumber(replaced tuple[3])
formatted time field — os.date("%Y-%m-%d %H:%M:%S", time_field)
¢ = time field % 1
d = string.sub(c, 3, 6)

formatted time field = formatted time field .. "." .. d
return formatted time field
end

. And here is what happens when one invokes the function:

tarantool > box.space.tester:delete(1000)

- [1000, '264ee2da03634f24972be76c43808254 ", '1391037015.6809']

tarantool > example(1000)

- 2014-01-29 16:11:51.1582

tarantool > example(1000)

5.1. Built-in modules reference 147

http://www.lua.org/pil/22.1.html
http://www.lua.org/pil/20.html

Tarantool, Release 1.10.0

- error: 'This tuple already has 3 fields'

Example showing a user-defined iterator

Here is an example that shows how to build one’s own iterator. The paged iter function is an “iterator
function”, which will only be understood by programmers who have read the Lua manual section Iterators
and Closures. It does paginated retrievals, that is, it returns 10 tuples at a time from a table named “t”,
whose primary key was defined with create index('primary' {parts={1, 'string'}}).

function paged iter(search key, tuples per page)
local iterator _string = "GE"
return function ()
local page = box.space.t.index|[0]:select(search key,
{iterator — iterator string, limit—tuples per page})
if #page == 0 then return nil end
search key — page[# page]|[1]
iterator _string — "GT"
return page
end
end

Programmers who use paged iter do not need to know why it works, they only need to know that, if they
call it within a loop, they will get 10 tuples at a time until there are no more tuples. In this example the
tuples are merely printed, a page at a time. But it should be simple to change the functionality, for example
by yielding after each retrieval, or by breaking when the tuples fail to match some additional criteria.

for page in paged iter("X", 10) do
print("New Page. Number Of Tuples = " .. #page)
for i = 1, #page, 1 do
print(pageli])
end
end

Submodule box.index with index type = RTREE for spatial searches

The box.index submodule may be used for spatial searches if the index type is RTREE. There are operations
for searching rectangles (geometric objects with 4 corners and 4 sides) and boxes (geometric objects with
more than 4 corners and more than 4 sides, sometimes called hyperrectangles). This manual uses the term
rectangle-or-box for the whole class of objects that includes both rectangles and boxes. Only rectangles will
be illustrated.

Rectangles are described according to their X-axis (horizontal axis) and Y-axis (vertical axis) coordinates
in a grid of arbitrary size. Here is a picture of four rectangles on a grid with 11 horizontal points and 11
vertical points:

X AXIS
1 23 45 6 7 8 9 1011
1
Q M- \ <-Rectangle#1
Y AXIS 3 | |
4 e +
5 R — <-Rectangle#2
6 \

148 Chapter 5. Reference

https://www.lua.org/pil/7.1.html
https://www.lua.org/pil/7.1.html

Tarantool, Release 1.10.0

| #--+ | <-Rectangle#3

<-Rectangle#4

The rectangles are defined according to this scheme: {X-axis coordinate of top left, Y-axis coordinate
of top left, X-axis coordinate of bottom right, Y-axis coordinate of bottom right} — or more succinctly:
{x1,y1,x2,y2}. So in the picture ... Rectangle#1 starts at position 1 on the X axis and position 2 on
the Y axis, and ends at position 3 on the X axis and position 4 on the Y axis, so its coordinates are
{1,2,3,4}. Rectangle#2’s coordinates are {3,5,9,10}. Rectangle#3’s coordinates are {4,7,5,9}. And finally
Rectangle#4’s coordinates are {10,11,10,11}. Rectangle#4 is actually a “point” since it has zero width and
zero height, so it could have been described with only two digits: {10,11}.

Some relationships between the rectangles are: “Rectangle#1’s nearest neighbor is Rectangle#2”, and “Rect-
angle#3 is entirely inside Rectangle#2”.

Now let us create a space and add an RTREE index.

tarantool> s = box.schema.space.create('rectangles ')
tarantool> i = s:create index('primary', {

type = "HASH"',
parts = {1, "unsigned'}
)

tarantool> r = s:create _index('rtree’, {
type = '"RTREE",
unique = false,
parts = {2, "ARRAY '}
)

Field#1 doesn’t matter, we just make it because we need a primary-key index. (RTREE indexes cannot be
unique and therefore cannot be primary-key indexes.) The second field must be an “array”, which means its
values must represent {x,y} points or {x1,y1,x2,y2} rectangles. Now let us populate the table by inserting
two tuples, containing the coordinates of Rectangle#2 and Rectangle#4.

tarantool > s:insert{1, {3, 5, 9, 10}}
tarantool > s:nsert{2, {10, 11}}

And now, following the description of RTREE iterator types, we can search the rectangles with these requests:

tarantool> riselect({10, 11, 10, 11}, {iterator = 'EQ"'})

:_: [2, [10, 11]]

%Lﬁ'anto()l - riselect ({4, 7, 5, 9}, {iterator — 'GT''})

(1, [3, 5,9, 10]]

;.z.ﬂ'a,ntool - :select ({1, 2, 3, 4}, {iterator = 'NEIGHBOR'})

- [1, [3, 5, 9, 10]]
- [2, [10, 11]]

Request#1 returns 1 tuple because the point {10,11} is the same as the rectangle {10,11,10,11} (“Rectan-
gle#4” in the picture). Request#2 returns 1 tuple because the rectangle {4,7,5,9}, which was “Rectangle#3”
in the picture, is entirely within{3,5,9,10} which was Rectangle#2. Request#3 returns 2 tuples, because the

5.1. Built-in modules reference 149

Tarantool, Release 1.10.0

NEIGHBOR iterator always returns all tuples, and the first returned tuple will be {3,5,9,10} (“Rectangle#2”
in the picture) because it is the closest neighbor of {1,2,3,4} (“Rectangle#1” in the picture).

Now let us create a space and index for cuboids, which are rectangle-or-boxes that have 6 corners and 6
sides.

tarantool> s = box.schema.space.create('R")
tarantool> 1 = s:create index('primary', {parts — {1, 'unsigned'}})
tarantool> r = s:create__index('S", {
type = 'RTREE",
unique = false,
dimension = 3,
- parts = {2, "ARRAY '}
)

The additional option here is dimension=3. The default dimension is 2, which is why it didn’t need to be
specified for the examples of rectangle. The maximum dimension is 20. Now for insertions and selections
there will usually be 6 coordinates. For example:

tarantool > s:insert{1, {0, 3, 0, 3, 0, 3}}
tarantool > r:select({1, 2, 1, 2, 1, 2}, {iterator — box.index.GT})

Now let us create a space and index for Manhattan-style spatial objects, which are rectangle-or-boxes that
have a different way to calculate neighbors.

tarantool> s = box.schema.space.create('R ")
tarantool> i = s:create index('primary', {parts = {1, "unsigned'}})
tarantool> r = s:create_index('S", {

type = 'RTREE",

unique — false,

distance = 'manhattan’,
- parts = {2, "ARRAY '}
)

The additional option here is distance="'manhattan'. The default distance calculator is ‘euclid’, which is
the straightforward as-the-crow-flies method. The optional distance calculator is ‘manhattan’, which can be
a more appropriate method if one is following the lines of a grid rather than traveling in a straight line.

tarantool > s:insert{1, {0, 3, 0, 3}}
tarantool > r:select({1, 2, 1, 2}, {iterator = box.index. NEIGHBOR})

More examples of spatial searching are online in the file R tree index quick start and usage.

Submodule box.info

The box.info submodule provides access to information about server instance variables.

¢ cluster.uuid is the UUID of the replica set. Every instance in a replica set will have the same cluster.
uuid value. This value is also stored in box.space. schema system space.

* id corresponds to replication.id (see below).

* Isn corresponds to replication.lsn (see below).

* memory has the statistics about memory (see below).

* pid is the process ID. This value is also shown by tarantool module and by the Linux command ps -A.

* 1o is true if the instance is in “read-only” mode (same as read only in box.cfg{}).

150 Chapter 5. Reference

https://github.com/tarantool/tarantool/wiki/R-tree-index-quick-start-and-usage

Tarantool, Release 1.10.0

* signature is the sum of all Isn values from the vector clocks (vclock) of all instances in the replica set.
* status corresponds to replication.upstream.status (see below).

e uptime is the number of seconds since the instance started. This value can also be retrieved with
tarantool.uptime().

¢ uuid corresponds to replication.uuid (see below).

* vclock corresponds to replication.downstream.vclock (see below).

e version is the Tarantool version. This value is also shown by tarantool -V.
* vinyl returns runtime statistics for vinyl storage engine.

box.info.memory/()
The memory function of box.info gives the admin user a picture of the whole Tarantool instance. (Use
box.info.vinyl() instead for a picture specifically of the vinyl subsystem.)

* memory().cache — number of bytes used for caching user data. The memtx storage engine does
not require a cache, so in fact this is the number of bytes in the cache for the tuples stored for
the vinyl storage engine.

» memory().data — number of bytes used for storing user data (the tuples) with the memtx engine
and with level 0 of the vinyl engine, without taking memory fragmentation into account.

* memory().index — number of bytes used for indexing user data, including memtx and vinyl memory
tree extents, the vinyl page index, and the vinyl bloom filters.

* memory().lua — number of bytes used for Lua runtime.
* memory().net — number of bytes used for network input/output buffers.

* memory().tx — number of bytes in use by active transactions. For the vinyl storage engine, this
is the total size of all allocated objects (struct txv, struct vy tx, struct vy_read interval) and
tuples pinned for those objects.

An example with a minimum allocation while only the memtx storage engine is in use:

tarantool > box.info.memory/()
- cache: 0

data: 6552

tx: 0

lua: 1315567

net: 98304

index: 1196032

box.info.replication
The replication section of box.info() contains statistics for all instances in the replica set in regard to
the current instance (see also “Monitoring a replica set”):

e replication.id is a short numeric identifier of the instance within the replica set.

e replication.uuid is a globally unique identifier of the instance. This value is also stored in
box.space. cluster system space.

* replication.lsn is the log sequence number (LSN) for the latest entry in the instance’s write ahead
log (WAL).

e replication.upstream contains statistics for the replication data uploaded by the instance.

e replication.upstream.status is the replication status of the instance:

5.1. Built-in modules reference 151

Tarantool, Release 1.10.0

— auth means that the instance is getting authenticated to connect to a replication source.

— connecting means that the instance is trying to connect to the replications source(s) listed in
its replication parameter.

— disconnected means that the instance is not connected to the replica set (due to network
problems, not replication errors).

— follow means that the instance’s role is “replica” (read-only) and replication is in progress.

— running means the instance’s role is “master” (non read-only) and replication is in progress.

stopped means that replication was stopped due to a replication error (e.g. duplicate key).

* replication.upstream.idle is the time (in seconds) since the instance received the last event from a
master. This is the primary indicator of replication health. See more in Monitoring a replica set.

¢ replication.upstream.peer contains the replication user name, host IP adress and port number
used for the instance. See more in Monitoring a replica set.

¢ replication.upstream.lag is the time difference between the local time at the instance, recorded
when the event was received, and the local time at another master recorded when the event was
written to the write ahead log on that master. See more in Monitoring a replica set.

* replication.upstream.message contains an error message in case of a degraded state, empty oth-
erwise.

¢ replication.downstream contains statistics for the replication data requested and downloaded from
the instance.

* replication.downstream.vclock contains the vector clock, which is a table of ‘id, lsn’ pairs, for
example vclock: {1: 3054773, 4: 8938827, 3: 285902018}. Even if an instance is removed, its
values will still appear here.

box.info()

Since box.info contents are dynamic, it’s not possible to iterate over keys with the Lua pairs() function.
For this purpose, box.info() builds and returns a Lua table with all keys and values provided in the
submodule.

Return keys and values in the submodule
Rtype table
Example:

This example is for a master-replica set that contains one master instance and one replica instance.
The request was issued at the replica instance.

tarantool> box.info()
- version: 1.7.6-68-g51fcffb77
id: 2
ro: true
vclock: {1: 5}
uptime: 917
Isn: 0
vinyl: []
cluster:
uuid: 783e2285-55b1-42d4-b93c-68dcbb7a8¢c18
pid: 35341

152

Chapter 5. Reference

Tarantool, Release 1.10.0

status: running
signature: 5
replication:
1:
id: 1
uuid: 471cd36e-cb2e-4447-ac66-2d28e9dd3b67
Isn: 5
upstream:
status: follow
idle: 124.98795700073
peer: replicator@192.168.0.101:3301
lag: 0
downstream:
vclock: {1: 5}
2:
id: 2
uuid: ac45d5d2-8a16-4520-ad5e-1labba6babala
Isn: 0
uuid: ac45d5d2-8a16-4520-ad5e-1abbatbabala

Function box.once

box.once(key, function[,])
Execute a function, provided it has not been executed before. A passed value is checked to see whether
the function has already been executed. If it has been executed before, nothing happens. If it has not
been executed before, the function is invoked.

See an example of using box.once() while bootstrapping a replica set.

If an error occurs inside box.once() when initializing a database, you can re-execute the failed box.once()
block without stopping the database. The solution is to delete the once object from the system space
_schema. Say box.space. schema:select{}, find your once object there and delete it. For example,
re-executing a block with key="hello" :

When box.once() is used for initialization, it may be useful to wait until the database is in an appropriate
state (read-only or read-write). In that case, see the functions in the box.ctl submodule.

tarantool> box.space. schema:select{}

- - ['cluster', 'b4el15788-d962-4442-892e-d6c1dd5d 132"]
- ['max_id", 512]
- ["oncebye ']
- ['oncehello']
- ['version', 1, 7, 2]

tarantool > box.space. _schema:delete(' oncehello")

- ['oncehello']

tarantool > box.once(' hello', function() end)

5.1. Built-in modules reference 153

Tarantool, Release 1.10.0

Parameters
* key (string) — a value that will be checked
* function (function) — a function

e ... —arguments that must be passed to function
Submodule box.schema
Overview

The box.schema submodule has data-definition functions for spaces, users, roles, function tuples, and se-
quences.

Index

Below is a list of all box.schema functions.

Name Use

box.schema.space.create() Create a space
box.schema.user.create() Create a user

box.schema.user.drop() Drop a user

box.schema.user.exists() Check if a user exists
box.schema.user.grant() Grant privileges to a user or a role
box.schema.user.revoke() Revoke privileges from a user or a role
box.schema.user.password|() Get a hash of a user’s password
box.schema.user.passwd() Associate a password with a user
box.schema.user.info() Get a description of a user’s privileges
box.schema.role.create() Create a role

box.schema.role.drop() Drop a role

box.schema.role.exists() Check if a role exists
box.schema.role.grant() Grant privileges to a role
box.schema.role.revoke() Revoke privileges from a role
box.schema.role.info() Get a description of a role’s privileges
box.schema.func.create() Create a function tuple
box.schema.func.drop() Drop a function tuple
box.schema.func.exists() Check if a function tuple exists
box.schema.sequence.create() | Create a new sequence generator
sequence _object:next() Generate and return the next value
sequence _object:alter() Change sequence options

sequence _object:reset () Reset sequence state

sequence _object:set() Set the new value

sequence _object:drop() Drop the sequence
space_object:create index() | Create an index

box.schema.space.create(space—name[, {options}])
Create a space.

Parameters

* space-name (string) — name of space, which should conform to the rules for object
names

154 Chapter 5. Reference

Tarantool, Release 1.10.0

* options (table) — see “Options for box.schema.space.create” chart, below
Return space object
Rtype userdata

Options for box.schema.space.create

Name | Effect Type Default
tem- space contents are temporary: changes are not stored in the write-ahead | bool¢afalse
po- log and there is no replication. Note re storage engine: vinyl does not
rary support temporary spaces.
id unique identifier: users can refer to spaces with the id instead of the name | numq last
ber | space’s
id, +1
field cpiinted count of fields: for example if field count=>5, it is illegal to insert a | num4 0 ie.
tuple with fewer than or more than 5 fields ber | not
fixed

if not| existbe space only if a space with the same name does not exist already, | bool¢afalse
otherwise do nothing but do not cause an error

en- ‘memtx’ or ‘vinyl’ string ‘memtx’
gine
user name of the user who is considered to be the space’s owner for authoriza- | string current
tion purposes user’s
name
for- field names and types: See the illustrations of format clauses in the | ta- | (blank)
mat space_object:format() description and in the box.space. space example. | ble

Optional and usually not specified.

There are three syntax variations for object references targeting space objects, for example box.schema.
space.drop(space-id) will drop a space. However, the common approach is to use functions attached to
the space objects, for example space _object:drop().

Example

tarantool> s — box.schema.space.create('space55")

tarantool> s — box.schema.space.create('spaceb5 ", {

id = 555,
- temporary — false
)

- error: Space 'spacebb' already exists

tarantool > s = box.schema.space.create('space55', {
if not_exists = true

)

After a space is created, usually the next step is to create an index for it, and then it is available for
insert, select, and all the other box.space functions.

box.schema.user.create(user—name[, {options}])
Create a user. For explanation of how Tarantool maintains user data, see section Users and reference
on _user space.

5.1. Built-in modules reference 155

Tarantool, Release 1.10.0

The possible options are:

* if not_exists = truelfalse (default = false) - boolean; true means there should be no error if the
user already exists,

* password (default = *) - string; the password = password specification is good because in a URI
(Uniform Resource Identifier) it is usually illegal to include a user-name without a password.

Note: The maximum number of users is 32.

Parameters

e user-name (string) — name of user, which should conform to the rules for object
names

* options (table) — if not exists, password

Return nil

Examples:

box.schema.user.create(' Lena'")
box.schema.user.create(' Lena', {password — 'X'})
box.schema.user.create(' Lena', {if not exists = false})

box.schema.user.drop(user-name [, {options}])
Drop a user. For explanation of how Tarantool maintains user data, see section Users and reference
on _user space.

Parameters
* user-name (string) — the name of the user

* options (table) — if exists = true|false (default = false) - boolean; true means there
should be no error if the user does not exist.

Examples:

box.schema.user.drop(' Lena")
box.schema.user.drop('Lena ' ,{if exists—false})

box.schema.user.exists(user-name)
Return true if a user exists; return false if a user does not exist. For explanation of how Tarantool
maintains user data, see section Users and reference on _user space.

Parameters
* user-name (string) — the name of the user
Rtype bool

Example:

box.schema.user.exists(' Lena')

box.schema.user.grant(user-name, privileges, object-type, object—name[, {options}])
box.schema.user.grant(user-name, privileges, ’universe’[, nil, {options}])

box.schema.user.grant(user-name, role—name[, nil; nil, {options}])
Grant privileges to a user or to another role.

156 Chapter 5. Reference

Tarantool, Release 1.10.0

Parameters
* user-name (string) — the name of the user.

* privileges (string) — ‘read’ or ‘write’ or ‘execute’ or ‘create’ or ‘alter’ or ‘drop’ or a
combination.

* object-type (string) — ‘space’ or ‘function’ or ‘sequence’.
* object-name (string) — name of object to grant permissions to.
* role-name (string) — name of role to grant to user.
* options (table) — grantor, if not exists.
If 'function','object-name"' is specified, then a _func tuple with that object-name must exist.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’. In this case, object name is omitted.

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).
The possible options are:
» grantor = grantor name or id — string or number, for custom grantor,

e if not_exists = truel|false (default = false) - boolean; true means there should be no error if the
user already has the privilege.

Example:
box.schema.user.grant('Lena', 'read', 'space', "tester')
ox.schema.user.gran .ena, execute unction
b h tvL v»v t I,Vf t v7lfv

X. ma.user.gran .ena read,write universe
box.schema.user.grant(' L ! 1,write', ' !
box.schema.user.grant('Lena', ' Accountant ")
box.schema.user.grant('Lena', 'read,write,execute', 'universe')

X. .user.gr reac universe ', nil, {i xists—=true
box.schema.user.grant(' X", ' 1, ', nil, {if not exists=true

box.schema.user.revoke(user-name, privilege, object-type, object-name)
box.schema.user.revoke(user-name, role-name)
Revoke privileges from a user or from another role.

Parameters
* user-name (string) — the name of the user.

* privilege (string) — ‘read’ or ‘write’ or ‘execute’ or ‘create’ or ‘alter’ or ‘drop’ or a
combination.

* object-type (string) — ‘space’ or ‘function’ or ‘sequence’.
* object-name (string) — the name of a function or space or sequence.

The user must exist, and the object must exist, but it is not an error if the user does not have the
privilege.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name (see section Roles).

Example:

5.1. Built-in modules reference 157

Tarantool, Release 1.10.0

box.schema.user.revoke('Lena', 'read', 'space', 'tester')
box.schema.user.revoke('Lena', "execute', 'function', "f")
box.schema.user.revoke('Lena', 'read,write', 'universe')
box.schema.user.revoke('Lena', "Accountant ")

box.schema.user.password (password)
Return a hash of a user’s password. For explanation of how Tarantool maintains passwords, see section
Passwords and reference on _user space.

Note:

¢ If a non-‘guest’ user has no password, it’s impossible to connect to Tarantool using this user. The
user is regarded as “internal” only, not usable from a remote connection. Such users can be useful
if they have defined some procedures with the SETUID option, on which privileges are granted to
externally-connectable users. This way, external users cannot create/drop objects, they can only
invoke procedures.

e For the ‘guest’ user, it’s impossible to set a password: that would be misleading, since ‘guest’ is
the default user on a newly-established connection over a binary port, and Tarantool does not
require a password to establish a binary connection. It is, however, possible to change the current
user to ‘guest’ by providing the AUTH packet with no password at all or an empty password.
This feature is useful for connection pools, which want to reuse a connection for a different user
without re-establishing it.

Parameters
* password (string) — password to be hashed

Rtype string

Example:

box.schema.user.password (' JIEHA ")

box.schema.user.passwd([user—name] , password)
Associate a password with the user who is currently logged in, or with the user specified by user-name.
The user must exist and must not be ‘guest’.

Users who wish to change their own passwords should use box.schema.user.passwd(password) syntax.

Administrators who wish to change passwords of other users should use box.schema.user.passwd(user-
name, password) syntax.

Parameters
* user-name (string) — user-name
* password (string) — password

Example:

box.schema.user.passwd(' JIEHA ")
box.schema.user.passwd (' Lena', "JIEHA ")

box.schema.user.info([user—name])
Return a description of a user’s privileges. For explanation of how Tarantool maintains user data, see
section Users and reference on _ user space.

158 Chapter 5. Reference

Tarantool, Release 1.10.0

Parameters

* user-name (string) — the name of the user. This is optional; if it is not supplied, then
the information will be for the user who is currently logged in.

Example:

box.schema.user.info()
box.schema.user.info(' Lena ")

box.schema.role.create(role-name [, {options}])
Create a role. For explanation of how Tarantool maintains role data, see section Roles.

Parameters
* role-name (string) — name of role, which should conform to the rules for object names

* options (table) —if not exists = true|false (default = false) - boolean; true means
there should be no error if the role already exists

Return nil

Example:

box.schema.role.create(' Accountant ')
box.schema.role.create(' Accountant ', {if not exists — false})

box.schema.role.drop(role-name [, {options}])
Drop a role. For explanation of how Tarantool maintains role data, see section Roles.

Parameters
* role-name (string) — the name of the role

* options (table) — if exists = true|false (default = false) - boolean; true means there
should be no error if the role does not exist.

Example:

box.schema.role.drop(' Accountant ")

box.schema.role.exists(role-name)
Return true if a role exists; return false if a role does not exist.

Parameters
* role-name (string) — the name of the role
Rtype bool

Example:

box.schema.role.exists(' Accountant ')

box.schema.role.grant(role-name, privilege, object-type, object—name[, option])
box.schema.role.grant(role-name, privilege, ’universe’[, nil, option])

box.schema.role.grant(role-name, role—name[, nil, nil, option])
Grant privileges to a role.

Parameters

* role-name (string) — the name of the role.

5.1. Built-in modules reference 159

Tarantool, Release 1.10.0

* privilege (string) — ‘read’ or ‘write’ or ‘execute’ or ‘create’ or ‘alter’ or ‘drop’ or a
combination.

* object-type (string) — ‘space’ or ‘function’ or ‘sequence’.
* object-name (string) — the name of a function or space or sequence.

* option (table) — if not exists = truelfalse (default = false) - boolean; true means
there should be no error if the role already has the privilege.

The role must exist, and the object must exist.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name — to grant a role to a role.

Example:

box.schema.role.grant(' Accountant', 'read', 'space', 'tester’)
box.schema.role.grant(' Accountant ', 'execute', 'function', 'f")
box.schema.role.grant(' Accountant', 'read,write', "universe')
box.schema.role.grant('public', 'Accountant ")
box.schema.role.grant('rolel', 'role2', nil, nil, {if not exists—false})

box.schema.role.revoke(role-name, privilege, object-type, object-name)
Revoke privileges from a role.

Parameters
* role-name (string) — the name of the role.

* privilege (string) — ‘read’ or ‘write’ or ‘execute’ or ‘create’ or ‘alter’ or ‘drop’ or a
combination.

* object-type (string) — ‘space’ or ‘function’ or ‘sequence’.
* object-name (string) — the name of a function or space or sequence.

The role must exist, and the object must exist, but it is not an error if the role does not have the
privilege.

Variation: instead of object-type, object-name say ‘universe’ which means ‘all object-types and all
objects’.

Variation: instead of privilege, object-type, object-name say role-name.

Example:
box.schema.role.revoke(' Accountant', 'read', "space', 'tester')
box.schema.role.revoke(' Accountant', "execute', 'function', 'f{'
b b b
box.schema.role.revoke(' Accountant ', 'read,write', 'universe'
b bl b
box.schema.role.revoke(' public', ' Accountant ")

box.schema.role.info(role-name)
Return a description of a role’s privileges.

Parameters
* role-name (string) — the name of the role.

Example:

box.schema.role.info(' Accountant ')

160 Chapter 5. Reference

Tarantool, Release 1.10.0

box.schema.func.create(func—name[, {options}])
Create a function tuple. This does not create the function itself — that is done with Lua — but if it is
necessary to grant privileges for a function, box.schema.func.create must be done first. For explanation
of how Tarantool maintains function data, see reference on _func space.

The possible options are:

e if not_exists = truel|false (default = false) - boolean; true means there should be no error if the
_ func tuple already exists.

* setuid = truelfalse (default = false) - with true to make Tarantool treat the function’s caller as
the function’s creator, with full privileges. Remember that SETUID works only over binary ports.
SETUID doesn’t work if you invoke a function via an admin console or inside a Lua script.

¢ language = ‘LUA’|’C’ (default = ‘LUA’).

Parameters

¢ func-name (string) — name of function, which should conform to the rules for object
names

* options (table) — if not_exists, setuid, language.

Return nil

Example:

box.schema.func.create(' calculate ")
box.schema.func.create('calculate', {if not exists — false})
box.schema.func.create(' calculate ', {setuid = false})
box.schema.func.create(' calculate', {language = 'LUA"'})

box.schema.func.drop(func-name [, {options}])
Drop a function tuple. For explanation of how Tarantool maintains function data, see reference on
_func space.

Parameters
¢ func-name (string) — the name of the function

* options (table) — if exists = true|false (default = false) - boolean; true means there
should be no error if the _func tuple does not exist.

Example:

box.schema.func.drop(' calculate ")

box.schema.func.exists(func-name)
Return true if a function tuple exists; return false if a function tuple does not exist.

Parameters
¢ func-name (string) — the name of the function
Rtype bool

Example:

box.schema.func.exists(' calculate ")

box.schema.func.reload([name])
Reload a C module or function without restarting the server.

5.1. Built-in modules reference 161

Tarantool, Release 1.10.0

Under the hood, Tarantool loads a new copy of the module (*.so shared library) and starts routing all
new request to the new version. The previous version remains active until all started calls are finished.
All shared libraries are loaded with RTLD LOCAL (see “man 3 dlopen”), therefore multiple copies
can co-exist without any problems.

Note:

¢ When a function from a certain module is reloaded, all the other functions from this module are
also reloaded.

* Reload will fail if a module was loaded from Lua script with ffi.load().

Parameters

* name (string) — the name of the module or function to reload

Examples:

-- reload a function
box.schema.func.reload(' module.function")
-- reload the entire module contents
box.schema.func.reload (' module")

-- reload everything
box.schema.func.reload()

Sequences

An introduction to sequences is in the Sequences section of the “Data model” chapter. Here are the details
for each function and option.

box.schema.sequence.create(name [, options])
Create a new sequence generator.

Parameters
* name (string) — the name of the sequence

* options (table) — see a quick overview in the “Options for box.schema.sequence.
create()” chart (in the Sequences section of the “Data model” chapter), and see more
details below.

Return a reference to a new sequence object.
Options:
e start — the STARTS WITH value. Type = integer, Default = 1.
e min — the MINIMUM value. Type = integer, Default = 1.
e max - the MAXIMUM value. Type = integer, Default = 9223372036854775807.

There is a rule: min <= start <= max. For example it is illegal to say {start=0} because then
the specified start value (0) would be less than the default min value (1).

There is a rule: min <= next-value <= max. For example, if the next generated value would be
1000, but the maximum value is 999, then that would be considered “overflow”.

162 Chapter 5. Reference

http://luajit.org/ext_ffi_api.html#ffi_load

Tarantool, Release 1.10.0

e cycle — the CYCLE value. Type = bool. Default = false.

If the sequence generator’s next value is an overflow number, it causes an error return — unless
cycle == true.

But if cycle == true, the count is started again, at the MINIMUM value or at the MAXIMUM
value (not the STARTS WITH value).

e cache — the CACHE value. Type = unsigned integer. Default = 0.
Currently Tarantool ignores this value, it is reserved for future use.

¢ step — the INCREMENT BY value. Type = integer. Default = 1.
Ordinarily this is what is added to the previous value.

sequence _object:next()
Generate the next value and return it.

The generation algorithm is simple:
e If this is the first time, then return the STARTS WITH value.

¢ If the previous value plus the INCREMENT value is less than the MINIMUM value or greater
than the MAXIMUM value, that is “overflow”, so either return an error (if cycle = false) or return

the MAXIMUM value (if cycle = true and step < 0) or return the MINIMUM value (if cycle =
true and step > 0).

If there was no error, then save the returned result, it is now the “previous value”.

For example, suppose sequence ‘S’ has:

* min == -6,
* max == -1,
e step == -3,
e start = -2,

e cycle = true,
e previous value = -2.
Then box.sequence.S:next() returns -5 because -2 + (-3) == -5.

Then box.sequence.S:next() again returns -1 because -5 + (-3) < -6, which is overflow, causing cycle,
and max == -1.

This function requires a ‘write’ privilege on the sequence.

Note: This function should not be used in “cross-engine” transactions (transactions which use both
the memtx and the vinyl storage engines).

To see what the previous value was, without changing it, you can select from the sequence data
system space.

sequence _object:alter(options)
The alter() function can be used to change any of the sequence’s options. Requirements and restrictions
are the same as for box.schema.sequence.create().

sequence _object:reset()

Set the sequence back to its original state. The effect is that a subsequent next() will return the start
value. This function requires a ‘write’ privilege on the sequence.

5.1. Built-in modules reference 163

Tarantool, Release 1.10.0

sequence _object:set(new-previous-value)

Set the “previous value” to new-previous-value. This function requires a ‘write’ privilege on the se-
quence.

sequence _object:drop()

Drop an existing sequence.
Example:

Here is an example showing all sequence options and operations:

s = box.schema.sequence.create(

'S2',
{start—100,
min=100,
max—200,

cache=100000,
cycle—false,

step—100
H
s:alter({step=G})
smext ()
sireset/()
s:set(150)
s:drop()
space_object:create index(... [sequence="..." option] ...)

You can use the sequence=sequence-name (or sequence=sequence-id or sequence=true) option when
creating or altering a primary-key index. The sequence becomes associated with the index, so that the
next insert() will put the next generated number into the primary-key field, if the field would otherwise
be nil.

For example, if ‘Q’ is a sequence and ‘T’ is a new space, then this will work:

tarantool > box.space.T:create index('Q"',{sequence="Q"'})
- unique: true

parts:

- type: unsigned
is_nullable: false
fieldno: 1

sequence _id: 8

id: 0

space_id: 514

name: Q

type: TREE

(Notice that the index now has a sequence id field.)

And this will work:

tarantool > box.space.T:insert{nil,0}

-1, 0]

Note: If you are using negative numbers for the sequence options, make sure that the index key type
is ‘integer’. Otherwise the index key type may be either ‘integer’ or ‘unsigned’.

164

Chapter 5. Reference

Tarantool, Release 1.10.0

A sequence cannot be dropped if it is associated with an index.

Submodule box.session

Overview

The box.session submodule allows querying the session state, writing to a session-specific temporary Lua
table, or setting up triggers which will fire when a session starts or ends. A session is an object associated
with each client connection.

Index

Below is a list of all box.session functions and members.

Name Use

box.session.id() Get the current session’s ID
box.session.exists() Check if a session exists

box.session.peer() Get the session peer’s host address and port
box.session.sync() Get the sync integer constant
box.session.user() Get the current user’s name
box.session.type() Get the connection type or cause of action
box.session.su() Change the current user

box.session.uid() Get the current user’s ID

box.session.euid|() Get the current effective user’s ID
box.session.storage Table with session-specific names and values
box.session.on_connect() Define a connect trigger
box.session.on__disconnect() | Define a disconnect trigger

box.session.on _auth() Define an authentication trigger

box.session.id()

Return the unique identifier (ID) for the current session. The result can be 0 meaning there
is no session.

Rtype number

box.session.exists(id)
Return 1 if the session exists, 0 if the session does not exist.
Rtype number

box.session.peer(id)
This function works only if there is a peer, that is, if a connection has been made to a separate Tarantool
instance.

Return The host address and port of the session peer, for example “127.0.0.1:55457”. If the
session exists but there is no connection to a separate instance, the return is null. The
command is executed on the server instance, so the “local name” is the server instance’s
host and port, and the “peer name” is the client’s host and port.

Rtype string

Possible errors: ‘session.peer(): session does not exist’

5.1. Built-in modules reference 165

Tarantool, Release 1.10.0

box.session.sync()

Return the value of the sync integer constant used in the binary protocol.

Rtype number

box.session.user()

Return the name of the current user

Rtype string

box.session.type()

Return the type of connection or cause of action.
Rtype string
Possible return values are:

¢ ‘binary’ if the connection was done via the binary protocol, for example to a target made with
box.cfg{listen=. .. };

¢ ‘console’ if the connection was done via the administrative console, for example to a target made
with console.listen;

¢ ‘repl’ if the connection was done directly, for example when using Tarantool as a client;
e ‘applier’ if the action is due to replication, regardless of how the connection was done;

¢ ‘background’ if the action is in a background fiber, regardless of whether the Tarantool server was
started in the background.

box.session.type() is useful for an on_replace() trigger on a replica — the value will be ‘applier’ if and
only if the trigger was activated because of a request that was done on the master.

box.session.su(user-name [, function-to-execute])

Change Tarantool’s current user — this is analogous to the Unix command su.

Or, if function-to-execute is specified, change Tarantool’s current user temporarily while executing the
function — this is analogous to the Unix command sudo.

Parameters
e user-name (string) — name of a target user

* function-to-execute — name of a function, or definition of a function. Additional
parameters may be passed to box.session.su, they will be interpreted as parameters
of function-to-execute.

Example

tarantool > function f(a) return box.session.user() .. a end

tarantool box.session.su('guest', f, "-xxx ’)

- guest-xxx

tarantool > box.session.su('guest ', function(...) return ... end,1,2)

-1

166

Chapter 5. Reference

https://github.com/tarantool/tarantool/blob/1.10/src/box/iproto_constants.h

Tarantool, Release 1.10.0

box.session.uid()
Return the user ID of the current user.
Rtype number

Every user has a unique name (seen with box.session.user()) and a unique ID (seen with box.session.
uid()). The values are stored together in the _user space.

box.session.euid()
Return the effective user ID of the current user.
This is the same as box.session.uid(), except in two cases:

* The first case: if the call to box.session.euid() is within a function invoked by box.session.su(user-
name, function-to-execute) — in that case, box.session.euid() returns the ID of the changed user
(the user who is specified by the user-name parameter of the su function) but box.session.uid()
returns the ID of the original user (the user who is calling the su function).

e The second case: if the call to box.session.euid() is within a function specified with
box.schema.func.create(function-name, {setuid= true}) and the binary protocol is in use — in
that case, box.session.euid() returns the ID of the user who created “function-name” but box.
session.uid() returns the ID of the the user who is calling “function-name”.

Rtype number

Example

tarantool > box.session.su('admin')

tarantool > box.session.uid(), box.session.euid()

-1
-1

tarantool> function f() return {box.session.uid(),box.session.euid()} end

tarantool > box.session.su(' guest ', f)
--1
-0

box.session.storage
A Lua table that can hold arbitrary unordered session-specific names and values, which will last until
the session ends. For example, this table could be useful to store current tasks when working with a
Tarantool queue manager.

Example

tarantool > box.session.peer(box.session.id())

- 127.0.0.1:45129

5.1. Built-in modules reference 167

https://github.com/tarantool/queue

Tarantool, Release 1.10.0

tarantool > box.session.storage.random memorandum = "Don 't forget the eggs"

tarantool > box.session.storage.radius_of mars = 3396

tarantool> m = "'

tarantool > for k, v in pairs(box.session.storage) do
m-—m k [v T
- end

tarantool > m

- 'radius_of mars=3396 random memorandum=Don"' 't forget the eggs. '

box.session.on _connect(trigger-function [, old-trigger-function])
Define a trigger for execution when a new session is created due to an event such as console.connect.
The trigger function will be the first thing executed after a new session is created. If the trigger
execution fails and raises an error, the error is sent to the client and the connection is closed.

Parameters
¢ trigger-function (function) — function which will become the trigger function

* old-trigger-function (function) — existing trigger function which will be replaced by
trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.
Details about trigger characteristics are in the triggers section.

Example

tarantool > function f ()
x=x+1
- end
tarantool > box.session.on _connect(f)

Warning: If a trigger always results in an error, it may become impossible to connect to a server
to reset it.

box.session.on _disconnect (trigger-function [, old-trigger-function])
Define a trigger for execution after a client has disconnected. If the trigger function causes an error,
the error is logged but otherwise is ignored. The trigger is invoked while the session associated with
the client still exists and can access session properties, such as box.session.id().

Parameters
* trigger-function (function) — function which will become the trigger function

* old-trigger-function (function) — existing trigger function which will be replaced by
trigger-function

168 Chapter 5. Reference

Tarantool, Release 1.10.0

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

Details about trigger characteristics are in the triggers section.

Example #1
tarantool > function f ()
x=x+1
- end

tarantool > box.session.on _disconnect(f)

Example #2

After the following series of requests, a Tarantool instance will write a message using the log module
whenever any user connects or disconnects.

function log connect ()
local log = require('log")
local m = 'Connection. user=" .. box.session.user() .. ' id=" .. box.session.id()
log.info(m)

end

function log disconnect ()
local log = require('log")
local m = 'Disconnection. user=" .. box.session.user() .. ' id=" .. box.session.id()
log.info(m)

end

box.session.on__connect(log connect)
box.session.on _disconnect(log disconnect)

Here is what might appear in the log file in a typical installation:

2014-12-15 13:21:34.444 [11360] main/103/iproto I
Connection. user—guest id—3

2014-12-15 13:22:19.289 [11360] main/103/iproto I
Disconnection. user—guest id=3

box.session.on _auth(trigger-function [, old-trigger-function])

Define a trigger for execution during authentication.
The on__auth trigger function is invoked in these circumstances:

1. The console.connect function includes an authentication check for all users except ‘guest’. For
this case, the on_auth trigger function is invoked after the on connect trigger function, if and
only if the connection has succeeded so far.

2. The binary protocol has a separate authentication packet. For this case, connection and authen-
tication are considered to be separate steps.

Unlike other trigger types, on_auth trigger functions are invoked before the event. Therefore a trigger
function like function auth function () v = box.session.user(); end will set v to “guest”, the user name
before the authentication is done. To get the user name after the authentication is done, use the special
syntax: function auth function (user name) v = user_name; end

If the trigger fails by raising an error, the error is sent to the client and the connection is closed.
Parameters

* trigger-function (function) — function which will become the trigger function

5.1.

Built-in modules reference 169

Tarantool, Release 1.10.0

* old-trigger-function (function) — existing trigger function which will be replaced by
trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

Details about trigger characteristics are in the triggers section.

Example 1
tarantool > function f ()
x—x+1
- end

tarantool > box.session.on__auth(f)

Example 2
This is a more complex example, with two server instances.

The first server instance listens on port 3301; its default user name is ‘admin’. There are three on auth
triggers:

e The first trigger has a function with no arguments, it can only look at box.session.user().

e The second trigger has a function with a user name argument, it can look at both of: box.session.
user() and user name.

e The third trigger has a function with a user name argument and a status argument, it can look
at all three of: box.session.user() and user name and status.

The second server instance will connect with console.connect, and then will cause a display of the
variables that were set by the trigger functions.

-- On the first server instance, which listens on port 3301
box.cfg{listen—3301}
function functionl()

print(' function 1, box.session.user()="..box.session.user())
end
function function2(user name)
print(' function 2, box.session.user()="..box.session.user())
print(' function 2, user name="..user_name)
end
function function3(user name, status)
print(' function 3, box.session.user()="..box.session.user())
print(' function 3, user name="'..user _name)
if status —— true then
print(' function 3, status = true, authorization succeeded")
end
end

box.session.on__auth(functionl)
box.session.on _auth(function2)
box.session.on _auth(function3)
box.schema.user.passwd('admin")

-- On the second server instance, that connects to port 3301
console = require('console")
console.connect(' admin:admin@localhost:3301 ")

The result looks like this:

170

Chapter 5. Reference

Tarantool, Release 1.10.0

function 3, box.session.user()=guest

function 3, user name—admin

function 3, status = true, authorization succeeded
function 2, box.session.user()=guest

function 2, user name=admin

function 1, box.session.user()=guest

Submodule box.slab

Overview

The box.slab submodule provides access to slab allocator statistics. The slab allocator is the main allocator

used to store tuples. This can be used to monitor the total memory usage and memory fragmentation.

Index

Below is a list of all box.slab functions.

Name Use

box.runtime.info() | Show a memory usage report for Lua runtime
box.slab.info() Show an aggregated memory usage report for slab allocator
box.slab.stats() Show a detailed memory usage report for slab allocator

box.runtime.info()
Show a memory usage report (in bytes) for the Lua runtime.

Return
* lua is the heap size of the Lua garbage collector;
* maxalloc is the maximal memory quota that can be allocated for Lua;
* used is the current memory size used by Lua.

Rtype table

Example:

tarantool > box.runtime.info()

- lua: 913710
maxalloc: 4398046510080
used: 12582912

tarantool > box.runtime.info().used

- used: 12582912

box.slab.info()
Show an aggregated memory usage report (in bytes) for the slab allocator.

This report is useful for assessing out-of-memory risks: the risks are high if both arena used ratio

and quota_used _ratio are high (90-95%).

5.1. Built-in modules reference

171

Tarantool, Release 1.10.0

If quota_used ratio is low, then high arena used ratio and/or items used ratio indicate that the
memory fragmentation is low (i.e. the memory is used efficiently).

If quota_used ratio is high (approaching 100%), then low arena used ratio (50-60%) indicates that
the memory is heavily fragmentized. Most probably, there is no immediate out-of-memory risk in this
case, but generally this is an issue to consider. For example, probable risks are that the entire memory
quota is used for tuples, and there is are no slabs left for a piece of an index. Or that all slabs are
allocated for storing tuples, but in fact all the slabs are half-empty.

Return

* items_size is the total amount of memory (including allocated, but currently free
slabs) used only for tuples, no indexes;

* items_used ratio = items used / slab_count * slab_size (these are slabs used only
for tuples, no indexes);

* quota_size is the maximum amount of memory that the slab allocator can use for
both tuples and indexes (as configured in memtx memory parameter, e.g. the de-
fault is 1 gigabyte = 2730 bytes = 1,073,741,824 bytes);

* quota_used ratio = quota_used / quota_size;
» arena_used ratio = arena_used / arena_ size;

* items_used is the efficient amount of memory (omitting allocated, but currently free
slabs) used only for tuples, no indexes;

* quota_used is the amount of memory that is already distributed to the slab allocator;

* arena_size is the total memory used for tuples and indexes together (including allo-
cated, but currently free slabs);

» arena_used is the efficient memory used for storing tuples and indexes together
(omitting allocated, but currently free slabs).

Rtype table

Example:

tarantool > box.slab.info()

- items_ size: 228128
items_used ratio: 1.8%
quota_ size: 1073741824
quota_used ratio: 0.8%
arena_used ratio: 43.2%
items_used: 4208
quota_used: 8388608
arena_size: 2325176
arena_ used: 1003632

tarantool > box.slab.info().arena_used

- 1003632

box.slab.stats()

Show a detailed memory usage report (in bytes) for the slab allocator. The report is broken
down into groups by data item size as well as by slab size (64-byte, 136-byte, etc). The
report includes the memory allocated for storing both tuples and indexes.

172

Chapter 5. Reference

Tarantool, Release 1.10.0

return
e mem_ free is the allocated, but currently unused memory;
* mem_used is the memory used for storing data items (tuples and indexes);
 item_count is the number of stored items;
e item _size is the size of each data item;
e slab_count is the number of slabs allocated;
* slab_size is the size of each allocated slab.

rtype table

Example:

Here is a sample report for the first group:

tarantool > box.slab.stats()[1]
- mem_free: 16232

mem _used: 48

item count: 2

item _size: 24

slab_ count: 1

slab_size: 16384

This report is saying that there are 2 data items (item count = 2) stored in one (slab_ count
= 1) 24-byte slab (item size = 24), so mem used = 2 * 24 = 48 bytes. Also, slab_size is
16384 bytes, of which 16384 - 48 = 16232 bytes are free (mem _free).

A complete report would show memory usage statistics for all groups:

tarantool > box.slab.stats()
- - mem_free: 16232
mem _used: 48
item count: 2

item _size: 24
slab_count: 1

slab_ size: 16384
mem_ free: 15720
mem__used: 560
item _count: 14
item _size: 40
slab_count: 1

slab _size: 16384
<..>

- mem_ free: 32472
mem __used: 192
item _count: 1

item _size: 192
slab_count: 1
slab_ size: 32768
mem__ free: 1097624
mem __used: 999424
item_count: 61
item _ size: 16384
slab_count: 1

5.1. Built-in modules reference

173

Tarantool, Release 1.10.0

slab_size: 2097152

The total mem_used for all groups in this report equals arena_used in box.slab.info() report.
Submodule box.space
Overview

The box.space submodule has the data-manipulation functions select, insert, replace, update, upsert, delete,
get, put. It also has members, such as id, and whether or not a space is enabled. Submodule source code is
available in file src/box/lua/schema.lua.

Index

Below is a list of all box.space functions and members.

Name

Use

space _object:auto _increment()

Generate key + Insert a tuple

space_object:bsize()

Get count of bytes

space__object:count()

Get count of tuples

space_object:create index()

Create an index

space _object:delete()

Delete a tuple

space_object:drop()

Destroy a space

space _object:format()

Declare field names and types

space__object:get()

Select a tuple

space_object:insert()

Insert a tuple

space_object:len()

Get count of tuples

space object:on_replace()

Create a replace trigger with a function that cannot change the tuple

space _object:before replace()

Create a replace trigger with a function that can change the tuple

space_object:pairs()

Prepare for iterating

space__object:put()

Insert or replace a tuple

space_object:rename()

Rename a space

space__object:replace()

Insert or replace a tuple

space_object:run_triggers()

Enable/disable a replace trigger

space__object:select()

Select one or more tuples

space_object:truncate()

Delete all tuples

space__object:update()

Update a tuple

space__object:upsert()

Update a tuple

space _object.enabled

Flag, true if space is enabled

space_object.field count

Required number of fields

space_object.id

Numeric identifier of space

space_object.index

Container of space’s indexes

box.space. _cluster

(Metadata) List of replica sets

box.space. func

Metadata) List of function tuples

box.space. _index

Metadata) List of indexes

box.space. priv

box.space. schema

Metadata) List of schemas

box.space. sequence

()
()
(Metadata) List of privileges
()
()

Metadata) List of sequences

Continued on next page

174

Chapter 5. Reference

https://github.com/tarantool/tarantool/blob/1.7/src/box/lua/schema.lua

Tarantool, Release 1.10.0

Table 5.1 — continued from previous page

Name Use

box.space. sequence data (Metadata) List of sequences
box.space. _space (Metadata) List of spaces
box.space. _user (Metadata) List of users

object space object

space_object:auto_increment(tuple)
Insert a new tuple using an auto-increment primary key. The space specified by space _object must
have an ‘unsigned’ or ‘integer’ or ‘number’ primary key index of type TREE. The primary-key
field will be incremented before the insert.

Since version 1.7.5 this method is deprecated — it is better to use a sequence.
Parameters
 space_object (space object) — an object reference
* tuple (table/tuple) — tuple’s fields, other than the primary-key field
Return the inserted tuple.
Rtype tuple
Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.
Possible errors:
* index has wrong type;
* primary-key indexed field is not a number.

Example:

tarantool> box.space.tester:auto increment{'Fld#1', 'Fld#2'}

- [1, "Fld#1', "Fld#2']

tarantool > box.space.tester:auto__increment{ ' Fld#3"'}

- [2, "Fld#3"]

space_object:bsize()
Parameters
* space_object (space object) — an object reference
Return Number of bytes in the space.

Example:

tarantool > box.space.tester:bsize()

- 22

Note re storage engine: vinyl does not support bsize().

5.1. Built-in modules reference 175

Tarantool, Release 1.10.0

space__object:count([key] [, iterator])
Return the number of tuples. If compared with len(), this method works slower because count()
scans the entire space to count the tuples.

Parameters
* space_object (space object) — an object reference

* key (scalar/table) — primary-key field values, must be passed as a Lua table if key
is multi-part

e iterator — comparison method
Return Number of tuples.

Example:

tarantool > box.space.tester:count(2, {iterator—"'GE"'})

-1

space_object:create index(index-name [, options])
Create an index. It is mandatory to create an index for a space before trying to insert tuples into
it, or select tuples from it. The first created index, which will be used as the primary-key index,
must be unique.

Parameters
* space_object (space object) — an object reference

¢ index name (string) — name of index, which should conform to the rules for object
names

* options (table) —
Return index object
Rtype index object

Options for space object:create index()

176 Chapter 5. Reference

Tarantool, Release 1.10.0

ate_index()

Name Effect Type Default
type type of index string (‘HASH’ or ‘TREE’ or ‘BITSET’ or | ‘TREE’
‘RTREE’) Note re storage engine: vinyl only
supports ‘TREE’
id unique identifier number last in-
dex’s id,
+1
unique | index is unique boolean true
if not exisdserror if duplicate | boolean false
name
parts field-numbers + | {field no, ‘unsigned’ or ‘string’ or ‘integer’ or | {1, 'un-
types ‘number’ or ‘boolean’ or ‘array’ or ‘scalar’, | signed'}
and optional collation, and optional is nullable
value}
dimen- | affects RTREE only | number 2
sion
dis- affects RTREE only | string (‘euclid’ or ‘manhattan’) ‘euclid’
tance
bloom _fprffects vinyl only number vinyl bloom _fpr
page sigeaffects vinyl only number vinyl page size
range _sizeffects vinyl only number vinyl range size
run_countaffpets ¥éngl only number vinyl run | count per leve
run_sizg affeids vinyl only number vinyl run | size ratio
se- see section regard- | string or number not
quence | ing specifying a present
sequence in cre-

The options in the above chart are also applicable for index object:alter().

Note re storage engine: vinyl has extra options which by default are based on configuration
parameters vinyl bloom fpr, vinyl page size, vinyl range size, vinyl run count per level,
and vinyl run_size ratio — see the description of those parameters. The current values can be
seen by selecting from box.space. index.

Possible errors:

e too m

¢ index

e primary key must be unique.

any parts;

<)

already exists;

tarantool

tarantool

s = box.space.tester

- s:create_index('primary ', {unique = true, parts = {1, "unsigned', 2, 'string'}})

Details about index field types:

The seven index field types (unsigned | string | integer | number | boolean | array | scalar) differ
depending on what values are allowed, and what index types are allowed.

* unsigned: unsigned integers between 0 and 18446744073709551615, about 18 quintillion. May
also be called ‘uint’ or ‘num’, but ‘num’ is deprecated. Legal in memtx TREE or HASH indexes,

5.1. Built-in modules reference

177

Tarantool, Release 1.10.0

and in vinyl TREE indexes.

e string: any set of octets, up to the maximum length. May also be called ‘str’. Legal in memtx
TREE or HASH or BITSET indexes, and in vinyl TREE indexes. A string may have a collation.

* integer: integers between -9223372036854775808 and 18446744073709551615. May also be called
‘int’. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

e number:

integers between -9223372036854775808 and 18446744073709551615, single-precision

floating point numbers, or double-precision floating point numbers. Legal in memtx TREE or
HASH indexes, and in vinyl TREE indexes.

¢ boolean: true or false. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

¢ arr

® sca.

ay: array of numbers. Legal in memtx RTREE indexes.

lar: booleans (true or false), or integers

between

-9223372036854 775808

and

18446744073709551615, or single-precision floating point numbers, or double-precison floating-

poi

nt numbers, or strings.

When there is a mix of types, the key order is: booleans, then

numbers, then strings. Legal in memtx TREE or HASH indexes, and in vinyl TREE indexes.

Additionally, nil is allowed with any index field type if is_nullable=true is specified.

Index field types to use in space object:create index()

14

In- What can be in it Where is it legal Exam-
dex ples
field
type
un- integers between 0 and 18446744073709551615 memtx TREE or | 123456
signed HASH indexes,
vinyl TREE
indexes
string | strings — any set of octets memtx TREE or | ‘A B
HASH indexes | C’ ‘\65
vinyl TREE | \66
indexes \67’
inte- | integers between -9223372036854775808 and | memtx TREE or | -2763
ger 18446744073709551615 HASH indexes,
vinyl TREE
indexes
num- | integers between -9223372036854775808 and | memtx TREE or | 1.234
ber 18446744073709551615, single-precision floating point | HASH indexes, | -44
numbers, double-precision floating point numbers vinyl TREE | 1.447e+4
indexes
boolean true or false memtx TREE or | false
HASH indexes, | true
vinyl TREE
indexes
ar- array of integers between -9223372036854775808 and | memtx RTREE | {10,
ray 9223372036854775807 indexes 11} {3,
5, 9,
10}
scalar | booleans (true or false), integers between - | memtx TREE or | true -1
9223372036854775808 and 18446744073709551615, single- | HASH indexes, | 1.234 ¢
precision floating point numbers, double-precision floating | vinyl TREE | ‘py’
point numbers, strings indexes

178

Chapter 5. Reference

Tarantool, Release 1.10.0

Allowing null for an indexed key: If the index type is TREE, and the index is not the primary
index, then the parts={...} clause may include is_nullable=true or is_nullable=false (the default).
If is_nullable is true, then it is legal to insert nil or an equivalent such as msgpack.NULL. Within
indexes, such “null values” are always treated as equal to other null values, and are always treated as
less than non-null values. Nulls may appear multiple times even in a unique index. Example:

box.space.tester:create _index('I',{unique—true,parts—{{2, ' number',is nullable=true}}})

Using field names instead of field numbers: create index() can use field names and/or field types
described by the optional space object:format() clause. In the following example, we show format()
for a space that has two columns named ‘x’ and ‘y’, and then we show five variations of the parts={}
clause of create index(), first for the ‘x’ column, second for both the ‘x’ and ‘y’ columns. The variations
include omitting the type, using numbers, and adding extra braces.

box.space.tester:format({{name="x", type="scalar'}, {name="y"', type="integer'}})
box.space.tester:create index('12' {parts—{{'x"', 'scalar'}}})
box.space.tester:create index('I3" {parts={{'x"', 'scalar'},{'y", integer'}}})
box.space.tester:create _index('I4' {parts—{1,'scalar'}})
box.space.tester:create index('I5',{parts—{1, 'scalar"',2, "integer'}})
box.space.tester:create _index('16",{parts—{1}})
box.space.tester:create _index('I7',{parts—{1,2}})
box.space.tester:create _index('I8" ,{parts—{'x'}})
box.space.tester:create _index('19' {parts={'x",'y"'}})
box.space.tester:create _index('I10" {parts={{'x"'}}})
box.space.tester:create index('I11" {parts—{{'x'},{'v'}}})

Note re storage engine: vinyl supports only the TREE index type, and vinyl secondary indexes must
be created before tuples are inserted.

space_object:delete(key)
Delete a tuple identified by a primary key.

Parameters
* space_object (space object) — an object reference

* key (scalar/table) — primary-key field values, must be passed as a Lua table if key
is multi-part

Return the deleted tuple
Rtype tuple
Complexity factors: Index size, Index type
Note re storage engine: vinyl will return nil, rather than the deleted tuple.

Example:

tarantool > box.space.tester:delete(1)

- [1, "My first tuple']

tarantool> box.space.tester:delete(1)

tarantool> box.space.tester:delete('a")

- error: 'Supplied key type of part 0 does not match index part type:
expected unsigned'

5.1. Built-in modules reference 179

Tarantool, Release 1.10.0

space_object:drop()
Drop a space.

Parameters
* space_object (space object) — an object reference
Return nil
Possible errors: space object does not exist.
Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.space_that does not_exist:drop()

space _object:format([format—clause])
Declare field names and types.

Parameters
* space_object (space object) — an object reference
* format-clause (table) — a list of field names and types
Return nil, unless format-clause is omitted
Possible errors:
* space_object does not exist;
¢ field names are duplicated,
* type is not legal.

Ordinarily Tarantool allows unnamed untyped fields. But with format users can, for example,
document that the Nth field is the surname field and must contain strings. It is also possible to
specify a format clause in box.schema.space.create().

The format clause contains {name="..." type="...'} pairs. The name may be any string, pro-
vided that two fields do not have the same name.

The type can be any of those allowed for indexed fields: unsigned | string | integer | number |
boolean | array | scalar (the same as the requirement in “Options for space _object:create index”).

It is legal for tuples to have more fields than are described by a format clause. The way to
constrain the number of fields is to specify a space’s field count member.

It is legal to use format on a space that already has a format, provided that there is no conflict
with existing data or index definitions.

Example:

box.space.tester:format({{name="surname' type="string ' },{name="I1DX" type="array' }})

There are legal variations of the format clause:
¢ omitting both ‘name="and ‘type=’,
¢ omitting ‘type=’ alone, and
* adding extra braces.

The following examples show all the variations, first for one field named ‘x’, second for two fields
named ‘x’ and ‘y’.

180 Chapter 5. Reference

Tarantool, Release 1.10.0

box.space.tester:format({{'x'}})

box.space.tester:format({{'x"'},{'y'}})

box.space.tester:format({{name—"x" type—"scalar' }})
box.space.tester:format({{name*'x stype="scalar' },{name="y ' type="unsigned'}})
box.space.tester:format({{name—"'x"'}})

box.space.tester:format({{name 'x'},{name—"y'}})
box.space.tester:format({{'x',type="scalar'}})

box.space.tester:format({{'x "' type="scalar'},{ 'y "' type="unsigned'}})
box.space.tester:format({{'x', scalar'}})

box.space.tester:format({{ 'x', 'scalar'},{"'y"', unsigned'}})

Names specified with the format clause can be used in space object:get() and in
space object:create index().

If the format clause is omitted, then the returned value is the table that was used in
a previous space object:format(format-clause) invocation. For example, after box.space.

[

tester:format({{'x", 'scalar'}}), box.space.tester:format() will return [{‘name’: ‘x’, ‘type’
‘scalar’}|.

space _object:get(key)
Search for a tuple in the given space.

Parameters
* space_object (space object) — an object reference

* key (scalar/table) — value to be matched against the index key, which may be
multi-part.

Return the tuple whose index key matches key, or nil.
Rtype tuple
Possible errors: space object does not exist.
Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

The box.space...select function returns a set of tuples as a Lua table; the box.space...get function
returns at most a single tuple. And it is possible to get the first tuple in a space by appending [1].
Therefore box.space.tester:get{1} has the same effect as box.space.tester:select{1}[1], if exactly
one tuple is found.

Example:

box.space.tester:get{1}

Using field names instead of field numbers: get() can use field names described by the optional
space_object:format() clause. This is similar to a standard Lua feature, where a component can
be referenced by its name instead of its number. For example, we can format the tester space
with a field named x and use the name x in the index definition:

box.space.tester:format({{name="'x" type="scalar'}})
box.space.tester:create index('I',{parts={'x"'}})

Then, if get or select retrieve a single tuple, we can reference the field ‘x’ in the tuple by its name:

box.space.tester:get{1}['x "]
box.space.tester:select{1}[1]['x "]

space__object:insert(tuple)
Insert a tuple into a space.

5.1. Built-in modules reference 181

Tarantool, Release 1.10.0

Parameters
 space_object (space object) — an object reference
* tuple (tuple/table) — tuple to be inserted.

Return the inserted tuple

Rtype tuple

Possible errors: If a tuple with the same unique-key value already exists, returns
ER_TUPLE FOUND.

Example:

tarantool > box.space.tester:insert{5000, ' tuple number five thousand'}

- [5000, 'tuple number five thousand ']

space_object:len()
Return the number of tuples in the space. If compared with count(), this method works faster
because len() does not scan the entire space to count the tuples.

Parameters
* space_object (space object) — an object reference
Return Number of tuples in the space.

Example:

tarantool > box.space.tester:len()

-2

Note re storage engine: vinyl does not support len(). Possible workarounds are to use count() or

#select(...).

space_object:on _replace(trigger-function [, old-trigger-function])
Create a “replace trigger”. The trigger-function will be executed whenever a replace() or insert()
or update() or upsert() or delete() happens to a tuple in <space-name>.

Parameters
* trigger-function (function) — function which will become the trigger function

* old-trigger-function (function) — existing trigger function which will be replaced by
trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

If it is necessary to know whether the trigger activation happened due to replication or on a
specific connection type, the function can refer to box.session.type().

Details about trigger characteristics are in the triggers section.
See also space object:before replace().

Example #1:

182 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool> function f ()
x—x+1
- end
tarantool > box.space.X:on_replace(f)

The trigger-function can have two parameters: old tuple, new tuple. For example, the following
code causes nil to be printed when the insert request is processed, and causes [1, ‘Hi’] to be printed
when the delete request is processed:

box.schema.space.create('space 1')

box.space.space l:create index('space 1 index',{})
function on_replace function (old, new) print(old) end
box.space.space_1:on_replace(on_replace function)
box.space.space_ l:insert{1,'Hi'}

box.space.space _1:delete{1}

Example #2:

The following series of requests will create a space, create an index, create a function which
increments a counter, create a trigger, do two inserts, drop the space, and display the counter
value - which is 2, because the function is executed once after each insert.

tarantool > s = box.schema.space.create('space53")
tarantool > s:create index('primary', {parts = {1, "unsigned'}})
tarantool> function replace trigger()

replace counter — replace counter + 1

- end

tarantool> s:on_replace(replace _trigger)
tarantool> replace counter — 0
tarantool> t — s:nsert{1, 'First replace'}
tarantool> t = s:insert{2, 'Second replace'}
tarantool > s:drop()
tarantool > replace counter

space_object:before replace(trigger-function [, old-trigger-function])
Create a “replace trigger”. The trigger-function will be executed whenever a replace() or insert()
or update() or upsert() or delete() happens to a tuple in <space-name>.

Parameters
* trigger-function (function) — function which will become the trigger function

¢ old-trigger-function (function) — existing trigger function which will be replaced by
trigger-function

Return nil or function pointer
If the parameters are (nil, old-trigger-function), then the old trigger is deleted.

If it is necessary to know whether the trigger activation happened due to replication or on a
specific connection type, the function can refer to box.session.type().

Details about trigger characteristics are in the triggers section.
See also space object:on_replace().

Administrators can make replace triggers with on_replace(), or make triggers with be-
fore_replace(). If they make both types, then all before replace triggers are executed before
all on_replace triggers. The functions for both on_replace and before replace triggers can make
changes to the database, but only the functions for before replace triggers can change the tuple
that is being replaced.

5.1. Built-in modules reference 183

Tarantool, Release 1.10.0

Since a before replace trigger function has the extra capability of making a change to the old
tuple, it also can have extra overhead, to fetch the old tuple before making the change. Therefore
an on_replace trigger is better if there is no need to change the old tuple. However, this only
applies for the memtx engine — for the vinyl engine, the fetch will happen for either kind of trigger.
(With memtx the tuple data is stored along with the index key so no extra search is necessary;
with vinyl that is not the case so the extra search is necessary.)

Where the extra capability is not needed, on_replace should be used instead of before replace.
Usually before replace is used only for certain replication scenarios — it is useful for conflict
resolution.

The value that a before replace trigger function can return affects what will happen after the
return. Specifically:

* if there is no return value, then execution proceeds, inserting|replacing the new value;
e if the value is nil, then the tuple will be deleted;

« if the value is the same as the old parameter, then no on_replace‘ function will be called and
the data change will be skipped

« if the value is the same as the new parameter, then it’s as if the before replace function
wasn’t called;

* if the value is something else, then execution proceeds, inserting|replacing the new value.
Example:

The following are before replace functions that have no return value, or that return nil, or the
same as the old parameter, or the same as the new parameter, or something else.

function f1 (old, new) return end

function f2 (old, new) return nil end

function f3 (old, new) return old end

function 4 (old, new) return new end

function f5 (old, new) return box.tuple.new({new[1],"b"}) end

space_object:pairs([key[, iterator]])

Search for a tuple or a set of tuples in the given space, and allow iterating over one tuple at a
time.

Parameters
* space_object (space object) — an object reference

* key (scalar/table) — value to be matched against the index key, which may be
multi-part

* iterator — see index object:pairs
Return iterator which can be used in a for/end loop or with totable()
Possible errors:
* no such space;
¢ wrong type.
Complexity factors: Index size, Index type.

For examples of complex pairs requests, where one can specify which index to search and what
condition to use (for example “greater than” instead of “equal t0”), see the later section in-
dex__object:pairs.

Example:

184

Chapter 5. Reference

https://www.lua.org/pil/7.1.html
https://rtsisyk.github.io/luafun/reducing.html#fun.totable

Tarantool, Release 1.10.0

tarantool > s = box.schema.space.create('space33")

tarantool> -- index 'X ' has default parts {1, "unsigned '}
tarantool > s:create index('X", {})

tarantool > s:insert{0, 'Hello my '}, s:insert{1, 'Lua world'}

- [0, "Hello my ']
- [1, 'Lua world ']

tarantool > tmp = "'

tarantool> for k, v in s:pairs() do
tmp = tmp .. v[2]
- end

tarantool> tmp

- Hello my Lua world

space_object:rename(space-name)
Rename a space.

Parameters
* space_object (space object) — an object reference
* space-name (string) — new name for space
Return nil
Possible errors: space object does not exist.

Example:

tarantool > box.space.spacebb:rename(' space56 ")

tarantool > box.space.spaceb6:rename(' spaceb5")

space__object:replace(tuple)

space__object:put(tuple)
Insert a tuple into a space. If a tuple with the same primary key already exists, box.space...
:replace() replaces the existing tuple with a new one. The syntax variants box.space...:replace()
and box.space...:.put() have the same effect; the latter is sometimes used to show that the effect
is the converse of box.space...:get().

Parameters
* space_object (space object) — an object reference
* tuple (table/tuple) — tuple to be inserted

Return the inserted tuple.

Built-in modules reference 185

Tarantool, Release 1.10.0

Rtype tuple

Possible errors: If a different tuple with the same unique-key value already exists, returns
ER_TUPLE_ FOUND. (This will only happen if there is a unique secondary index.)

Complexity factors: Index size, Index type, Number of indexes accessed, WAL settings.

Example:

box.space.tester:replace{5000, 'tuple number five thousand'}

space_object:run_triggers(true|false)
At the time that a trigger is defined, it is automatically enabled - that is, it will be executed.
Replace triggers can be disabled with box.space.space-name:run_triggers(false) and re-enabled
with box.space.space-name:run_triggers(true).

Return nil
Example:

The following series of requests will associate an existing function named F with an existing space
named T, associate the function a second time with the same space (so it will be called twice),
disable all triggers of T, and delete each trigger by replacing with nil.

tarantool> box.space.T:on _replace(F)
tarantool > box.space.T:on_ replace(F)
tarantool> box.space.T:run__ triggers(false)
tarantool> box.space.T:on_replace(nil, F)
tarantool > box.space.T:on_replace(nil, F)

space__object:select([key])
Search for a tuple or a set of tuples in the given space.

Parameters
* space_object (space object) — an object reference

* key (scalar/table) — value to be matched against the index key, which may be
multi-part.

Return the tuples whose primary-key fields are equal to the fields of the passed key. If
the number of passed fields is less than the number of fields in the primary key, then
only the passed fields are compared, so select{1,2} will match a tuple whose primary
key is {1,2,3}.

Rtype array of tuples
Possible errors:
¢ no such space;
e wrong type.
Complexity factors: Index size, Index type.

Example:

tarantool> s = box.schema.space.create('tmp', {temporary—true})

tarantool > s:create index('primary ' ,{parts — {1, unsigned', 2, 'string'}})

186 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > s:insert{1,"A'}

- [1, AT
.t.?.ll‘?ult()()l - siinsert{1,'B"'}
-1, "B
.t';.i‘ra‘ntool/ - s:insert{1,'C"'}
NN

tarantool > s:insert{2,' D"}

-2, 'D]

tarantool> -- must equal both primary-key fields
tarantool> s:select{1,"B'}

. [1, 'B']

tarantool> -- must equal only one primary-key field
tarantool> s:select{1}

Tpa
- [17 'B']
-1, e

tarantool> -- must equal 0 fields, so returns all tuples
tarantool > s:select{}
-- 1, TAT]

- [lv 'B]

-1, C

- [27 'D ']

For examples of complex select requests, where one can specify which index to search and what
condition to use (for example “greater than” instead of “equal t0”) and how many tuples to return,
see the later section index object:select.

space _object:truncate()
Deletes all tuples.

Parameters
* space_object (space object) — an object reference
Complexity factors: Index size, Index type, Number of tuples accessed.
Return nil

The truncate method can only be called by the user who created the space, or from within a
setuid function created by the user who created the space. Read more about setuid functions in
the reference for box.schema.func.create().

The truncate method cannot be called from within a transaction.

Example:

5.1. Built-in modules reference 187

Tarantool, Release 1.10.0

tarantool > box.space.tester:truncate()

tarantool > box.space.tester:len()

-0

space_object:update(key, {{operator, field no, value}, ...})

Update a tuple.

The update function supports operations on fields — assignment, arithmetic (if the field is nu-
meric), cutting and pasting fragments of a field, deleting or inserting a field. Multiple operations
can be combined in a single update request, and in this case they are performed atomically and
sequentially. Each operation requires specification of a field number. When multiple operations
are present, the field number for each operation is assumed to be relative to the most recent
state of the tuple, that is, as if all previous operations in a multi-operation update have already
been applied. In other words, it is always safe to merge multiple update invocations into a single
invocation, with no change in semantics.

Possible operators are:
* + for addition (values must be numeric)

o - for subtraction (values must be numeric)

& for bitwise AND (values must be unsigned numeric)

| for bitwise OR (values must be unsigned numeric)

"~ for bitwise XOR (exclusive OR) (values must be unsigned numeric)

« : for string splice

| for insertion

for deletion

= for assignment
For ! and = operations the field number can be -1, meaning the last field in the tuple.
Parameters

* space_object (space object) — an object reference

¢ key (scalar/table) — primary-key field values, must be passed as a Lua table if key
is multi-part

* operator (string) — operation type represented in string

¢ field no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

* value (lua_value) — what value will be applied
Return the updated tuple.
Rtype tuple
Possible errors: it is illegal to modify a primary-key field.

Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

188

Chapter 5. Reference

Tarantool, Release 1.10.0

Thus, in the instruction:

supdate(44, {{' ", 1,55 }, {'—", 3, 'x'}})

the primary-key value is 44, the operators are '+ ' and '=' meaning add a value to a field and
then assign a value to a field, the first affected field is field 1 and the value which will be added
to it is 55, the second affected field is field 3 and the value which will be assigned to it is 'x'.

Example:

Assume that initially there is a space named tester with a primary-key index whose type is
unsigned. There is one tuple, with field[1] = 999 and field[2] = "A".

In the update: box.space.tester:update(999, {{'=", 2, 'B'}}) The first argument is tester, that
is, the affected space is tester. The second argument is 999, that is, the affected tuple is identified
by primary key value = 999. The third argument is =, that is, there is one operation — assignment
to a field. The fourth argument is 2, that is, the affected field is field[2]. The fifth argument is
'B', that is, field[2] contents change to 'B'. Therefore, after this update, field[1] = 999 and
field[2] = 'B".

In the update: box.space.tester:update({999}, {{'=", 2, 'B'}}) the arguments are the same,
except that the key is passed as a Lua table (inside braces). This is unnecessary when the
primary key has only one field, but would be necessary if the primary key had more than one
field. Therefore, after this update, field[1] = 999 and field[2] = 'B' (no change).

In the update: box.space.tester:update({999}, {{'=", 3, 1}}) the arguments are the same, except
that the fourth argument is 3, that is, the affected field is field[3]. It is okay that, until now, field[3]
has not existed. It gets added. Therefore, after this update, field[1] = 999, field[2] = 'B", field|3]
= 1.

In the update: box.space.tester:update({999}, {{'+", 3, 1}}) the arguments are the same, except
that the third argument is '+', that is, the operation is addition rather than assignment. Since
field[3] previously contained 1, this means we’re adding 1 to 1. Therefore, after this update,
field[1] = 999, field[2] = 'B", field[3] = 2.

In the update: box.space.tester:update({999}, {{'|', 3,1}, {'=",2, 'C'}}) the idea is to modify
two fields at once. The formats are '|' and =, that is, there are two operations, OR and
assignment. The fourth and fifth arguments mean that field[3] gets OR’ed with 1. The seventh
and eighth arguments mean that field[2] gets assigned 'C'. Therefore, after this update, field[1]
— 999, field[2] = 'C", field[3] — 3.

In the update: box.space.tester:update({999}, {{'#"', 2, 1}, {'-', 2, 3}}) The idea is to delete
field[2], then subtract 3 from field[3]. But after the delete, there is a renumbering, so field[3]
becomes field[2] before we subtract 3 from it, and that’s why the seventh argument is 2, not 3.
Therefore, after this update, field[1] = 999, field[2] = 0.

In the update: box.space.tester:update({999}, {{'=", 2, 'XYZ"'}}) we're making a long string
so that splice will work in the next example. Therefore, after this update, field[1] = 999, field[2]
= 'XYZ'.

In the update: box.space.tester:update({999}, {{':', 2, 2, 1, '!I'}}) The third argument is ":',
that is, this is the example of splice. The fourth argument is 2 because the change will occur
in field[2]. The fifth argument is 2 because deletion will begin with the second byte. The sixth
argument is 1 because the number of bytes to delete is 1. The seventh argument is '!!" | because
"' is to be added at this position. Therefore, after this update, field[1] = 999, field[2] = 'X!IZ'.

space _object:upsert(tuple value, {{operator, field no, value}, ...})
Update or insert a tuple.

5.1. Built-in modules reference 189

Tarantool, Release 1.10.0

If there is an existing tuple which matches the key fields of tuple value, then the request has
the same effect as space object:update() and the {{operator, field no, value}, ...} parameter is
used. If there is no existing tuple which matches the key fields of tuple value, then the request
has the same effect as space object:insert() and the {tuple value} parameter is used. However,
unlike insert or update, upsert will not read a tuple and perform error checks before returning —
this is a design feature which enhances throughput but requires more caution on the part of the
user.

Parameters
* space_object (space object) — an object reference
* tuple (table/tuple) — default tuple to be inserted, if analogue isn’t found
* operator (string) — operation type represented in string

¢ field no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

¢ value (lua_value) — what value will be applied
Return null
Possible errors:
¢ It is illegal to modify a primary-key field.
¢ It is illegal to use upsert with a space that has a unique secondary index.
Complexity factors: Index size, Index type, number of indexes accessed, WAL settings.

Example:

box.space.tester:upsert({12,'c'}, {{'="', 3, 'a'}, {'=",4, 'b'}})

space_object.enabled
Whether or not this space is enabled. The value is false if the space has no index.

space_object.field count
The required field count for all tuples in this space. The field count can be set initially with:
box.schema.space.create(..., {

field count = field count value ,

-

The default value is 0, which means there is no required field count.

Example:

tarantool> box.space.tester.field count

-0

space__object.id
Ordinal space number. Spaces can be referenced by either name or number. Thus, if space tester
has id = 800, then box.space.tester:insert{0} and box.space[800]:insert{0} are equivalent requests.

Example:

190 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > box.space.tester.id

- 512

box.space.index
A container for all defined indexes. There is a Lua object of type box.index with methods
to search tuples and iterate over them in predefined order.

Rtype table

Example:

checking the number of indexes for space 'tester'
tarantool > #box.space.tester.index

-1
checking the type of index 'primary"'
tarantool > box.space.tester.index.primary.type

- TREE

box.space. _cluster
__cluster is a system space for support of the replication feature.

box.space. func
_func is a system space with function tuples made by box.schema.func.create().

Tuples in this space contain the following fields:
¢ the numeric function id, a number,
¢ the function name,
* flag,
* a language name (optional): ‘LUA’ (default) or ‘C’.

The _func space does not include the function’s body. You continue to create Lua functions in the usual
way, by saying function function name () ... end, without adding anything in the func space. The
__func space only exists for storing function tuples so that their names can be used within grant/revoke
functions.

You can:

e Create a _func tuple with box.schema.func.create(),

e Drop a _func tuple with box.schema.func.drop(),

* Check whether a _func tuple exists with box.schema.func.exists().
Example:

In the following example, we create a function named ‘f7’, put it into Tarantool’s _func space and
grant ‘execute’ privilege for this function to ‘guest’ user.

tarantool> function f7()
- box.session.uid()
- end

5.1. Built-in modules reference 191

Tarantool, Release 1.10.0

tarantool > box.schema.func.create('{7")

tarantool > box.schema.user.grant('guest', 'execute', 'function', '{7")

tarantool > box.schema.user.revoke('guest', "execute', 'function', 'f7")

box.space. _index
_index is a system space.

Tuples in this space contain the following fields:
¢ id (= id of space),
¢ iid (= index number within space),
* name,
* type,
* opts (e.g. unique option), [tuple-field-no, tuple-field-type ...]|.

Here is what _index contains in a typical installation:

tarantool > box.space. _index:select{}

--[272, 0,

"primary ', "tree', {"unique': true}, [[0, "string']]]

- [280, 0, "primary', "tree', {'unique': true}, [[0, "unsigned']]]
- [280, 1, "owner', "tree', {"unique': false}, [[1, "unsigned']|]
- [280, 2, "name", "tree', {'unique': true}, [[2, 'string']]]
- [281, 0, "primary ', "tree', {'unique': true}, [[0, "unsigned']]]
- [281, 1, "owner', "tree', {"unique': false}, [[1, "unsigned']||
- [281, 2, "name", "tree', {'unique': true}, [[2, 'string']]]
- [288, 0, "primary', "tree', {'unique': true}, [[0, "unsigned'], [1, 'unsigned']]]
- [288, 2, "name", "tree', {'unique': true}, [[0, 'unsigned'], [2, 'string']]]
- [289, 0, "primary ", "tree', {"unique': true}, [[0, "unsigned'], [1, "unsigned']]]
- [289, 2, "name", "tree', {'unique': true}, [[0, 'unsigned'], [2, "string']]]
- [296, 0, "primary ", "tree', {'unique': true}, [[0, "unsigned']]]
- [296, 1, "owner', "tree', {'unique': false}, [[1, 'unsigned']]]
"name', "tree', {'unique': true}, [[2, "string']]]

- [296, 2,

box.space. priv
__priv is a system space where privileges are stored.

Tuples in this space contain the following fields:
¢ the numeric id of the user who gave the privilege (“grantor_id”),
* the numeric id of the user who received the privilege (“grantee id”),
¢ the type of object: ‘space’, ‘function’, ‘sequence’ or ‘universe’,

¢ the numeric id of the object,

* the type of operation: “read” = 1, “write” = 2, “execute” = 4, “create” = 32, “drop” = 64, “alter”

= 128, or a combination such as “read,write,execute”.

You can:

192

Chapter 5. Reference

Tarantool, Release 1.10.0

» Grant a privilege with box.schema.user.grant().

* Revoke a privilege with box.schema.user.revoke().

Note:

* Generally, privileges are granted or revoked by the owner of the object (the user who created it),
or by the ‘admin’ user.

* Before dropping any objects or users, make sure that all their associated privileges have been
revoked.

¢ Only the ‘admin’ user can grant privileges for the ‘universe’.

Only the ‘admin’ user or the creator of a space can drop, alter, or truncate the space.

¢ Only the ‘admin’ user or the creator of a user can change a different user’s password.

box.space. _schema
_schema is a system space.

This space contains the following tuples:
¢ version tuple with version information for this Tarantool instance,
e cluster tuple with the instance’s replica set 1D,
e max_id tuple with the maximal space 1D,

* once... tuples that correspond to specific box.once() blocks from the instance’s initialization file.
The first field in these tuples contains the key value from the corresponding box.once() block
prefixed with ‘once’ (e.g. oncehello), so you can easily find a tuple that corresponds to a specific
box.once() block.

Example:

Here is what _schema contains in a typical installation (notice the tuples for two box.once() blocks,
"oncebye' and 'oncehello'):

tarantool> box.space. schema:select{}

- - ["cluster', 'b4el15788-d962-4442-892e-d6c1dd5d 132" |
- ['max_id", 512]
- ["oncebye ']
- ["oncehello']
- ['version', 1, 7, 2]

box.space. _sequence
__sequence is a system space for support of the sequence feature. It contains persistent information
that was established by box.schema.sequence.create() or box.schema.sequence.alter().

box.space. sequence data
__sequence_data is a system space for support of the sequence feature.

Each tuple in _sequence data contains two fields:
¢ the id of the sequence, and
* the last value that the sequence generator returned (non-persistent information).

box.space. space
__space is a system space.

5.1. Built-in modules reference 193

Tarantool, Release 1.10.0

Tuples in this space contain the following fields:
e id,
* owner (= id of user who owns the space),
* name, engine, field count,
* flags (e.g. temporary),
¢ format (as made by a format clause).
These fields are established by space.create().
Example #1:

The following function will display all simple fields in all tuples of _space.

function example()
local ta = {}
local i, line
for k, v in box.space. _space:pairs() do
i=1
line = "'
while 1 <= #v do
if type(v[i]) "= 'table' then
line = line .. v[i] .. ' '
end
i—i+1
end
table.insert(ta, line)
end
return ta
end

Here is what example() returns in a typical installation:

tarantool > example()

--'2721 schema memtx 0 '
- '280 1 space memtx 0 '
- '2811 vspace sysview 0 '
- '288 1 index memtx 0 '
-'296 1 func memtx 0 '
-'3041 user memtx 0 '
- '3051 vuser sysview 0
- '3121 priv memtx 0 '

1

- '313 1 _vpriv sysview 0 '
- '320 1 cluster memtx 0 '
- '512 1 tester memtx 0 '

- '513 1 origin vinyl 0 '

- '514 1 archive memtx 0 '

Example #2:

The following requests will create a space using box.schema.space.create() with a format clause, then
retrieve the _space tuple for the new space. This illustrates the typical use of the format clause, it
shows the recommended names and data types for the fields.

tarantool > box.schema.space.create(' TM ", {
id — 12345,

194

Chapter 5. Reference

Tarantool, Release 1.10.0

format = {

[1]

)

- index: []
on_replace: 'function: 0x41c67338"
temporary: false
id: 12345
engine: memtx
enabled: false
name: TM
field count: 0

- created

{["name"] "field 1"},
[2] = {["type"] = "unsigned"}

tarantool > box.space. _space:select(12345)

345, 1, "TM", "memtx', 0, {}, [{'name': "field 1'}, {"type': "unsigned'}|]

box.space. user

__user is a system space where user-names and password hashes are stored.

Tuples in this space contain the following fields:

* the numeric id of the tuple (“id”),

¢ the numeric id of the tuple’s creator,

¢ the name,

e the type: ‘user’ or ‘role’,

¢ optional password.

There are five special tuples in the user space: ‘guest’, ‘admin’, ‘public’, ‘replication’, and ‘super’.

Name ID | Type Description

guest 0 user | Default user when connecting remotely. Usually an untrusted user with few priv-
ileges.

ad- | 1 user | Default user when using Tarantool as a console. Usually an administrative user

min with all privileges.

pub-| 2 role | Pre-defined role, automatically granted to new users when they are created with

lic box.schema.user.create(user-name). Therefore a convenient way to grant ‘read’ on
space ‘t’ to every user that will ever exist is with box.schema.role.grant(' public',
"read','space',"t").

replit 3 role | Pre-defined role, which the ‘admin’ user can grant to users who need to use repli-

ca- cation features.

tion

su- | 31 | role | Pre-defined role, which the ‘admin’ user can grant to users who need all privileges

per on all objects. The ‘super’ role has these privileges on ‘universe’: read, write,
execute, create, drop, alter.

To select a tuple from the _user space, use box.space. _user:select(). For example, here is what happens
with a select for user id = 0, which is the ‘guest’ user, which by default has no password:

5.1. Built-in modules reference 195

Tarantool, Release 1.10.0

tarantool > box.space. user:select{0}

--10, 1, "guest', 'user']

Warning: To change tuples in the _user space, do not use ordinary box.space functions for insert or
update or delete. The user space is special, so there are special functions which have appropriate
error checking.

To create a new user, use box.schema.user.create():
box.schema.user.create(user-name)
box.schema.user.create(user-name, {if not exists = true})
box.schema.user.create(user-name, {password = password})

To change the user’s password, use box.schema.user.password():
-- To change the current user's password
box.schema.user.passwd(password)

-- To change a different user's password

-- (usually only 'admin' can do it)

box.schema.user.passwd(user-name, password)

To drop a user, use box.schema.user.drop():

box.schema.user.drop(user-name)

To check whether a user exists, use box.schema.user.exists(), which returns true or false:
box.schema.user.exists(user-name)

To find what privileges a user has, use box.schema.user.info():
box.schema.user.info(user-name)

Note: The maximum number of users is 32.

Example:

Here is a session which creates a new user with a strong password, selects a tuple in the user space,
and then drops the user.

tarantool > box.schema.user.create(' JeanMartin', {password = "Iwtso 6 o0s$$'})

tarantool > box.space. user.index.name:select{' JeanMartin'}

--[17, 1, "JeanMartin', "user', {'chap-shal': 't3xjUpQdrt8570+YRvGbMY5py8Q="}]

tarantool > box.schema.user.drop(' JeanMartin")

Example: use box.space functions to read _space tuples

This function will illustrate how to look at all the spaces, and for each display: approximately how many
tuples it contains, and the first field of its first tuple. The function uses Tarantool box.space functions len()
and pairs(). The iteration through the spaces is coded as a scan of the _space system space, which contains
metadata. The third field in _space contains the space name, so the key instruction space name = v|[3]

196 Chapter 5. Reference

Tarantool, Release 1.10.0

means space_name is the spacename field in the tuple of _space that we’ve just fetched with pairs(). The

function returns a table:

function example()
local tuple count, space_name, line
local ta = {}
for k, v in box.space. _space:pairs() do
space_name = v|[3]

if box.space[space name|.index[0] ~= nil then
tuple count — '1 or more'
else
tuple_count — '0'
end
line = space_name .. ' tuple count ="' .. tuple count
if tuple count == '1 or more' then
for k1, vl in box.space[space_name]|:pairs() do
line = line .. '. first field in first tuple = ' .. v1[1]
break
end
end
table.insert(ta, line)
end
return ta
end

And here is what happens when one invokes the function:

tarantool > example()

- - _schema tuple count =1 or more. first field in first tuple = cluster
- _space tuple count =1 or more. first field in first tuple = 272
- _vspace tuple_count =1 or more. first field in first tuple = 272
- _index tuple_count =1 or more. first field in first tuple = 272
- _vindex tuple count =1 or more. first field in first tuple = 272

- _func tuple count =1 or more. first field in first tuple = 1

- _vfunc tuple_count =1 or more. first field in first tuple = 1
- _user tuple count =1 or more. first field in first tuple = 0

- _vuser tuple count =1 or more. first field in first tuple = 0
- _priv tuple count =1 or more. first field in first tuple = 1

- _vpriv tuple count =1 or more. first field in first tuple = 1
- _cluster tuple count =1 or more. first field in first tuple = 1

Example: use box.space functions to organize a _space tuple

The objective is to display field names and field types of a system space — using metadata to find metadata.

To begin: how can one select the space tuple that describes _space?

A simple way is to look at the constants in box.schema, which tell us that there is an item named SPACE 1D

== 288, so these statements will retrieve the correct tuple:

box.space. _space:select{ 288 }
or
box.space. _space:select{ box.schema.SPACE 1D }

5.1. Built-in modules reference

197

Tarantool, Release 1.10.0

Another way is to look at the tuples in box.space. index, which tell us that there is a secondary index named
‘name’ for space number 288, so this statement also will retrieve the correct tuple:

box.space. _space.index.name:select{ ' space' }

However, the retrieved tuple is not easy to read:

tarantool > box.space. space.index.name:select{' space'}

--]280, 1, ' _space', "memtx", 0, {}, [{'name': "id', "type': 'num'}, {'name': 'owner’,
"type': 'num'}, {'name': 'name', "type': 'str'}, {'name': 'engine', 'type': 'str'},
{'name': 'field count', "type': 'num'}, {'name': "flags', "type': "str'}, {
"name': 'format', "type': "*'}]]

It looks disorganized because field number 7 has been formatted with recommended names and data types.
How can one get those specific sub-fields? Since it’s visible that field number 7 is an array of maps, this for
loop will do the organizing:

tarantool> do
local tuple of space = box.space. _space.index.name:get{' space'}
for _, field in ipairs(tuple of space[7]) do
print(field.name .. ', ' .. field.type)
end
- end
id, num
owner, num
name, str
engine, str
field count, num
flags, str
format, *

Submodule box.stat

The box.stat submodule provides access to request and network statistics. Show the average number of
requests per second, and the total number of requests since startup, broken down by request type. Or, show
network activity statistics.

tarantool> type(box.stat), type(box.stat.net) -- virtual tables
- table
- table

tarantool > box.stat, box.stat.net

- net: &0 ||
)

tarantool > box.stat()
- DELETE:
total: 1873949
rps: 123
SELECT:

198 Chapter 5. Reference

Tarantool, Release 1.10.0

total: 1237723
rps: 4099
INSERT:
total: O
rps: 0
EVAL:
total: O
rps: 0
CALL:
total: O
rps: 0
REPLACE:
total: 1239123
rps: 7849
UPSERT:
total: O
rps: 0
AUTH:
total: O
rps: 0
ERROR:
total: O
rps: 0
UPDATE:
total: O
rps: 0

tarantool> box.stat().DELETE -- a selected item of the table

- total: 0
rps: 0

tarantool > box.stat.net()

- SENT:
total: 0
rps: 0

RECEIVED:
total: 0
rps: 0

Function box.snapshot

box.snapshot ()

Take a snapshot of all data and store it in memtx _dir/<latest-lsn>.snap. To take a snapshot, Tarantool
first enters the delayed garbage collection mode for all data. In this mode, tuples which were allocated
before the snapshot has started are not freed until the snapshot has finished. To preserve consistency
of the primary key, used to iterate over tuples, a copy-on-write technique is employed. If the master
process changes part of a primary key, the corresponding process page is split, and the snapshot process
obtains an old copy of the page. In effect, the snapshot process uses multi-version concurrency control
in order to avoid copying changes which are superseded while it is running.

Since a snapshot is written sequentially, one can expect a very high write performance (averaging to
80MB /second on modern disks), which means an average database instance gets saved in a matter of
minutes.

5.1. Built-in modules reference 199

Tarantool, Release 1.10.0

Note: As long as there are any changes to the parent index memory through concurrent updates,
there are going to be page splits, and therefore you need to have some extra free memory to run this
command. 10% of memtx memory is, on average, sufficient. This statement waits until a snapshot is
taken and returns operation result.

Note: Change notice: Prior to Tarantool version 1.6.6, the snapshot process caused a fork, which could
cause occasional latency spikes. Starting with Tarantool version 1.6.6, the snapshot process creates
a consistent read view and this view is written to the snapshot file by a separate thread (the “Write
Ahead Log” thread).

Although box.snapshot() does not cause a fork, there is a separate fiber which may produce snapshots
at regular intervals — see the discussion of the checkpoint daemon.

Example:

tarantool> box.info.version

- 1.7.0-1216-g73{7154

tarantool > box.snapshot()

- ok

tarantool > box.snapshot()

- error: can't save snapshot, errno 17 (File exists)

Subm

Taking a snapshot does not cause the server to start a new write-ahead log. Once a snapshot is taken,
old WALs can be deleted as long as all replicated data is up to date. But the WAL which was current
at the time box.snapshot() started must be kept for recovery, since it still contains log records written
after the start of box.snapshot().

An alternative way to save a snapshot is to send a SIGUSR1 signal to the instance. While this approach
could be handy, it is not recommended for use in automation: a signal provides no way to find out
whether the snapshot was taken successfully or not.

odule box.tuple

Overview

The box.tuple submodule provides read-only access for the tuple userdata type. It allows, for a single tuple:
selective retrieval of the field contents, retrieval of information about size, iteration over all the fields, and
conversion to a Lua table.

Index

Below is a list of all box.tuple functions.

200

Chapter 5. Reference

https://www.lua.org/pil/2.5.html

Tarantool, Release 1.10.0

Name Use

box.tuple.new() Create a tuple

#tuple_object Count tuple fields

tuple object:bsize() Get count of bytes in a tuple

tuple object[field-number| | Get a tuple’s specific field

tuple object:find() Get the number of the first field matching the search value
tuple object:findall() Get the number of all fields matching the search value
tuple_object:transform() Remove (and replace) a tuple’s fields

tuple object:unpack() Get a tuple’s fields

tuple object:totable() Get a tuple’s fields as a table

tuple object:pairs() Prepare for iterating

tuple object:update() Update a tuple

box.tuple.new(value)
Construct a new tuple from either a scalar or a Lua table. Alternatively, one can get new tuples from
tarantool’s select or insert or replace or update requests, which can be regarded as statements that do
new() implicitly.

Parameters

* value (lua-value) — the value that will become the tuple contents.
Return a new tuple
Rtype tuple

In the following example, x will be a new table object containing one tuple and t will be a new tuple
object. Saying t returns the entire tuple t.

Example:

tarantool > x = box.space.tester:insert{
tonumber('1"),
tonumber64('2")
- }:totable()

tarantool> t = box.tuple.new{'abc', "def', "ghi', 'abc'}

tarantool™> t

- ['abc', "def', 'ghi', "abc']

object tuple object

#<tuple object>
The # operator in Lua means “return count of components”. So, if t is a tuple instance, #t will
return the number of fields.

Rtype number

In the following example, a tuple named t is created and then the number of fields in t is returned.

tarantool> t = box.tuple.new{'Fld#1", 'Fld#2"', 'Fld#3", 'Fld#4'}

5.1. Built-in modules reference 201

Tarantool, Release 1.10.0

tarantool> #t

-4

tuple object:bsize()

If t is a tuple instance, t:bsize() will return the number of bytes in the tuple. With both
the memtx storage engine and the vinyl storage engine the default maximum is one megabyte
(memtx max_tuple size or vinyl max_tuple size). Every field has one or more “length” bytes
preceding the actual contents, so bsize() returns a value which is slightly greater than the sum of
the lengths of the contents.

Return number of bytes
Rtype number

In the following example, a tuple named t is created which has three fields, and for each field it
takes one byte to store the length and three bytes to store the contents, and a bit for overhead,
so bsize() returns 3*(1+3)+1.

tarantool> t = box.tuple.new{ 'aaa', 'bbb', "ccc'}

tarantool > t:bsize()

-13

<tuple object>(field-number)

If t is a tuple instance, t|field-number| will return the field numbered field-number in the tuple.
The first field is t[1].

Return field value.
Rtype lua-value

In the following example, a tuple named t is created and then the second field in t is returned.

tarantool> t = box.tuple.new{'Fld#1", 'Fld#2', 'FId#3", 'Fld#4'}

tarantool> t[2]

- Fld#2

tuple object:find([ﬁeld—number] , search-value)
tuple object:findall([ﬁeld—number] , search-value)

If t is a tuple instance, t:find(search-value) will return the number of the first field in t that
matches the search value, and t:findall(search-value [, search-value ...]) will return numbers of all
fields in t that match the search value. Optionally one can put a numeric argument field-number
before the search-value to indicate “start searching at field number field-number.”

Return the number of the field in the tuple.
Rtype number

In the following example, a tuple named t is created and then: the number of the first field in t
which matches ‘a’ is returned, then the numbers of all the fields in t which match ‘a’ are returned,

202

Chapter 5. Reference

Tarantool, Release 1.10.0

then the numbers of all the fields in t which match ‘a’ and are at or after the second field are
returned.

tarantool> t = box.tuplenew{'a", 'b', 'c', 'a'}

tarantool > t:find('a")
-1
tarantool > t:findall('a")

-1
-4
tarantool > t:findall(2, 'a")

-4

tuple object:transform(start-field-number, ﬁelds—to—remove[7 field-value, ...])
If t is a tuple instance, t:transform(start-field-number,fields-to-remove) will return a tuple where,
starting from field start-field-number, a number of fields (fields-to-remove) are removed. Option-
ally one can add more arguments after fields-to-remove to indicate new values that will replace
what was removed.

Parameters
* start-field-number (integer) — base 1, may be negative
* fields-to-remove (integer) —
o field-value(s) (lua-value) —

Return tuple

Rtype tuple

In the following example, a tuple named t is created and then, starting from the second field, two
fields are removed but one new one is added, then the result is returned.

tarantool> t = box.tuplemnew{'Fld#1", "Fld#2", "FId#3", "Fld#4", '"Fld#5"'}

tarantool > t:transform(2, 2, 'x")

- ["Fld#1', 'x', "Fld#4", "F1d#5"]

tuple object:unpack([start-ﬁeld-number [, end-field-number]])
If t is a tuple instance, t:unpack() will return all fields, t:unpack(1) will return all fields starting
with field number 1, t:unpack(1,5) will return all fields between field number 1 and field number
5.

Return field(s) from the tuple.
Rtype lua-value(s)

In the following example, a tuple named t is created and then all its fields are selected, then the
result is returned.

5.1.

Built-in modules reference 203

Tarantool, Release 1.10.0

tarantool> t = box.tuple.new{'Fld#1", 'Fld#2', 'Fld#3", 'Fld#4"', 'Fld#5'}

tarantool > t:unpack()
- Fld#1
- Fld#2
- Fld#3
- Fld#4
- Fld#5

tuple object:totable([start—ﬁeld—number [, end-field-number]])
If t is a tuple instance, t:totable() will return all fields, t:totable(1) will return all fields starting
with field number 1, t:totable(1,5) will return all fields between field number 1 and field number
5. It is preferable to use t:totable() rather than t:unpack().

Return field(s) from the tuple
Rtype lua-table

In the following example, a tuple named t is created, then all its fields are selected, then the result
is returned.

tarantool> t = box.tuple.new{ ' Fld#1", 'Fld#2', 'Fld#3", 'Fld#4"', 'Fld#5'}

tarantool > t:totable()

- ["Fld#1", "Fld#2", '"FId#3", 'Fld#4"', 'FIld#5"]

tuple object:pairs()
In Lua, lua-table-value:pairs() is a method which returns: function, lua-table-value, nil. Tarantool
has extended this so that tuple-value:pairs() returns: function, tuple-value, nil. It is useful for
Lua iterators, because Lua iterators traverse a value’s components until an end marker is reached.

Return function, tuple-value, nil
Rtype function, lua-value, nil

In the following example, a tuple named t is created and then all its fields are selected using a
Lua for-end loop.

tarantool> t = box.tuple.new{'FId#1", "FId#42", "FId#3", "Fld#4", '"Fld#5'}

tarantool> tmp = '’

tarantool> for k, v in t:pairs() do
tmp — tmp .. v
end

tarantool> tmp

- Fld#1F1d#2F1d#3F1d#4F1d45

204 Chapter 5. Reference

https://www.lua.org/pil/7.3.html

Tarantool, Release 1.10.0

tuple object:update({{operator, field no, value}, ...})
Update a tuple.

This function updates a tuple which is not in a space. Compare the function box.space.space-
name:update(key, {{format, field no, value}, ...}) which updates a tuple in a space.

For details: see the description for operator, field no, and value in the section box.space.space-
name:update{key, format, {field number, value}...).

Parameters

* operator (string) — operation type represented in string (e.g. ‘=’ for ‘assign new
value’)

o field no (number) — what field the operation will apply to. The field number can
be negative, meaning the position from the end of tuple. (#tuple + negative field
number + 1)

¢ value (lua_ value) — what value will be applied
Return new tuple
Rtype tuple

In the following example, a tuple named t is created and then its second field is updated to equal
‘B’.

tarantool> t = box.tuple.new{ 'FId#1", "FId#42", "FId#3", "Fld#4", '"Fld#5'}

tarantool> t:update({{'=", 2, 'B'}})

-['Fld#1', 'B", '"Fld#3", 'Fld#4", 'Fld#5']

Example

This function will illustrate how to convert tuples to/from Lua tables and lists of scalars:

tuple — box.tuple.new({scalarl, scalar2, ... scalar n}) -- scalars to tuple

lua_table = {tuple:unpack()} - tuple to Lua table
lua_table = tuple:totable() -- tuple to Lua table
scalarl, scalar2, ... scalar _n — tuple:unpack() -- tuple to scalars
tuple — box.tuple.new(lua_ table) - Lua table to tuple

Then it will find the field that contains ‘b’, remove that field from the tuple, and display how many bytes
remain in the tuple. The function uses Tarantool box.tuple functions new(), unpack(), find(), transform(),
bsize().

function example()
local tuplel, tuple2, lua_table 1, scalarl, scalar2, scalar3, field number
local luatablel = {}
tuplel = box.tuplenew({'a", 'b', 'c'})
luatablel = tuplel:totable()
scalarl, scalar2, scalar3 = tuplel:unpack()
tuple2 = box.tuple.new(luatablel[1],luatablel[2],luatablel|3])
field number — tuple2:find('b")
tuple2 = tuple2:transform(field number, 1)

5.1. Built-in modules reference 205

Tarantool, Release 1.10.0

return 'tuple2 = ', tuple2 , ' # of bytes = ' , tuple2:bsize()
end

... And here is what happens when one invokes the function:

tarantool > example()
- tuple2 =

-[rar, Te]

- ' # of bytes = '
-5

Functions for transaction management

Overview

For general information and examples, see section Transaction control.

Observe the following rules when working with transactions:

Rule #1

The requests in a transaction must be sent to a server as a single block. It is not enough to enclose them
between begin and commit or rollback. To ensure they are sent as a single block: put them in a function, or
put them all on one line, or use a delimiter so that multi-line requests are handled together.

Rule #2

All database operations in a transaction should use the same storage engine. It is not safe to access tuple sets
that are defined with {engine="vinyl'} and also access tuple sets that are defined with {engine="memtx"'},
in the same transaction.

Rule #3

Requests which cause changes to the data definition — create, alter, drop, truncate — must not be used.

Index

Below is a list of all functions for transaction management.

Name Use

box.begin() Begin the transaction

box.commit() End the transaction and save all changes

box.rollback() End the transaction and discard all changes

box.savepoint() Get a savepoint descriptor

box.rollback to savepoint() | Do not end the transaction and discard all changes made after a savepoint

206 Chapter 5. Reference

Tarantool, Release 1.10.0

box.begin()
Begin the transaction. Disable implicit yields until the transaction ends. Signal that writes to the write-
ahead log will be deferred until the transaction ends. In effect the fiber which executes box.begin() is
starting an “active multi-request transaction”, blocking all other fibers.

box.commit()
End the transaction, and make all its data-change operations permanent.

box.rollback()
End the transaction, but cancel all its data-change operations. An explicit call to functions outside
box.space that always yield, such as fiber.sleep() or fiber.yield(), will have the same effect.

box.savepoint()
Return a descriptor of a savepoint (type = table), which can be used later by
box.rollback to savepoint(savepoint). Savepoints can only be created while a transaction is
active, and they are destroyed when a transaction ends.

box.rollback to_savepoint(savepoint)
Do not end the transaction, but cancel all its data-change and box.savepoint() operations that were
done after the specified savepoint.

Example:

function f()
box.begin() -- start transaction
box.space.t:insert{1} -- this will not be rolled back
local s = box.savepoint/()
box.space.t:insert{2} -- this will be rolled back
box.rollback to savepoint(s)
box.commit () -- end transaction

end

Every submodule contains one or more Lua functions. A few submodules contain members as well as
functions. The functions allow data definition (create alter drop), data manipulation (insert delete update
upsert select replace), and introspection (inspecting contents of spaces, accessing server configuration).

5.1.2 Module buffer

The buffer module returns a dynamically resizable buffer which is solely for use as an option for methods of
the net.box module.

Ordinarily the net.box methods return a Lua table. If a buffer option is used, then the net.box methods
return a raw MsgPack string. This saves time on the server, if the client application has its own routine for
decoding MsgPack strings.

buffer.ibuf ()
Return a descriptor of a buffer.
Rtype cdata
Example:

Assume a Tarantool server is listening on farhost:3301. Assume it has a space T with one tuple:
"ABCDE"', 12345. In this example we start up a server on localhost:3302 and then use net.box routines
to connect to farhost. Then we create a buffer, and use it as an option for a conn.space...select() call.
The result will be in MsgPack format. To show this, we will use msgpack.decode unchecked() on
ibuf.rpos (the “read position” of the buffer). Thus we do not decode on the remote server, but we do
decode on the local server.

5.1. Built-in modules reference 207

http://msgpack.org/
http://msgpack.org/

Tarantool, Release 1.10.0

box.cfg{listen=3302}

buffer = require('buffer")

ibuf = buffer.ibuf()

net _box = require('net.box")

conn — net_box.connect(' farhost:3301")
buffer — require('buffer")
conn.space.T:select({ },{buffer=ibuf})
msgpack = require(' msgpack ')
msgpack.decode unchecked (ibuf.rpos)

The result of the final request looks like this:

tarantool > msgpack.decode unchecked(ibuf.rpos)

- {48: [[' ABCDE", 12345]]}
- 'cdata<char *>: 0x7f97bal0c041"'

5.1.3

Note: Before Tarantool version 1.7.7, the function to use for this case is msgpack.ibuf decode(ibuf.
rpos). Starting with Tarantool version 1.7.7, ibuf decode is deprecated.

Module clock

Overview

The clock module returns time values derived from the Posix / C CLOCIK GETTIME function or equivalent.

Most
numb

Index

functions in the module return a number of seconds; functions whose names end in “64” return a 64-bit
er of nanoseconds.

Below is a list of all clock functions.

Name Use

clock.time() clock.realtime() Get the wall clock time in seconds

clock.time64() clock.realtime64() | Get the wall clock time in nanoseconds
clock.monotonic() Get the monotonic time in seconds
clock.monotonic64() Get the monotonic time in nanoseconds

clock.proc() Get the processor time in seconds

clock.proc64() Get the processor time in nanoseconds

clock.thread() Get the thread time in seconds

clock.thread64() Get the thread time in nanoseconds

clock.bench() Measure the time a function takes within a processor

clock.time()
clock.time64()
clock.realtime()
clock.realtime64()

The wall clock time. Derived from C function clock gettime(CLOCK REALTIME). This is the best
function for knowing what the official time is, as determined by the system administrator.

208

Chapter 5. Reference

http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html

Tarantool, Release 1.10.0

Return seconds or nanoseconds since epoch (1970-01-01 00:00:00), adjusted.
Rtype number or number64

Example:

-- This will print an approximate number of years since 1970.
clock = require(' clock")
print(clock.time() / (365*24*60%60))

See also fiber.time64 and the standard Lua function os.clock.

clock.monotonic()
clock.monotonic64()

The monotonic time. Derived from C function clock gettime(CLOCK MONOTONIC). Monotonic
time is similar to wall clock time but is not affected by changes to or from daylight saving time, or
by changes done by a user. This is the best function to use with benchmarks that need to calculate
elapsed time.

Return seconds or nanoseconds since the last time that the computer was booted.
Rtype number or number64

Example:

-- This will print nanoseconds since the start.
clock = require('clock")
print(clock.monotonic64())

clock.proc()
clock.proc64()

The processor time. Derived from C function clock gettime(CLOCK PROCESS CPUTIME ID).
This is the best function to use with benchmarks that need to calculate how much time has been spent
within a CPU.

Return seconds or nanoseconds since processor start.
Rtype number or number64

Example:

-- This will print nanoseconds in the CPU since the start.
clock = require('clock")
print(clock.proc64())

clock.thread()
clock.thread64()

The thread time. Derived from C function clock gettime(CLOCK THREAD CPUTIME ID). This
is the best function to use with benchmarks that need to calculate how much time has been spent
within a thread within a CPU.

Return seconds or nanoseconds since the transaction processor thread started.
Rtype number or number64

Example:

-- This will print seconds in the thread since the start.
clock = require('clock")
print(clock.thread64())

5.1.

Built-in modules reference 209

http://www.lua.org/manual/5.1/manual.html#pdf-os.clock

Tarantool, Release 1.10.0

clock.bench(function[,])

The time that a function takes within a processor. This function uses clock.proc(), therefore it calculates
elapsed CPU time. Therefore it is not useful for showing actual elapsed time.

Parameters
* function (function) — function or function reference
* ... — whatever values are required by the function.

Return table. first element - seconds of CPU time, second element - whatever the function
returns.

Example:

-- Benchmark a function which sleeps 10 seconds.
-- NB: bench() will not calculate sleep time.
-- So the returned value will be {a number less than 10, 88}.
clock = require('clock")
fiber = require(' fiber")
function f(param)
fiber.sleep(param)
return 88
end

clock.bench(f, 10)

5.14

Module console

Overview

The console module allows one Tarantool instance to access another Tarantool instance, and allows one
Tarantool instance to start listening on an admin port.

Index

Below is a list of all console functions.

Name Use

console.connect() Connect to an instance
console.listen() Listen for incoming requests
console.start() Start the console
console.ac() Set the auto-completion flag
console.delimiter() | Set a delimiter

console.connect(uri)

Connect to the instance at URI, change the prompt from ‘tarantool>’ to ‘uri>’, and act henceforth as
a client until the user ends the session or types control-D.

The console.connect function allows one Tarantool instance, in interactive mode, to access another
Tarantool instance. Subsequent requests will appear to be handled locally, but in reality the requests
are being sent to the remote instance and the local instance is acting as a client. Once connection is
successful, the prompt will change and subsequent requests are sent to, and executed on, the remote
instance. Results are displayed on the local instance. To return to local mode, enter control-D.

If the Tarantool instance at uri requires authentication, the connection might look something like:
console.connect (' admin:secretpassword@distanthost.com:3301").

210

Chapter 5. Reference

Tarantool, Release 1.10.0

There are no restrictions on the types of requests that can be entered, except those which are due to
privilege restrictions — by default the login to the remote instance is done with user name = ‘guest’. The
remote instance could allow for this by granting at least one privilege: box.schema.user.grant('guest',
'execute','universe').

Parameters
e uri (string) — the URI of the remote instance
Return nil

Possible errors: the connection will fail if the target Tarantool instance was not initiated with box.
cfg{listen=...}.

Example:

tarantool > console = require(' console")

tarantool > console.connect('198.18.44.44:3301")

198.18.44.44:3301> -- prompt is telling us that instance is remote

console.listen(uri)
Listen on URI. The primary way of listening for incoming requests is via the connection-information
string, or URI, specified in box.cfg{listen=...}. The alternative way of listening is via the URI specified
in console.listen(...). This alternative way is called “administrative” or simply “admin port”. The
listening is usually over a local host with a Unix domain socket.

Parameters
o uri (string) — the URI of the local instance

The “admin” address is the URI to listen on. It has no default value, so it must be specified if connections
will occur via an admin port. The parameter is expressed with URI = Universal Resource Identifier
format, for example “/tmpdir/unix _domain _socket.sock”, or a numeric TCP port. Connections are
often made with telnet. A typical port value is 3313.

Example:

tarantool> console = require('console")

tarantool > console.listen(' unix/:/tmp/X.sock ")
.. main/103/console/unix/: /tmp/X I> started

- fd: 6
name:
host: unix/
family: AF_UNIX
type: SOCK_STREAM
protocol: 0
port: /tmp/X.sock

console.start()
Start the console on the current interactive terminal.

Example:

5.1. Built-in modules reference 211

Tarantool, Release 1.10.0

A special use of console.start() is with initialization files. Normally, if one starts the Tarantool instance
with tarantool initialization file there is no console. This can be remedied by adding these lines at the
end of the initialization file:

local console = require(' console")
console.start()

console.ac([true |false])
Set the auto-completion flag. If auto-completion is true, and the user is using Tarantool as a client
or the user is using Tarantool via console.connect(), then hitting the TAB key may cause tarantool to
complete a word automatically. The default auto-completion value is true.

console.delimiter(marker)
Set a custom end-of-request marker for Tarantool console.

The default end-of-request marker is a newline (line feed). Custom markers are not necessary because
Tarantool can tell when a multi-line request has not ended (for example, if it sees that a function
declaration does not have an end keyword). Nonetheless for special needs, or for entering multi-line
requests in older Tarantool versions, you can change the end-of-request marker. As a result, newline
alone is not treated as end of request.

To go back to normal mode, say: console.delimiter('')<marker>
Parameters
» marker (string) — a custom end-of-request marker for Tarantool console

Example:

tarantool > console = require(' console'); console.delimiter('!")

tarantool > function f ()

- statement_ 1 = 'a’
- statement_2 — 'b’
- end!

tarantool > console.delimiter(' ")!

5.1.5 Module crypto

Overview
“Crypto” is short for “Cryptography”, which generally refers to the production of a digest value from a function
(usually a Cryptographic hash function), applied against a string. Tarantool’s crypto module supports ten

types of cryptographic hash functions (AES, DES, DSS, MD4, MD5, MDC2, RIPEMD, SHA-0, SHA-1,
SHA-2). Some of the crypto functionality is also present in the Module digest module.

Index

Below is a list of all crypto functions.

212 Chapter 5. Reference

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/MDC-2
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2

Tarantool, Release 1.10.0

Name Use
crypto.cipher.{algorithm}.{cipher mode}.encrypt() | Encrypt a string
crypto.cipher.{algorithm}.{cipher mode}.decrypt() | Decrypt a string
crypto.digest.{algorithm } () Get a digest

crypto.cipher.{aes128|aes192]aes256|des}.{cbc|ctblecblofb}.encrypt(string, key, initialization vector)
crypto.cipher.{aes128|aes192]aes256|des}.{cbc|ctb|ecblofb}.decrypt(string, key, initialization vector)
Pass or return a cipher derived from the string, key, and (optionally, sometimes) initialization vector.
The four choices of algorithms:

e aes128 - aes-128 (with 192-bit binary strings using AES)

e aesl192 - aes-192 (with 192-bit binary strings using AES)

* aes256 - aes-256 (with 256-bit binary strings using AES)

* des - des (with 56-bit binary strings using DES, though DES is not recommended)
Four choices of block cipher modes are also available:

¢ cbe - Cipher Block Chaining

¢ cfb - Cipher Feedback

¢ ecb - Electronic Codebook

e ofb - Output Feedback
For more information, read the article about Encryption Modes

Example:

crypto.cipher.aes192.cbc.encrypt('string', 'key', 'initialization")
crypto.cipher.aes256.ecb.decrypt(' string', 'key', 'initialization")

crypto.digest.{dss|dss1|md4|md5|mdc2|ripemd160} (string)
crypto.digest.{sha|shal|sha224|sha256|sha384|sha512} (string)
Pass or return a digest derived from the string. The twelve choices of algorithms:

* dss - dss (using DSS)

e dssl - dss (using DSS-1)

e md4 - md4 (with 128-bit binary strings using MD4)

e md5 - md5 (with 128-bit binary strings using MD5)

* mdc2 - mde2 (using MDC2)

* ripemd160 - ripemd (with 160-bit binary strings using RIPEMD-160)
* sha - sha (with 160-bit binary strings using SHA-0)

¢ shal - sha-1 (with 160-bit binary strings using SHA-1)

e sha224 - sha-224 (with 224-bit binary strings using SHA-2)
* sha256 - sha-256 (with 256-bit binary strings using SHA-2)
» sha384 - sha-384 (with 384-bit binary strings using SHA-2)
* shab512 - sha-512(with 512-bit binary strings using SHA-2).

Example:

5.1. Built-in modules reference 213

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Tarantool, Release 1.10.0

crypto.digest.md4(' string ")
crypto.digest.sha512('string ")

Incremental methods in the crypto module

Suppose that a digest is done for a string ‘A’, then a new part ‘B’ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ‘AB’, but it is faster to take
what was computed before for ‘A’ and apply changes based on the new part ‘B’. This is called multi-step or
“incremental” digesting, which Tarantool supports for all crypto functions..

crypto = require('crypto")

-- print aes-192 digest of "AB ', with one step, then incrementally
print(crypto.cipher.aes192.cbc.encrypt('AB', "key "))

¢ = crypto.cipher.aes192.cbe.encrypt.new()

c:init()

ciupdate("A', "key")

c:update('B', 'key")

print(c:result())

c:free()

- print sha-256 digest of 'AB’, with one step, then incrementally
print(crypto.digest.sha256(' AB "))

¢ = crypto.digest.sha256.new()

c:init()

c:update('A ")

c:update('B")

print(c:result())

c:free()

Getting the same results from digest and crypto modules

The following functions are equivalent. For example, the digest function and the crypto function will both
produce the same result.

crypto.cipher.aes256.cbc.encrypt('string', 'key') == digest.aes256cbc.encrypt('string’, 'key ")
crypto.digest.md4('string') == digest.md4("'string")

crypto.digest.md5(' string ') == digest.md5("'string")

crypto.digest.sha('string') —= digest.sha('string")

crypto.digest.shal('string') == digest.shal('string")

crypto.digest.sha224('string') —= digest.sha224('string")

crypto.digest.sha256('string ') —= digest.sha256('string')
crypto.digest.sha384('string') == digest.sha384('string")
crypto.digest.sha512('string') == digest.sha512('string")

5.1.6 Module csv
Overview

The csv module handles records formatted according to Comma-Separated-Values (CSV) rules.

The default formatting rules are:

214 Chapter 5. Reference

Tarantool, Release 1.10.0

Lua escape sequences such as \n or \10 are legal within strings but not within files,
Commas designate end-of-field,

Line feeds, or line feeds plus carriage returns, designate end-of-record,

Leading or trailing spaces are ignored,

Quote marks may enclose fields or parts of fields,

When enclosed by quote marks, commas and line feeds and spaces are treated as ordinary characters,
and a pair of quote marks ‘” is treated as a single quote mark.

The possible options which can be passed to csv functions are:

Index

delimiter = string (default: comma) — single-byte character to designate end-of-field
quote char = string (default: quote mark) — single-byte character to designate encloser of string

chunk size = number (default: 4096) — number of characters to read at once (usually for file-IO
efficiency)

skip_head lines = number (default: 0) — number of lines to skip at the start (usually for a header)

Below is a list of all csv functions.

Name Use

csv.load() Load a CSV file

csv.dump() | Transform input into a CSV-formatted string
csv.iterate() | Iterate over CSV records

csv.load(readable [, {options}])

Get CSV-formatted input from readable and return a table as output. Usually readable is either a
string or a file opened for reading. Usually options is not specified.

Parameters

* readable (object) — a string, or any object which has a read() method, formatted
according to the CSV rules

* options (table) — see above
Return loaded value
Rtype table
Example:

Readable string has 3 fields, field#2 has comma and space so use quote marks:

tarantool> csv = require('csv')

tarantool > csv.load('a,"b,c ",d")
---a
- 'b,e !

-d

5.1. Built-in modules reference 215

http://www.lua.org/pil/2.4.html

Tarantool, Release 1.10.0

Readable string contains 2-byte character = Cyrillic Letter Palochka: (This displays a palochka if and
only if character set = UTF-8.)

tarantool > csv.load('a\\211\\128b")

- - -2a\211\128b

Semicolon instead of comma for the delimiter:

tarantool > csv.load('a,b;c,d", {delimiter = ';'})
---ab
- c,d

Readable file ./file.csv contains two CSV records. Explanation of fio is in section fio. Source CSV file
and example respectively:

tarantool> -- input in file.csv is:
tarantool> -- a,"b,c ",d
tarantool> -- a\\211\\128b
tarantool> fio = require('fio")

tarantool> f = fio.open("'./file.csv', {"O RDONLY'})

tarantool> csv.load(f, {chunk size — 4096})
---a
- 'b,e!'
-d
- - a\\211\\128b

tarantool > f:close()

- true

csv.dump(csv-table [, options, writable])
Get table input from csv-table and return a CSV-formatted string as output. Or, get table input from
csv-table and put the output in writable. Usually options is not specified. Usually writable, if specified,
is a file opened for writing. csv.dump() is the reverse of csv.load().

Parameters
* csv-table (table) — a table which can be formatted according to the CSV rules.
* options (table) — optional. see above
* writable (object) — any object which has a write() method
Return dumped value
Rtype string, which is written to writable if specified
Example:

CSV-table has 3 fields, field#2 has “,” so result has quote marks

216 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > csv = require('csv')

tarantool> csv.dump({'a',"'b,c ','d"'})

- 'a,"b,c "d

Round Trip: from string to table and back to string

tarantool> csv_table = csv.load('a,b,c")

tarantool> csv.dump(csv_ table)

- 'a,b,c

csv.iterate(input, {options})
Form a Lua iterator function for going through CSV records one field at a time. Use of an iterator is
strongly recommended if the amount of data is large (ten or more megabytes).

Parameters
* csv-table (table) — a table which can be formatted according to the CSV rules.
* options (table) — see above
Return Lua iterator function
Rtype iterator function
Example:

csv.iterate() is the low level of csv.load() and csv.dump(). To illustrate that, here is a function which
is the same as the csv.load() function, as seen in the Tarantool source code.

tarantool > load = function(readable, opts)
opts — opts or {}
local result = {}
for i, tup in csv.iterate(readable, opts) do
result[i] = tup
end
return result
- end

tarantool> load('a,b,c")

---a
-b

-C

5.1. Built-in modules reference 217

https://github.com/tarantool/tarantool/blob/1.10/src/lua/csv.lua

Tarantool, Release 1.10.0

5.1.7 Module digest

Overview

A “digest” is a value which is returned by a function (usually a Cryptographic hash function), applied against
a string. Tarantool’s digest module supports several types of cryptographic hash functions (AES, MD4, MD5,
SHA-0, SHA-1, SHA-2, PBKDEF2) as well as a checksum function (CRC32), two functions for base64, and
two non-cryptographic hash functions (guava, murmur). Some of the digest functionality is also present in
the crypto module.

Index

Below is a list of all digest functions.

Name Use

digest.aes256¢be.encrypt() | Encrypt a string using AES
digest.aes256¢be.decrypt() | Decrypt a string using AES

digest.md4() Get a digest made with MD4

digest.md4 _hex() Get a hexadecimal digest made with MD4
digest.md5() Get a digest made with MD5

digest.md5 hex() Get a hexadecimal digest made with MD5
digest.pbkdf2() Get a digest made with PBKDF2

digest.sha() Get a digest made with SHA-0

digest.sha_hex() Get a hexadecimal digest made with SHA-0
digest.shal() Get a digest made with SHA-1

digest.shal hex() Get a hexadecimal digest made with SHA-1
digest.sha224() Get a 224-bit digest made with SHA-2
digest.sha224 hex() Get a 56-byte hexadecimal digest made with SHA-2
digest.sha256() Get a 256-bit digest made with SHA-2
digest.sha256 hex() Get a 64-byte hexadecimal digest made with SHA-2
digest.sha384() Get a 384-bit digest made with SHA-2
digest.sha384 hex() Get a 96-byte hexadecimal digest made with SHA-2
digest.shab12() Get a 512-bit digest made with SHA-2
digest.sha512 hex() Get a 128-byte hexadecimal digest made with SHA-2
digest.base64 _encode() Encode a string to Base64

digest.base64 decode() Decode a Base64-encoded string

digest.urandom() Get an array of random bytes

digest.cre32() Get a 32-bit checksum made with CRC32
digest.crc32.new() Initiate incremental CRC32

digest.guava() Get a number made with a consistent hash
digest.murmur() Get a digest made with MurmurHash
digest.murmur.new() Initiate incremental MurmurHash

digest.aes256¢be.encrypt(string, key, iv)
digest.aes256¢be.decrypt(string, key, iv)
Returns 256-bit binary string = digest made with AES.

digest.md4(string)
Returns 128-bit binary string = digest made with MD4.

digest.md4 _hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md4.

218 Chapter 5. Reference

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Md4
https://en.wikipedia.org/wiki/Md5
https://en.wikipedia.org/wiki/Sha-0
https://en.wikipedia.org/wiki/Sha-1
https://en.wikipedia.org/wiki/Sha-2
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Base64
https://code.google.com/p/guava-libraries/wiki/HashingExplained
https://en.wikipedia.org/wiki/MurmurHash

Tarantool, Release 1.10.0

digest.md5(string)
Returns 128-bit binary string = digest made with MD5.

digest.md5 hex(string)
Returns 32-byte string = hexadecimal of a digest calculated with md5.

digest.pbkdf2(string, salt[7 iterations[, digest—length]])
Returns binary string = digest made with PBKDF2. For effective encryption the iterations value
should be at least several thousand. The digest-length value determines the length of the resulting
binary string.

digest.sha(string)
Returns 160-bit binary string = digest made with SHA-0. Not recommended.

digest.sha_hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with sha.

digest.shal(string)
Returns 160-bit binary string = digest made with SHA-1.

digest.shal hex(string)
Returns 40-byte string = hexadecimal of a digest calculated with shal.

digest.sha224(string)
Returns 224-bit binary string = digest made with SHA-2.

digest.sha224 hex(string)
Returns 56-byte string = hexadecimal of a digest calculated with sha224.

digest.sha256(string)
Returns 256-bit binary string = digest made with SHA-2.

digest.sha256 hex(string)
Returns 64-byte string = hexadecimal of a digest calculated with sha256.

digest.sha384(string)
Returns 384-bit binary string = digest made with SHA-2.

digest.sha384 hex(string)
Returns 96-byte string = hexadecimal of a digest calculated with sha384.

digest.sha512(string)
Returns 512-bit binary tring = digest made with SHA-2.

digest.shab12 hex(string)
Returns 128-byte string = hexadecimal of a digest calculated with sha512.

digest.base64 _encode()
Returns base64 encoding from a regular string.

The possible options are:
¢ nopad — result must not include ‘=’ for padding at the end,
e nowrap — result must not include line feed for splitting lines after 72 characters,

¢ urlsafe — result must not include ‘=’ or line feed, and may contain -* or ¢’ instead of ‘+’ or ¢/’
for positions 62 and 63 in the index table.

Options may be true or false, the default value is false.

For example:

5.1. Built-in modules reference 219

Tarantool, Release 1.10.0

’ digest.base64 encode(string variable,{nopad—=true})

digest.base64 decode(string)
Returns a regular string from a base64 encoding.

digest.urandom (integer)
Returns array of random bytes with length = integer.

digest.crc32(string)
Returns 32-bit checksum made with CRC32.

The cre32 and cre32 _update functions use the CRC-32C (Castagnoli) polynomial value: 0x1EDC6F41
/ 4812730177. If it is necessary to be compatible with other checksum functions in other programming
languages, ensure that the other functions use the same polynomial value.

For example, in Python, install the cremod package and say:

- import crcmod
fun = crecmod.mkCrcFun('4812730177")
- fun('string")
3304160206L

In Perl, install the Digest::CRC module and run the following code:

use Digest::CRC;

$d = Digest::CRC->new(width => 32, poly => 0x1EDC6F41, init —> OxFFFFFFFF, refin —> 1, refout_
> 1)’

$d->add('string');

print $d->digest;

(the expected output is 3304160206).

digest.crc32.new()
Initiates incremental crc32. See incremental methods notes.

digest.guava(state, bucket)
Returns a number made with consistent hash.

The guava function uses the Consistent Hashing algorithm of the Google guava library. The first
parameter should be a hash code; the second parameter should be the number of buckets; the returned
value will be an integer between 0 and the number of buckets. For example,

tarantool > digest.guava(10863919174838991, 11)

-8

digest.murmur(string)
Returns 32-bit binary string = digest made with MurmurHash.

digest.murmur.new([seed])
Initiates incremental MurmurHash. See incremental methods notes.

Incremental methods in the digest module

Suppose that a digest is done for a string ‘A’, then a new part ‘B’ is appended to the string, then a new
digest is required. The new digest could be recomputed for the whole string ‘AB’, but it is faster to take

220 Chapter 5. Reference

https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use
https://en.wikipedia.org/wiki/Consistent_hashing

Tarantool, Release 1.10.0

what was computed before for ‘A’ and apply changes based on the new part ‘B’. This is called multi-step or
“incremental” digesting, which Tarantool supports with crc32 and with murmur. . .

digest — require(' digest")

-- print crc32 of 'AB ', with one step, then incrementally
print(digest.crc32("AB"))

¢ = digest.crc32.new()

c:update('A ")

c:update('B")

print(c:result())

- print murmur hash of "AB ', with one step, then incrementally
print(digest.murmur('AB"))

m = digest.murmur.new()

m:update('A")

m:update('B")

print(m:result())

Example

In the following example, the user creates two functions, password _insert() which inserts a SHA-1 digest of
the word “~S~e"~c"ret Wordpass” into a tuple set, and password _check() which requires input of a password.

tarantool> digest = require(' digest ")

tarantool> function password insert()
box.space.tester:insert{1234, digest.shal(' ~S~e"c ret Wordpass')}
return ' OK"
> end

tarantool> function password check(password)

local t = box.space.tester:select{12345}

if digest.shal(password) t[2] then
return 'Password is valid'

else
return 'Password is not valid'

end

> end

tarantool > password _insert()

_ IOKI

If a later user calls the password check() function and enters the wrong password, the result is an error.

tarantool > password _check('Secret Password ")

- 'Password is not valid"’

5.1. Built-in modules reference 221

https://en.wikipedia.org/wiki/Sha-1

Tarantool, Release 1.10.0

5.1.8 Module errno

Overview

The errno module is typically used within a function or within a Lua program, in association with a module
whose functions can return operating-system errors, such as fio.

Index

Below is a list of all errno functions.

Name Use
errno() Get an error number for the last OS-related function
errno.strerror() | Get an error message for the corresponding error number

errno()
Return an error number for the last operating-system-related function, or 0. To invoke it, simply say
errno(), without the module name.

Rtype integer

errno.strerror([code])
Return a string, given an error number. The string will contain the text of the conventional error
message for the current operating system. If code is not supplied, the error message will be for the
last operating-system-related function, or 0.

Parameters
* code (integer) — number of an operating-system error
Rtype string
Example:

This function displays the result of a call to fio.open() which causes error 2 (errno. ENOENT). The display
includes the error number, the associated error string, and the error name.

tarantool> function f()

local fio = require('fio")
local errno = require('errno")
fio.open('no such file")
print('errno() = ' .. errno())
print('errno.strerror() = ' .. errno.strerror())
local t = getmetatable(errno). _ index
for k, v in pairs(t) do

if v. == errno() then

print('errno() constant = ' .. k)

end

end
- end

tarantool> f()

errno() = 2

errno.strerror() = No such file or directory
errno() constant = ENOENT

222 Chapter 5. Reference

Tarantool, Release 1.10.0

To see all possible error names stored in the errno metatable, say getmetatable(errno) (output abridged):

tarantool> getmetatable(errno)
- __newindex: 'function: 0x41666a38"'
__call: "function: 0x41666890"'

index:

ENOLINK: 67
EMSGSIZE: 90
EOVERFLOW: 75
ENOTCONN: 107
EFAULT: 14
EOPNOTSUPP: 95
EEXIST: 17
ENOSR: 63
ENOTSOCK: 88
EDESTADDRREQ: 89
<...>

5.1.9 Submodule box.error

Overview

The box.error function is for raising an error. The difference between this function and Lua’s built-in error
function is that when the error reaches the client, its error code is preserved. In contrast, a Lua error would
always be presented to the client as ER_ PROC_LUA.

Index

Below is a list of all box.error functions.

Name

Use

box.error()

Throw an error

box.error.last()

Get a description of the last error

box.error.clear()

Clear the record of errors

box.error(reason=string [, code=number])

When called with a Lua-table argument, the code and reason have any user-desired values. The result

will be those values.
Parameters
* code (integer) —
* reason (string) —

box.error()

When called without arguments, box.error() re-throws whatever the last error was.

5.1. Built-in modules reference

223

https://www.lua.org/pil/8.3.html

Tarantool, Release 1.10.0

box.error(code, errtext[, errtext])

Emulate a request error, with text based on one of the pre-defined Tarantool errors defined in the file
errcode.h in the source tree. Lua constants which correspond to those Tarantool errors are defined as
members of box.error, for example box.error. NO SUCH USER == 45.

Parameters
* code (number) — number of a pre-defined error
* errtext(s) (string) — part of the message which will accompany the error
For example:

the NO_SUCH_USER message is “User '%s"' is not found” — it includes one “%s” component which
will be replaced with errtext. Thus a call to box.error(box.error.NO SUCH_ USER, 'joe') or box.
error(45, 'joe') will result in an error with the accompanying message “User 'joe' is not found”.

Except whatever is specified in errcode-number.

Example:

tarantool > box.error{code = 555, reason — 'Arbitrary message'}

- error: Arbitrary message

tarantool > box.error()

- error: Arbitrary message

tarantool> box.error(box.error. FUNCTION ACCESS DENIED, 'A', 'B', 'C")

- error: A access denied for user 'B' to function 'C’

box.error.last()

Returns a description of the last error, as a Lua table with five members: “line” (number) Tarantool
source file line number, “code” (number) error’s number, “type”, (string) error’s C+-+ class, “message”
(string) error’s message, “file” (string) Tarantool source file. Additionally, if the error is a system error
(for example due to a failure in socket or file io), there may be a sixth member: “errno” (number) C
standard error number.

rtype: table

box.error.clear()

Clears the record of errors, so functions like box.error() or box.error.last() will have no effect.

Example:

tarantool > box.error{code = 555, reason = 'Arbitrary message'}

- error: Arbitrary message

tarantool > box.schema.space.create(' # ')

- error: Invalid identifier '#"' (expected letters, digits or an underscore)
tarantool > box.error.last()
- line: 278

code: 70
type: ClientError

224

Chapter 5. Reference

https://github.com/tarantool/tarantool/blob/1.10/src/box/errcode.h

Tarantool, Release 1.10.0

message: Invalid identifier '#"' (expected letters, digits or an underscore)
file: /tmp/buildd/tarantool-1.7.0.252.g1654e31 " precise/src/box /key _def.cc

tarantool > box.error.clear()

tarantool > box.error.last()

- null

5.1.10 Module fiber

Overview

With the fiber module, you can:

¢ create, run and manage fibers,

¢ send and receive messages between different processes (i.e. different connections, sessions, or fibers)
via channels, and

¢ use a synchronization mechanism for fibers, similar to “condition variables” and similar to operating-
system functions such as pthread cond wait() plus pthread cond signal().

Index

Below is a list of all fiber functions and members.

Name Use

fiber.create() Create and start a fiber
fiber.self() Get a fiber object

fiber.find() Get a fiber object by ID
fiber.sleep() Make a fiber go to sleep
fiber.yield() Yield control

fiber.status() Get the current fiber’s status
fiber.info() Get information about all fibers
fiber.kill() Cancel a fiber

fiber.testcancel()

Check if the current fiber has been cancelled

fiber _object:id()

Get a fiber’s ID

fiber object:name()

Get a fiber’s name

fiber object:name(name)

Set a fiber’s name

fiber object:status()

Get a fiber’s status

fiber _object:cancel()

Cancel a fiber

fiber object.storage

Local storage within the fiber

fiber.time() Get the system time in seconds
fiber.time64() Get the system time in microseconds
fiber.channel() Create a communication channel

channel object:put()

Send a message via a channel

channel object:close()

Close a channel

channel object:get()

Fetch a message from a channel

Continued on next page

5.1. Built-in modules reference

225

Tarantool, Release 1.10.0

Table 5.2 — continued from previous page

Name Use

channel object:is _empty() Check if a channel is empty
channel _object:count() Count messages in a channel
channel object:is_full() Check if a channel is full

channel object:has readers() | Check if an empty channel has any readers waiting
channel object:has writers() | Check if a full channel has any writers waiting

channel object:is_closed() Check if a channel is closed

fiber.cond|() Create a condition variable

cond _object:wait() Make a fiber go to sleep until woken by another fiber
cond _object:signal() Wake up a single fiber

cond _object:broadcast() Wake up all fibers

Fibers

A fiber is a set of instructions which are executed with cooperative multitasking. Fibers managed by the
fiber module are associated with a user-supplied function called the fiber function.

A fiber has three possible states: running, suspended or dead. When a fiber is created with fiber.create(), it
is running. When a fiber yields control with fiber.sleep(), it is suspended. When a fiber ends (because the
fiber function ends), it is dead.

All fibers are part of the fiber registry. This registry can be searched with fiber.find() - via fiber id (fid),
which is a numeric identifier.

A runaway fiber can be stopped with fiber object.cancel. However, fiber object.cancel is advisory —
it works only if the runaway fiber calls fiber.testcancel() occasionally. Most box.* functions, such as
box.space. . . delete() or box.space...update(), do call fiber.testcancel() but box.space. . .select{} does not.
In practice, a runaway fiber can only become unresponsive if it does many computations and does not check
whether it has been cancelled.

The other potential problem comes from fibers which never get scheduled, because they are not subscribed
to any events, or because no relevant events occur. Such morphing fibers can be killed with fiber.kill() at
any time, since fiber kill() sends an asynchronous wakeup event to the fiber, and fiber.testcancel() is checked
whenever such a wakeup event occurs.

Like all Lua objects, dead fibers are garbage collected. The garbage collector frees pool allocator memory
owned by the fiber, resets all fiber data, and returns the fiber (now called a fiber carcass) to the fiber pool.
The carcass can be reused when another fiber is created.

A fiber has all the features of a Lua coroutine and all the programming concepts that apply for Lua coroutines
will apply for fibers as well. However, Tarantool has made some enhancements for fibers and has used fibers
internally. So, although use of coroutines is possible and supported, use of fibers is recommended.

fiber.create(function [, function-arguments])
Create and start a fiber. The fiber is created and begins to run immediately.

Parameters
* function — the function to be associated with the fiber
* function-arguments — what will be passed to function
Return created fiber object
Rtype userdata

Example:

226 Chapter 5. Reference

http://www.lua.org/pil/contents.html#9

Tarantool, Release 1.10.0

tarantool> fiber = require(' fiber")

tarantool > function function name()
fiber.sleep(1000)
- end

tarantool > fiber object — fiber.create(function name)

fiber.self()
Return fiber object for the currently scheduled fiber.

Rtype userdata

Example:

tarantool > fiber.self()
- status: running
name: interactive

id: 101

fiber.find(id)
Parameters
* id — numeric identifier of the fiber.
Return fiber object for the specified fiber.
Rtype userdata

Example:

tarantool > fiber.find(101)
- status: running
name: interactive

id: 101

fiber.sleep(time)

Yield control to the scheduler and sleep for the specified number of seconds. Only the current fiber

can be made to sleep.
Parameters

 time — number of seconds to sleep.

Example:

tarantool > fiber.sleep(1.5)

5.1. Built-in modules reference

227

Tarantool, Release 1.10.0

fiber.yield()

Yield control to the scheduler. Equivalent to fiber.sleep(0), except that fiber.sleep(0) depends on a

timer, fiber.yield() does not.

Example:

tarantool

fiber.yield()

fiber.status()
Return the status of the current fiber.

Return the status of fiber. One of: “dead”, “suspended”, or “running”.
Rtype string

Example:

tarantool > fiber.status()

- running

fiber.info()
Return information about all fibers.

Return number of context switches, backtrace, id, total memory, used memory, name for

each fiber.
Rtype table

Example:

tarantool > fiber.info()
- 101:
csw: 7
backtrace: [|
fid: 101
memory:
total: 65776
used: 0
name: interactive

fiber kill(id)

Locate a fiber by its numeric id and cancel it. In other words, fiber.kill() combines fiber.find() and

fiber object:cancel().
Parameters
* id — the id of the fiber to be cancelled.
Exception the specified fiber does not exist or cancel is not permitted.

Example:

tarantool> fiber kill(fiber.id()) -- kill self, may make program end

- error: fiber is cancelled

228

Chapter 5. Reference

Tarantool, Release 1.10.0

fiber.testcancel()
Check if the current fiber has been cancelled and throw an exception if this is the case.

Example:

tarantool > fiber.testcancel()

- error: fiber is cancelled

object fiber object

fiber object:id()
Parameters
e self — fiber object, for example the fiber object returned by fiber.create
Return id of the fiber.
Rtype number

Example:

tarantool > fiber object = fiber.self()

tarantool > fiber object:id()

- 101

fiber object:name()
Parameters
« self — fiber object, for example the fiber object returned by fiber.create
Return name of the fiber.
Rtype string

Example:

tarantool > fiber.self():name()

- interactive

fiber object:name(name)
Change the fiber name. By default a Tarantool server’s interactive-mode fiber is named ‘inter-
active’ and new fibers created due to fiber.create are named ‘lua’. Giving fibers distinct names
makes it easier to distinguish them when using fiber.info.

Parameters
« self — fiber object, for example the fiber object returned by fiber.create
* name (string) — the new name of the fiber.

Return nil

Example:

5.1. Built-in modules reference 229

Tarantool, Release 1.10.0

tarantool > fiber.self():name(' non-interactive")

fiber object:status()
Return the status of the specified fiber.

Parameters

« self — fiber object, for example the fiber object returned by fiber.create
Return the status of fiber. One of: “dead”, “suspended”, or “running”.
Rtype string

Example:

tarantool > fiber.self():status()

- running

fiber _object:cancel()
Cancel a fiber. Running and suspended fibers can be cancelled. After a fiber has been cancelled,
attempts to operate on it will cause errors, for example fiber object:id() will cause error: the
fiber is dead.

Parameters
« self — fiber object, for example the fiber object returned by fiber.create
Return nil
Possible errors: cancel is not permitted for the specified fiber object.

Example:

tarantool > fiber.self():cancel() -- kill self, may make program send

- error: fiber is cancelled

fiber object.storage
Local storage within the fiber. The storage can contain any number of named values, subject
to memory limitations. Naming may be done with fiber object.storage.name or fiber object.
storage['name'|. or with a number fiber _object.storage[number]|. Values may be either numbers
or strings. The storage is garbage-collected when fiber _object:cancel() happens.

Example:

tarantool> fiber = require(' fiber")

tarantool> function f () fiber.sleep(1000); end

tarantool > fiber function = fiber:create(f)

- error: '[string "fiber function = fiber:create(f)"]:1: fiber.create(function, ...):
bad arguments'

230 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > fiber function = fiber.create(f)

tarantool> fiber function.storage.strl = 'string’

tarantool > fiber function.storage|'strl"|

- string

tarantool > fiber function:cancel()

tarantool> fiber function.storage['strl’]

- error: '[string "return fiber function.storage[' 'strl' '|"]:1: the fiber is dead’

See also box.session.storage.

fiber.time()

Return current system time (in seconds since the epoch) as a Lua number. The time is
taken from the event loop clock, which makes this call very cheap, but still useful for
constructing artificial tuple keys.

Rtype num

Example:

tarantool > fiber.time(), fiber.time()

- 1448466279.2415
- 1448466279.2415

fiber.time64()

Return current system time (in microseconds since the epoch) as a 64-bit integer. The time
is taken from the event loop clock.

Rtype num

Example:

tarantool > fiber.time(), fiber.time64()

- 1448466351.2708
- 1448466351270762

Example

Make the function which will be associated with the fiber. This function contains an infinite loop (while 0
== 0 is always true). Each iteration of the loop adds 1 to a global variable named gvar, then goes to sleep
for 2 seconds. The sleep causes an implicit fiber.yield().

5.1. Built-in modules reference 231

Tarantool, Release 1.10.0

tarantool> fiber = require(' fiber")
tarantool> function function x()
gvar — 0
while 0 == 0 do
gvar — gvar | 1
fiber.sleep(2)
end
end

Make a fiber, associate function x with the fiber, and start function x. It will immediately “detach” so it
will be running independently of the caller.

tarantool> gvar — 0

tarantool > fiber of x = fiber.create(function x)

Get the id of the fiber (fid), to be used in later displays.

tarantool > fid = fiber of x:id()

Pause for a while, while the detached function runs. Then ... Display the fiber id, the fiber status, and
gvar (gvar will have gone up a bit depending how long the pause lasted). The status is suspended because
the fiber spends almost all its time sleeping or yielding.

tarantool> print('# ', fid, '. ', fiber _of x:status(), '. gvar—"', gvar)
102 . suspended . gvar= 399

Pause for a while, while the detached function runs. Then ... Cancel the fiber. Then, once again ...
Display the fiber id, the fiber status, and gvar (gvar will have gone up a bit more depending how long the
pause lasted). This time the status is dead because the cancel worked.

tarantool > fiber of x:cancel()

tarantool> print('# ', fid, '. ', fiber _of x:status(), '. gvar=", gvar)
102 . dead . gvar= 421

Channels

Call fiber.channel() to allocate space and get a channel object, which will be called channel for examples in
this section.

Call the other routines, via channel, to send messages, receive messages, or check channel status.

Message exchange is synchronous. The channel is garbage collected when no one is using it, as with any
other Lua object. Use object-oriented syntax, for example channel:put(message) rather than fiber.channel.
put(message).

232 Chapter 5. Reference

Tarantool, Release 1.10.0

fiber.channel([capacity])
Create a new communication channel.

Parameters

* capacity (int) — the maximum number of slots (spaces for channel:put messages) that
can be in use at once. The default is 0.

Return new channel.
Rtype userdata, possibly including the string “channel . ..".

object channel object

channel object:put(message [, timeout])

Send a message using a channel. If the channel is full, channel:put() waits until there is a free
slot in the channel.

Parameters

» message (lua-value) — what will be sent, usually a string or number or table
* timeout (number) — maximum number of seconds to wait for a slot to become free

Return If timeout is specified, and there is no free slot in the channel for the duration of
the timeout, then the return value is false. If the channel is closed, then the return
value is false. Otherwise, the return value is true, indicating success.

Rtype boolean

channel _object:close()
Close the channel. All waiters in the channel will stop waiting. All following channel:get()
operations will return nil, and all following channel:put() operations will return false.

channel _object:get([timeout])

Fetch and remove a message from a channel. If the channel is empty, channel:get() waits for a
message.

Parameters

* timeout (number) — maximum number of seconds to wait for a message

Return If timeout is specified, and there is no message in the channel for the duration
of the timeout, then the return value is nil. If the channel is closed, then the return

value is nil. Otherwise, the return value is the message placed on the channel by
channel:put().

Rtype usually string or number or table, as determined by channel:put

channel object:is _empty/()
Check whether the channel is empty (has no messages).

Return true if the channel is empty. Otherwise false.
Rtype boolean

channel object:count()
Find out how many messages are in the channel.

Return the number of messages.
Rtype number

channel _object:is_full()
Check whether the channel is full.

5.1. Built-in modules reference 233

Tarantool, Release 1.10.0

Return true if the channel is full (the number of messages in the channel equals the
number of slots so there is no room for a new message). Otherwise false.

Rtype boolean

channel object:has readers()
Check whether readers are waiting for a message because they have issued channel:get() and the
channel is empty.

Return true if readers are waiting. Otherwise false.
Rtype boolean

channel object:has writers()
Check whether writers are waiting because they have issued channel:put() and the channel is full.

Return true if writers are waiting. Otherwise false.
Rtype boolean
channel _object:is _closed()
Return true if the channel is already closed. Otherwise false.

Rtype boolean

Example

This example should give a rough idea of what some functions for fibers should look like. It’s assumed that
the functions would be referenced in fiber.create().

fiber — require('fiber")
channel = fiber.channel(10)
function consumer_fiber()
while true do
local task — channel:get()

end
end

function consumer2 fiber()
while true do
-- 10 seconds
local task = channel:get(10)

if task ~— nil then
else
-- timeout
end
end

end

function producer_fiber()
while true do
task — box.space...:select{...}

if channel:is_empty() then
-- channel is empty
end

234 Chapter 5. Reference

Tarantool, Release 1.10.0

if channel:is_full() then
-- channel is full
end

if channel:has readers() then
-- there are some fibers
-- that are waiting for data
end

if channel:has writers() then
-- there are some fibers
-- that are waiting for readers
end
channel:put(task)
end
end

function producer2_fiber()
while true do
task = box.space...select{...}
-- 10 seconds
if channel:put(task, 10) then

else
-- timeout
end
end
end

Condition variables

Call fiber.cond() to create a named condition variable, which will be called ‘cond’ for examples in this section.
Call cond:wait() to make a fiber wait for a signal via a condition variable.

Call cond:signal() to send a signal to wake up a single fiber that has executed cond:wait().

Call cond:broadcast() to send a signal to all fibers that have executed cond:wait().

fiber.cond()
Create a new condition variable.

Return new condition variable.
Rtype Lua object

object cond object

cond _object:wait([timeout])
Make the current fiber go to sleep, waiting until another fiber invokes the signal() or broadcast()
method on the cond object. The sleep causes an implicit fiber.yield().

Parameters

¢ timeout — number of seconds to wait, default = forever.

5.1. Built-in modules reference 235

Tarantool, Release 1.10.0

Return If timeout is provided, and a signal doesn’t happen for the duration of the time-
out, wait() returns false. If a signal or broadcast happens, wait() returns true.

Rtype boolean

cond _object:signal()
Wake up a single fiber that has executed wait() for the same variable.

Rtype nil

cond _object:broadcast()
Wake up all fibers that have executed wait() for the same variable.

Rtype nil

Example

Assume that a tarantool instance is running and listening for connections on localhost port 3301. Assume
that guest users have privileges to connect. We will use the tarantoolctl utility to start two clients.

On terminal #1, say

$ tarantoolctl connect '3301"
tarantool> fiber = require(' fiber")
tarantool> cond = fiber.cond()
tarantool > cond:wait()

The job will hang because cond:wait() — without an optional timeout argument — will go to sleep until the
condition variable changes.

On terminal #2, say

$ tarantoolctl connect '3301"
tarantool > cond:signal()

Now look again at terminal #1. It will show that the waiting stopped, and the cond:wait() function returned
true.

This example depended on the use of a global conditional variable with the arbitrary name cond. In real
life, programmers would make sure to use different conditional variable names for different applications.

5.1.11 Module fio

Overview
Tarantool supports file input/output with an API that is similar to POSIX syscalls. All operations are
performed asynchronously. Multiple fibers can access the same file simultaneously.
The fio module contains:
* functions for common pathname manipulations,
¢ functions for directory or file existence and type checks,
e functions for common file manipulations, and

* constants which are the same as POSIX flag values (for example fio.c.flag.0 RDONLY = POSIX
O_RDONLY).

236 Chapter 5. Reference

Tarantool, Release 1.10.0

Index

Below is a list of all fio functions and members.

Name

Use

fio.pathjoin()

Form a path name from one or more partial strings

fio.basename()

Get a file name

fio.dirname()

Get a directory name

fio.abspath()

Get a directory and file name

fio.path _exists()

Check if file or directory exists

fio.path.is_ dir(

Check if file or directory is a directory

Check if file or directory is a file

fio.path.is_link()

Check if file or directory is a link

)
fio.path.is_ file()
(
)

fio.path.lexists(

Check if file or directory exists

fio.umask()

Set mask bits

fio.lstat() fio.stat()

Get information about a file object

fio.mkdir() fio.rmdir()

Create or delete a directory

fio.chdir() Change working directory

fio.listdir() List files in a directory

fio.glob() Get files whose names match a given string
fio.tempdir() Get the name of a directory for storing temporary files
fio.cwd() Get the name of the current working directory

fio.copytree() fio.mktree() fio.rmtree()

Create and delete directories

fio.link() fio.symlink() fio.readlink() fio.unlink()

Create and delete links

fio.rename()

Rename a file or directory

fio.copyfile()

Copy a file

fio.chown() fio.chmod()

Manage rights to and ownership of file objects

fio.truncate()

Reduce the file size

fio.sync() Ensure that changes are written to disk
fio.open() Open a file
file-handle:close() Close a file

file-handle:pread() file-handle:pwrite()

Perform random-access read or write on a file

file-handle:read() file-handle:write()

Perform non-random-access read or write on a file

file-handle:truncate()

Change the size of an open file

file-handle:seek()

Change position in a file

file-handle:stat()

Get statistics about an open file

file-handle:fsync() file-handle:fdatasync()

Ensure that changes made to an open file are written to disk

fio.c

Table of constants similar to POSIX flag values

Common pathname manipulations

ﬁo.pathjoin(partial—string[, partial-string ...])

Concatenate partial string, separated by ¢/’ to form a path name.

Parameters

* partial-string (string) — one or more strings to be concatenated.

Return path name
Rtype string

Example:

5.1. Built-in modules reference

237

Tarantool, Release 1.10.0

tarantool > fio.pathjoin(' /etc', "default', 'myfile")

- /etc/default /myfile

fio.basename(path-name [, suffix])

Given a full path name, remove all but the final part (the file name). Also remove the suffix, if it is

passed.
Parameters
* path-name (string) — path name
* suffix (string) — suffix
Return file name
Rtype string

Example:

tarantool > fio.basename(' /path/to/my.lua’, ".lua")

- my

fio.dirname(path-name)
Given a full path name, remove the final part (the file name).

Parameters

¢ path-name (string) — path name
Return directory name, that is, path name except for file name.
Rtype string

Example:

tarantool > fio.dirname(' path/to/my.lua")

- '"path/to/"'

fio.abspath(file-name)
Given a final part (the file name), return the full path name.

Parameters

¢ file-name (string) — file name
Return directory name, that is, path name including file name.
Rtype string

Example:

tarantool > fio.abspath('my.lua")

- '"path/to/my.lua’

238

Chapter 5. Reference

Tarantool, Release 1.10.0

Directory or file existence and type checks

Functions in this section are similar to some Python os.path functions.
path.exists(path-name)
Parameters
* path-name (string) — path to directory or file.

Return true if path-name refers to a directory or file that exists and is not a broken symbolic
link; otherwise false

Rtype boolean
path.is_dir(path-name)
Parameters
* path-name (string) — path to directory or file.
Return true if path-name refers to a directory; otherwise false
Rtype boolean
path.is_file(path-name)
Parameters
* path-name (string) — path to directory or file.
Return true if path-name refers to a file; otherwise false
Rtype boolean
path.is_link(path-name)
Parameters
* path-name (string) — path to directory or file.
Return true if path-name refers to a symbolic link; otherwise false
Rtype boolean
path.lexists(path-name)
Parameters
* path-name (string) — path to directory or file.

Return true if path-name refers to a directory or file that exists or is a broken symbolic link;
otherwise false

Rtype boolean

Common file manipulations
fio.umask(mask-bits)
Set the mask bits used when creating files or directories. For a detailed description type man 2 umask.
Parameters
 mask-bits (number) — mask bits.
Return previous mask bits.

Rtype number

5.1. Built-in modules reference 239

https://docs.python.org/2/library/os.path.htmll

Tarantool, Release 1.10.0

Example:

tarantool > fio.umask(tonumber(' 755", 8))

- 493

fio.lstat(path-name)
fio.stat(path-name)
Returns information about a file object. For details type man 2 Istat or man 2 stat.

Parameters
* path-name (string) — path name of file.

Return (If no error) table of fields which describe the file’s block size, creation time, size,
and other attributes. (If error) two return values: null, error message.

Rtype table.
Additionally, the result of fio.stat('file-name') will include methods equivalent to POSIX macros:
* is_blk() = POSIX macro S_ISBLK,
* is_chr() = POSIX macro S_ISCHR,
* is_dir() = POSIX macro S_ISDIR,
¢ is_fifo() = POSIX macro S_ISFIFO,
* is_link() = POSIX macro S_ISLINK,
* is_reg() = POSIX macro S_ISREG,
e is_sock() = POSIX macro S_ISSOCK.
For example, fio.stat('/"):is_dir() will return true.

Example:

tarantool > fio.lstat(" /etc")

- inode: 1048577
rdev: 0
size: 12288
atime: 1421340698
mode: 16877
mtime: 1424615337
nlink: 160
uid: 0
blksize: 4096
gid: 0
ctime: 1424615337
dev: 2049
blocks: 24

fio.mkdir(path-name [, mode])
fio.rmdir(path-name)
Create or delete a directory. For details type man 2 mkdir or man 2 rmdir.

Parameters

* path-name (string) — path of directory.

240 Chapter 5. Reference

Tarantool, Release 1.10.0

* mode (number) — Mode bits can be passed as a number or as string constants, for
example S IWUSR. Mode bits can be combined by enclosing them in braces.

Return (If no error) true. (If error) two return values: false, error message.
Rtype boolean

Example:

tarantool > fio.mkdir(' /etc")

- false

fio.chdir(path-name)
Change working directory. For details type man 2 chdir.

Parameters

* path-name (string) — path of directory.
Return (If success) true. (If failure) false.
Rtype boolean

Example:

tarantool> fio.chdir(' /etc")

- true

fio.listdir(path-name)
List files in directory. The result is similar to the result from the ls command.

Parameters

* path-name (string) — path of directory.
Return (If no error) a list of files. (If error) two return values: null, error message.
Rtype table

Example:

tarantool > fio.listdir("' /usr/lib/tarantool ")

- - mysql

fio.glob(path-name)
Return a list of files that match an input string. The list is constructed with a single flag that controls

the behavior of the function: GLOB_NOESCAPE. For details type man 3 glob.
Parameters
* path-name (string) — path-name, which may contain wildcard characters.
Return list of files whose names match the input string
Rtype table
Possible errors: nil.

Example:

5.1. Built-in modules reference 241

Tarantool, Release 1.10.0

tarantool> fio.glob(' /etc/x*")

- - Jetc/xdg
- /etc/xml
- /etc/xul-ext

fio.tempdir()
Return the name of a directory that can be used to store temporary files.

Example:

tarantool> fio.tempdir()

- /tmp/1G31e7

fio.cwd()
Return the name of the current working directory.

Example:

tarantool > fio.cwd()

- /home/username/tarantool _sandbox

fio.copytree(from-path, to-path)
Copy everything in the from-path, including subdirectory contents, to the to-path. The result is similar
to the result that one gets from the c¢p -r command. The to-path should be empty.

Parameters

e from-path (string) — path-name.

* to-path (string) — path-name.
Return (If no error) true. (If error) two return values: false, error message.
Rtype boolean

Example:

tarantool> fio.copytree(' /home/original',' /home/archives')

- true

fio.mktree(path-name)
Create the path, including subdirectories, but without file contents. The result is similar to the result
that one gets from the mkdir command.

Parameters

* path-name (string) — path-name.
Return (If no error) true. (If error) two return values: false, error message.
Rtype boolean

Example:

242 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > fio.mktree(' /home/archives")

- true

fio.rmtree(path-name)

Remove the directory indicated by path-name, including subdirectories. The result is similar to the

result that one gets from the rmdir command, recursively. The directory must be empty.
Parameters
* path-name (string) — path-name.
Return (If no error) true. (If error) two return values: null, error message.
Rtype boolean

Example:

tarantool > fio.rmtree(' /home/archives")

- true

fio.link(src, dst)
fio.symlink(src, dst)
fio.readlink(src)
fio.unlink(src)

Functions to create and delete links. For details type man readlink, man 2 link, man 2 symlink, man

2 unlink.
Parameters
* src (string) — existing file name.
* dst (string) — linked name.

Return (If no error) fio.link and fio.symlink and fio.unlink return true, fio.readlink returns
the link value. (If error) two return values: false|null, error message.

Example:

tarantool ﬁo.link(' home/username/tmp.txt', ' /home/username tmp.tx‘r2')

- true

tarantool> fio.unlink(' /home/username/tmp.txt2")

- true

fio.rename(path-name, new-path-name)
Rename a file or directory. For details type man 2 rename.

Parameters
* path-name (string) — original name.
* new-path-name (string) — new name.
Return (If no error) true. (If error) two return values: false, error message.

Rtype boolean

5.1. Built-in modules reference

243

Tarantool, Release 1.10.0

Example:

tarantool> fio.rename(' /home/username/tmp.txt', ' /home/username/tmp.txt2")

- true

fio.rename(path-name, new-path-name)
Copy a file. The effect is similar to the effect that one gets with the cp command.

Parameters

 path-name (string) — path to original file.

* new-path-name (string) — path to new file.
Return (If no error) true. (If error) two return values: false, error message.
Rtype boolean

Example:

tarantool> fio.copyfile(' /home/user/tmp.txt"', ' /home/usern/tmp.txt2")

- true

fio.chown(path-name, owner-user, owner-group)

fio.chmod(path-name, new-rights)
Manage the rights to file objects, or ownership of file objects. For details type man 2 chown or man 2
chmod.

Parameters
» owner-user (string) — new user uid.
* owner-group (string) — new group uid.
* new-rights (number) — new permissions
Return null

Example:

tarantool > fio.chmod(' /home/username/tmp.txt "', tonumber('0755", 8))

- true

tarantool ﬁo.chown(' home/username/tmp.txt', 'username’, 'nsernmne')

- true

fio.truncate(path-name, new-size)
Reduce file size to a specified value. For details type man 2 truncate.

Parameters
* path-name (string) —
* new-size (number) —

Return (If no error) true. (If error) two return values: false, error message.

244 Chapter 5. Reference

Tarantool, Release 1.10.0

Rtype boolean

Example:

tarantool > fio.truncate(' /home/username/tmp.txt ", 99999)

- true

fio.sync()
Ensure that changes are written to disk. For details type man 2 sync.

Return true if success, false if failure.
Rtype boolean

Example:

tarantool > fio.sync()

- true

ﬁo.open(path—name[, ﬂags[, mode]])
Open a file in preparation for reading or writing or seeking.

Parameters
* path-name (string) — Full path to the file to open.

* flags (number) — Flags can be passed as a number or as string constants, for example
‘O_RDONLY’, ‘O_WRONLY”’, ‘O_RDWR’. Flags can be combined by enclosing
them in braces. On Linux the full set of flags as described on the Linux man page
is:

O_APPEND (start at end of file),

— O_ASYNC (signal when IO is possible),

— O_CLOEXEC (enable a flag related to closing),
— O_CREAT (create file if it doesn’t exist),

— O_DIRECT (do less caching or no caching),

- O_DIRECTORY (fail if it’s not a directory),

— O_EXCL (fail if file cannot be created),

— O_LARGEFILE (allow 64-bit file offsets),

O _NOATIME (no access-time updating),
O_NOCTTY (no console tty),
O_NOFOLLOW (no following symbolic links),
— O_NONBLOCK (no blocking),

- O_PATH (get a path for low-level use),

— O_SYNC (force writing if it’s possible),

— O_TMPFILE (the file will be temporary and nameless),
— O_TRUNC (truncate)

5.1. Built-in modules reference

245

http://man7.org/linux/man-pages/man2/open.2.html

Tarantool, Release 1.10.0

. and, always, one of:
— O_RDONLY (read only),
- O_WRONLY (write only), or
— O_RDWR (either read or write).

* mode (number) — Mode bits can be passed as a number or as string constants,
for example S _IWUSR. Mode bits are significant if flags include O _CREAT or
O_TMPFILE. Mode bits can be combined by enclosing them in braces.

Return (If no error) file handle (abbreviated as ‘fh’ in later description). (If error) two return
values: null, error message.

Rtype userdata
Possible errors: nil.

Example:

tarantool> fh = fio.open(' /home/username/tmp.txt', {*O_RDWR', 'O APPEND'})

tarantool> fh -- display file handle returned by fio.open

- fh: 11

object file-handle

file-handle:close()
Close a file that was opened with fio.open. For details type man 2 close.

Parameters

o fh (userdata) — file-handle as returned by fio.open().
Return true if success, false if failure.
Rtype boolean

Example:

tarantool> fh:close() -- where fh = file-handle

- true

file-handle:pread(count, offset)

file-handle:pread(buffer, count, offset)
Perform random-access read operation on a file, without affecting the current seek position of the
file. For details type man 2 pread.

Parameters
o fh (userdata) — file-handle as returned by fio.open().
* buffer — where to read into (if the format is pread(buffer, count, offset))
 count (number) — number of bytes to read

¢ offset (number) — offset within file where reading begins

246 Chapter 5. Reference

Tarantool, Release 1.10.0

If the format is pread(count, offset) then return a string containing the data that was read from
the file, or nil if failure.

If the format is pread(buffer, count, offset) then return the data to the buffer. (Buffers can be
acquired with buffer.ibuf.)

Example:

tarantool > fh:pread(25, 25)

file-handle:pwrite(new-string, offset)

file-handle:pwrite(buffer, count, offset)
Perform random-access write operation on a file, without affecting the current seek position of
the file. For details type man 2 pwrite.

Parameters
¢ fh (userdata) — file-handle as returned by fio.open().
* new-string or buffer (string) — value to write

 count (number) — number of bytes to write (if the format is pwrite(buffer, count,
offset))

¢ offset (number) — offset within file where writing begins
Return true if success, false if failure.
Rtype boolean

If the format is pwrite(new-string, offset) then the returned string is written to the file, as far as
the end of the string.

If the format is pwrite(buffer, count, offset) then the buffer contents are written to the file, for
count bytes. (Buffers can be acquired with buffer.ibuf.)

ibuf = require(' buffer").ibuf()

tarantool > fh:pwrite(ibuf, 1, 0)

- true

file-handle:read([count])
file-handle:read (buffer, count)
Perform non-random-access read on a file. For details type man 2 read or man 2 write.

Note: fh:read and fh:write affect the seek position within the file, and this must be taken into
account when working on the same file from multiple fibers. It is possible to limit or prevent file
access from other fibers with fiber.ipc.

Parameters

Built-in modules reference 247

Tarantool, Release 1.10.0

o fh (userdata) — file-handle as returned by fio.open().
* buffer — where to read into (if the format is read(buffer, count))

 count (number) — number of bytes to read

If the format is read() — omitting count — then read all bytes in the file.

If the format is read() or read([count]) then return a string containing the data that was read
from the file, or nil if failure.

If the format is read(buffer, count) then return the data to the buffer. (Buffers can be acquired
with buffer.ibuf.)

ibuf = require(' buffer").ibuf()

tarantool > fh:read(ibufireserve(5), 5)

-5

tarantool> require(' ffi").string(ibuf:alloc(5),5)

- abede

file-handle:write(new-string)
file-handle:write(buffer, count)

Perform non-random-access write on a file. For details type man 2 write.

Note: fh:read and fh:write affect the seek position within the file, and this must be taken into
account when working on the same file from multiple fibers. It is possible to limit or prevent file
access from other fibers with fiber.ipc.

Parameters
¢ fh (userdata) — file-handle as returned by fio.open().
* new-string or buffer (string) — value to write
* count (number) — number of bytes to write (if the format is write(buffer, count))
Return true if success, false if failure.
Rtype boolean
If the format is write(new-string) then the returned string is written to the file, as far as the end
of the string.

If the format is write(buffer, count) then the buffer contents are written to the file, for count
bytes. (Buffers can be acquired with buffer.ibuf.)

Example:

tarantool > fh:write("new data')

- true

248

Chapter 5. Reference

Tarantool, Release 1.10.0

file-handle:truncate(new-size)

Change the size of an open file. Differs from fio.truncate, which changes the size of a closed file.

Parameters

¢ fh (userdata) — file-handle as returned by fio.open().
Return true if success, false if failure.
Rtype boolean

Example:

tarantool > fh:truncate(0)

- true

file-handle:seek(position [7 offset-from])
Shift position in the file to the specified position. For details type man 2 seek.

Parameters
¢ fh (userdata) — file-handle as returned by fio.open().
¢ position (number) — position to seek to

¢ offset-from (string) — ‘SEEK END’ = end of file, ‘SEEK _CUR’ = current position,
‘SEEK SET’ = start of file.

Return the new position if success
Rtype number
Possible errors: nil.

Example:

tarantool> fh:seek(20, 'SEEK SET")

-20

file-handle:stat()

Return statistics about an open file. This differs from fio.stat which return statistics about a

closed file. For details type man 2 stat.
Parameters
¢ fh (userdata) — file-handle as returned by fio.open().
Return details about the file.
Rtype table

Example:

tarantool > fh:stat()

- inode: 729866
rdev: 0
size: 100
atime: 140942855
mode: 33261
mtime: 1409430660

5.1.

Built-in modules reference

249

Tarantool, Release 1.10.0

nlink: 1

uid: 1000

blksize: 4096

gid: 1000

ctime: 1409430660
dev: 2049

blocks: 8

file-handle:fsync()

file-handle:fdatasync()
Ensure that file changes are written to disk, for an open file. Compare fio.sync, which is for all
files. For details type man 2 fsync or man 2 fdatasync.

Parameters
¢ fh (userdata) — file-handle as returned by fio.open().
Return true if success, false if failure.

Example:

tarantool > fh:fsync()

- true

FIO constants

fio.c

Table with constants which are the same as POSIX flag values on the target platform (see man 2 stat).

Example:

tarantool > fio.c

- seek:
SEEK SET: 0
SEEK END: 2
SEEK CUR: 1

mode:

S _IWGRP: 16
S IXGRP: 8
S IROTH: 4
S IXOTH: 1
S _TRUSR: 256
S _IXUSR: 64
S IRWXU: 448
S IRWXG: 56
S _IWOTH: 2
S _IRWXO: 7
S IWUSR: 128
S _IRGRP: 32

flag:
O_EXCL: 2048
O_NONBLOCK: 4
O_RDONLY: 0

250

Chapter 5. Reference

Tarantool, Release 1.10.0

5.1.12 Module fun

Luafun, also known as the Lua Functional Library, takes advantage of the features of LuaJIT to help users
create complex functions. Inside the module are “sequence processors”’ such as map, filter, reduce, zip —
they take a user-written function as an argument and run it against every element in a sequence, which can
be faster or more convenient than a user-written loop. Inside the module are “generators” such as range,
tabulate, and rands — they return a bounded or boundless series of values. Within the module are “reducers”,
“filters”, “composers” ... or, in short, all the important features found in languages like Standard ML,
Haskell, or Erlang.

The full documentation is On the luafun section of github. However, the first chapter can be skipped because
installation is already done, it’s inside Tarantool. All that is needed is the usual require request. After that,
all the operations described in the Lua fun manual will work, provided they are preceded by the name
returned by the require request. For example:

tarantool> fun = require('fun")

tarantool> for _k, a in fun.range(3) do
print(a)
- end

W N =

5.1.13 Module http

Overview

The http module, specifically the http.client submodule, provides the functionality of an HTTP client with
support for HTTPS and keepalive. It uses routines in the libcurl library.

Index

Below is a list of all http functions.

Name Use

http.client.new() Create an HTTP client instance
client object:request() | Perform an HTTP request
client object:stat() Get a table with statistics

http.client.new([options])
Construct a new HTTP client instance.

Parameters

* options (table) — the maximum number of entries in the connection cache.

5.1. Built-in modules reference 251

http://rtsisyk.github.io/luafun
https://curl.haxx.se/libcurl/

Tarantool, Release 1.10.0

Return a new HTTP client instance

Rtype userdata

Example:

tarantool> http client — require('http.client').new({5})

object client object

client _object:request(method, url, body, opts)

If http client is an HTTP client instance, http _client:request() will perform an HTTP request

and, if there is a successful connection, will return a table with connection information.

Parameters

* method (string) — HTTP method, for example ‘GET’ or ‘POST’ or ‘PUT’

o url (string) — location, for example ‘https://tarantool.org/doc’

* body (string) — optional initial message, for example ‘My text string!’

* opts (table) — table of connection options, with any of these components:

timeout - number of seconds to wait for a curl API read request before timing
out

ca_ path - path to a directory holding one or more certificates to verify the peer
with
ca_file - path to an SSL certificate file to verify the peer with

verify _host - set on/off verification of the certificate’s name (CN) against host.
See also CURLOPT SSL VERIFYHOST

verify peer - set on/off verification of the peer’s SSL certificate. See also CUR-
LOPT SSL_ VERIFYPEER

ssl_key - path to a private key file for a TLS and SSL client certificate. See also
CURLOPT _SSLKEY

ssl_cert - path to a SSL client certificate file. See also CURLOPT SSLCERT
headers - table of HT'TP headers

keepalive idle - delay, in seconds, that the operating system will wait while
the connection is idle before sending keepalive probes. See also CUR-
LOPT TCP_ KEEPALIVE

keepalive interval - the interval, in seconds, that the operating system will wait
between sending keepalive probes. See also CURLOPT TCP KEEPALIVE

low speed time - set the “low speed time” — the time that the transfer speed
should be below the “low speed limit” for the library to consider it too slow and
abort. See also CURLOPT LOW SPEED TIME

low speed limit - set the “low speed limit” — the average transfer speed in
bytes per second that the transfer should be below during “low speed time”
seconds for the library to consider it to be too slow and abort. See also CUR-
LOPT LOW _SPEED_ LIMIT

verbose - set on/off verbose mode

252

Chapter 5. Reference

https://tarantool.org/doc
https://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYHOST.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSLKEY.html
https://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_TIME.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html
https://curl.haxx.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html

Tarantool, Release 1.10.0

Return connection information, with all of these components:
e status - HI'TP response status
¢ reason - HT'TP response status text
* headers - a Lua table with normalized HTTP headers
* body - response body
* proto - protocol version

Rtype table

The following “shortcuts” exist for requests:
* http_client:get(url, options) - shortcut for http client:request("GET", url, nil, opts)

* http client:post (url, body, options) - shortcut for http client:request("POST", url, body,
opts)

* http_client:put(url, body, options) - shortcut for http client:request("POST", url, body,
opts)

 http _client:patch(url, body, options) - shortcut for http _client:request("PATCH", url, body,
opts)

* http_client:options(url, options) - shortcut for http client:request("OPTIONS", url, nil,
opts)

 http _client:head(url, options) - shortcut for http client:request("HEAD", url, nil, opts)
 http _client:delete(url, options) - shortcut for http client:request("DELETE", url, nil, opts)
* http_client:trace(url, options) - shortcut for http _client:request("TRACE", url, nil, opts)

* http_client:connect:(url, options) - shortcut for http client:request("CONNECT", url, nil,
opts)

client _object:stat()
The http client:stat() function returns a table with statistics:

e active_requests - number of currently executing requests
* sockets added - total number of sockets added into an event loop
* sockets deleted - total number of sockets sockets from an event loop

* total requests - total number of requests

http 200 _responses - total number of requests which have returned code HTTP 200

http other responses - total number of requests which have not returned code HTTP 200

* failed requests - total number of requests which have failed including system errors, curl
errors, and HTTP errors

Example:

Connect to an HTTP server, look at the size of the response for a ‘GET’ request, and look at the
statistics for the session.

tarantool> http client = require('http.client').new()

tarantool> r = http _client:request(' GET ', " http://tarantool.org")

5.1. Built-in modules reference 253

Tarantool, Release 1.10.0

tarantool > string.len(r.body)

- 21725

tarantool> http client:stat()
- total requests: 1
sockets deleted: 2
failed requests: 0
active requests: 0
http other responses: 0
http 200 _responses: 1
sockets added: 2

5.1.14 Module iconv
Overview

The iconv module provides a way to convert a string with one encoding to a string with another encoding,
for example from ASCII to UTF-8. It is based on the POSIX iconv routines.

An exact list of the available encodings may depend on environment. Typically the list includes ASCII,
BIG5, KOISR, LATINS, MS-GREEK, SJIS, and about 100 others. For a complete list, type iconv --list on
a terminal.

Index

Below is a list of all iconv functions.

Name Use
iconv.new() Create an iconv instance
iconv.converter() | Perform conversion on a string

iconv.new(to, from)
Construct a new iconv instance.

Parameters
* to (string) — the name of the encoding that we will convert to.
* from (string) — the name of the encoding that we will convert from.
Return a new iconv instance — in effect, a callable function
Rtype userdata
If either parameter is not a valid name, there will be an error message.

Example:

tarantool > converter = require('iconv').new('UTF8"', 'ASCII")

iconv.converter(input-string)

254 Chapter 5. Reference

Tarantool, Release 1.10.0

Convert.

param string input-string the string to be converted (the “from” string)

return the string that results from the conversion (the “to” string)

If anything in input-string cannot be converted, there will be an error message and the result

string will be unchanged.

Example:

We know that the Unicode code point for “/I” (CYRILLIC CAPITAL LETTER DE) is hexadecimal
0414 according to the character database of Unicode. Therefore that is what it will look like in UTF-16.
We know that Tarantool typically uses the UTF-8 character set. So make a from-UTF-8-to-UTF-16
converter, use string.hex(‘’) to show what I’s encoding looks like in the UTF-8 source, and use
string.hex(‘II’-after-conversion) to show what it looks like in the UTF-16 target. Since the result is
0414, we see that iconv conversion works.

tarantool > string.hex (' 1")

- d094

tarantool > string.hex(utfl6 _string)

- 10414

tarantool > converter = require('iconv').new('UTF16BE", 'UTFg8")

tarantool> utfl6 string — converter(' /")

5.1.15 Module json

Overview

The json module provides JSON manipulation routines. It is based on the Lua-CJSON module by Mark
Pulford. For a complete manual on Lua-CJSON please read the official documentation.

Index

Below is a list of all json functions and members.

Name

Use

json.encode()

Convert a Lua object to a JSON string

json.decode()

Convert a JSON string to a Lua object

json.NULL

Analog of Lua’s “nil”

json.encode(lua-value)

Convert a Lua object to a JSON string.

Parameters

5.1. Built-in modules reference

255

http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt.
http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson.php
http://www.kyne.com.au/~mark/software/lua-cjson-manual.html

Tarantool, Release 1.10.0

* lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a JSON string.
Rtype string

Example:

tarantool > json=require('json")

tarantool > json.encode(123)

- 1237

tarantool > json.encode({123})

- 123

tarantool> json.encode({123, 234, 345})

- '[123,234,345]"

tarantool > json.encode({abc = 234, cde = 345})

- "{"cde":345,"abc":234}

tarantool > json.encode({hello = {'world'}})

- "{"hello":["world"|}"

json.decode(string)
Convert a JSON string to a Lua object.

Parameters

* string (string) — a string formatted as JSON.
Return the original contents formatted as a Lua table.
Rtype table

Example:

tarantool> json = require('json")

tarantool > json.decode('123")

- 123

tarantool > json.decode('[123, "hello"|")

- [123, "hello"]

tarantool > json.decode('{"hello": "world"} ').hello

- world

See the tutorial Sum a JSON field for all tuples to see how json.decode() can fit in an application.

256 Chapter 5. Reference

Tarantool, Release 1.10.0

json.NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a tuple.

Example:

-- When nil is assigned to a Lua-table field, the field is null
tarantool> {nil, 'a', 'b'}
- - null

-a

-b

-- When json.NULL is assigned to a Lua-table field, the field is json.NULL
tarantool> {json.NULL, 'a', 'b'}
- - null

-a

-b

-- When json.NULL is assigned to a JSON field, the field is null
tarantool > json.encode({field2 = json.NULL, fieldl1 = "a', field3 = 'c¢'})

- "{"field2":null,"field1":"a","field3":"c"} '

The JSON output structure can be specified with serialize:

e serialize="seq" for an array
° 3 1' _n n f
__serialize="map" for a map
Serializing ‘A’ and ‘B’ with different __serialize values causes different results:

tarantool > json.encode(setmetatable({"A"', "B'}, { _ _serialize="seq"}))

:__l [IVAIV.l'BU] 1
tarantool > json.encode(setmetatable({"A", "B'}, { __serialize—"map"}))
:__y MWAN A o ny
{"1mA 2B}
tarantool > json.encode({setmetatable({fl = 'A"' {2 = 'B'}, { serialize="map"})})
:__l [{Uf?ll:”B” Ufl”:UAAU }] 1
tarantool > json.encode({setmetatable({fl = "A' {2 = 'B'}, { __serialize="seq"})})

-

Configuration settings
There are configuration settings which affect the way that Tarantool encodes invalid numbers or types. They
are all boolean true/false values

¢ cfg.encode invalid numbers (default is true) — allow nan and inf

* cfg.encode use tostring (default is false) — use tostring for unrecognizable types

* cfg.encode invalid as nil (default is false) — use null for all unrecognizable types

5.1. Built-in modules reference 257

Tarantool, Release 1.10.0

¢ cfg.encode load metatables (default is false) — load metatables

For example, the following code will interpret 0/0 (which is “not a number”) and 1/0 (which is “infinity”) as
special values rather than nulls or errors:

json = require('json")
json.cfg{encode invalid numbers = true}
x =0/0

y —1/0

json.encode({1, x, y, 2})

The result of the json.encode() request will look like this:

tarantool> json.encode({1, x, y, 2})

- '[1,nan,inf 2]

The same configuration settings exist for json, for MsgPack, and for YAML.

5.1.16 Module log

Overview
The Tarantool server puts all diagnostic messages in a log file specified by the log configuration parameter.

Diagnostic messages may be either system-generated by the server’s internal code, or user-generated with
the log.log level function name function.

Index

Below is a list of all log functions.

Name Use

log.error() log.warn() log.info() log.verbose() log.debug() | Write a user-generated message to a log file
log.logger pid() Get the PID of a logger

log.rotate() Rotate a log file

log.error (message)

log.warn(message)

log.info(message)

log.verbose(message)

log.debug(message)
Output a user-generated message to the log file, given log level function name = error or warn or
info or verbose or debug.

As explained in the description of the configuration setting for log_level, there are seven levels of detail:
* 1 - SYSERROR

2 — ERROR - this corresponds to log.error(...)

3 — CRITICAL

4 — WARNING - this corresponds to log.warn(...)

5 — INFO - this corresponds to log.info(...)

L]

258 Chapter 5. Reference

Tarantool, Release 1.10.0

* 6 — VERBOSE - this corresponds to log.verbose(...)
* 7 - DEBUG - this corresponds to log.debug(...)

For example, if box.cfg.log level is currently 5 (the default value), then log.error(...), log.warn(...) and
log.info(...) messages will go to the log file. However, log.verbose(...) and log.debug(...) messages will
not go to the log file, because they correspond to higher levels of detail.

Parameters

* message (string) — The actual output will be a line containing:

the current timestamp,

a module name,

B W2 TV or ‘D’ depending on log level function name, and
— message.

Output will not occur if log level function name is for a type greater than
log level.

Messages may contain C-style format specifiers %d or %s, so log.error('...%d...%s",
x, y) will work if x is a number and y is a string.

Return nil
log.logger pid()
Return PID of a logger

log.rotate()
Rotate the log.

Return nil

Example

$ tarantool

tarantool> box.cfg{log level=3, log="tarantool.txt'}
tarantool> log = require('log")

tarantool > log.error('Error")

tarantool > log.info('Info %s", box.info.version)
tarantool > os.exit()

$ less tarantool.txt

2017-09-20 ... [68617] main/101 /interactive C> version 1.7.5-31-ge939c6eat
2017-09-20 ... [68617] main/101/interactive C> log level 3

2017-09-20 ... [68617] main/101/interactive [C]:-1 E> Error

The ‘Error’ line is visible in tarantool.txt preceded by the letter E.

The ‘Info’ line is not present because the log level is 3.

5.1.17 Module msgpack

5.1. Built-in modules reference 259

Tarantool, Release 1.10.0

Overview
The msgpack module takes strings in MsgPack format and decodes them, or takes a series of non-MsgPack

values and encodes them. Tarantool makes heavy internal use of MsgPack because tuples in Tarantool are
stored as MsgPack arrays.

Index

Below is a list of all msgpack functions and members.

Name Use

msgpack.encode() Convert a Lua object to an MsgPack string
msgpack.decode() Convert a MsgPack string to a Lua object
msgpack.decode unchecked() | Convert a MsgPack string to a Lua object
msgpack.NULL Analog of Lua’s “nil”

msgpack.encode(lua_ value)
Convert a Lua object to a MsgPack string.

Parameters
* lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a MsgPack string.

Rtype string

msgpack.decode(string [, offset])
Convert a MsgPack string to a Lua object.

Parameters

e string — a string formatted as MsgPack.

* num — where to start, minimum = 1, maximum = string length
Return

* the original contents formatted as a Lua table;

e the number of bytes that were decoded.
Rtype lua object

msgpack.decode _unchecked(string)
Convert a MsgPack string to a Lua object. Because checking is skipped, decode unchecked() can
operate with string pointers to buffers which decode() cannot handle. For an example see the buffer
module.

Parameters
* string — a string formatted as MsgPack.
Return
* the original contents formatted as a Lua table;
e the number of bytes that were decoded.
Rtype lua object

260 Chapter 5. Reference

http://msgpack.org/

Tarantool, Release 1.10.0

msgpack.NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a tuple.

Example

tarantool> msgpack = require(' msgpack")

tarantool> y — msgpack.encode({'a"',1,"b",2})

tarantool> z — msgpack.decode(y)

tarantool> z[1], z[2], z[3], z[4]
-a
-1
b
-2

tarantool > box.space.tester:insert{20, msgpack. NULL, 20}

- [20, null, 20]

The MsgPack output structure can be specified with __ serialize:

e serialize = "seq" or "sequence" for an array
° 3 1 _n " n 3 n f
__serialize = "map" or "mapping" for a map
Serializing ‘A’ and ‘B’ with different serialize values causes different results. To show this, here is a

routine which encodes {*A’, B’} both as an array and as a map, then displays each result in hexadecimal.

function hexdump(bytes)
local result = '
for i = 1, #bytes do
result = result .. string.format("%x", string.byte(bytes, i)) .. ' '
end
return result
end

msgpack = require(' msgpack')
ml — msgpack.encode(setmetatable({' A", "B}, {

n

__serialize = "seq
)
m2 = msgpack.encode(setmetatable({' A", "B}, {
__serialize = "map"
D))

print('array encoding: ', hexdump(m1l))
print('map encoding: ', hexdump(m2))

Result:

array encoding: 92 al 41 al 42
map encoding: 82 01 al 41 02 al 42

The MsgPack Specification page explains that the first encoding means:

5.1. Built-in modules reference 261

http://github.com/msgpack/msgpack/blob/master/spec.md

Tarantool, Release 1.10.0

’ﬁxarray(Q), fixstr(1), "A", fixstr(1), "B"

and the second encoding means:

’ﬁxmap(Q)7 key(1), fixstr(1), "A", key(2), fixstr(2), "B"

Here are examples for all the common types, with the Lua-table representation on the left, with the MsgPack
format name and encoding on the right.

Common Types and MsgPack Encodings

{} ‘fixmap’ if metatable is ‘map’ = 80 otherwise ‘fixarray’ = 90

‘a’ ‘fixstr’ = al 61

false ‘false’ = c2

true ‘true’ = c3

127 ‘positive fixint’ = 7f

65535 ‘uint 16’ = cd ff ff

4294967295 ‘uint 32” = ce ff ff ff ff

nil ‘nil” = c0

msg- same as nil

pack. NULL

0] =5 ‘fixmap(1)’ + ‘positive fixint’ (for the key) -+ ‘positive fixint’ (for the value) = 81 00 05
[0] = nil ‘fixmap(0)” = 80 — nil is not stored when it is a missing map value
1.5 ‘float 64" = cb 3f £8 00 00 00 00 00 00

Also, some MsgPack configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

5.1.18 Module net.box
Overview

The net.box module contains connectors to remote database systems. One variant, to be discussed later, is
connecting to MySQL or MariaDB or PostgreSQL (see SQL DBMS modules reference). The other variant,
which is discussed in this section, is connecting to Tarantool server instances via a network using the built-in
net.box module.

You can call the following methods:
* require('net.box") to get a net.box object (named net box for examples in this section),
* net_box.connect() to connect and get a connection object (named conn for examples in this section),
* other net.box() routines, passing conn:, to execute requests on a remote box,
* conn:close to disconnect.

All net.box methods are fiber-safe, that is, it is safe to share and use the same connection object across
multiple concurrent fibers. In fact, it’s perhaps the best programming practice with Tarantool. When
multiple fibers use the same connection, all requests are pipelined through the same network socket, but
each fiber gets back a correct response. Reducing the number of active sockets lowers the overhead of system
calls and increases the overall server performance. There are, however, cases when a single connection is not
enough — for example, when it’s necessary to prioritize requests or to use different authentication IDs.

Most net.box methods allow a final {options} argument, which can be:

262 Chapter 5. Reference

Tarantool, Release 1.10.0

o {timeout=...}. For example, a method whose final argument is {timeout=1.5} will stop after 1.5
seconds on the local node, although this does not guarantee that execution will stop on the remote

server node.

 {buffer=...}. For an example see buffer module.

The diagram below shows possible connection states and transitions:

On this diagram:

Index

The state machine starts in the ‘initial’ state.

net_box.connect() method changes the state to ‘connecting’ and spawns a worker fiber.

If authentication and schema upload are required, it’s possible later on to re-enter the ‘fetch schema’
state from ‘active’ if a request fails due to a schema version mismatch error, so schema reload is

triggered.

conn.close() method sets the state to ‘closed’ and kills the worker. If the transport is already in the

‘error’ state, close() does nothing.

Below is a list of all net.box functions.

net

net

Name

Use

net box.connect() net box.new()

Create a connection

conn:ping()

Execute a PING command

conn:wait__connected()

Wait for a connection to be active or closed

conn:is__connected()

Check if a connection is active or closed

conn:wait _state()

Wait for a target state

conn:close()

Close a connection

conn.space.space-name:select{field-value}

Select one or more tuples

conn.space.space-name:get{field-value}

Select a tuple

conn.space.space-name:insert{field-value}

Insert a tuple

conn.space.space-name:replace{field-value}

Insert or replace a tuple

conn.space.space-name:update{field-value}

Update a tuple

conn.space.space-name:upsert{field-value}

Update a tuple

conn.space.space-name:delete{ field-value}

Delete a tuple

conn:call()

Call a stored procedure

conn:eval()

Evaluate and execute the expression in a string

conn:timeout()

Set a timeout

box.connect(URI[, {option][s]}])

box.now(URI[, {option][s|}])

Note: The names connect() and new() are synonymous with the only difference that connect() is the
preferred name, while new() is retained for backward compatibility.

Create a new connection. The connection is established on demand, at the time of the first request.
It can be re-established automatically after a disconnect (see reconnect after option below). The
returned conn object supports methods for making remote requests, such as select, update or delete.

5.1. Built-in modules reference

263

Tarantool, Release 1.10.0

For a local Tarantool server, there is a pre-created always-established connection object named
net _box.self. Its purpose is to make polymorphic use of the net box API easier. Therefore conn
= net_ box.connect('localhost:3301") can be replaced by conn = net box.self. However, there is an
important difference between the embedded connection and a remote one. With the embedded con-
nection, requests which do not modify data do not yield. When using a remote connection, due to
the implicit rules any request can yield, and database state may have changed by the time it regains
control.

Possible options:

e wait_connected: by default, connection creation is blocked until the connection is established,
but passing wait connected=false makes it return immediately. Also, passing a timeout makes
it wait before returning (e.g. wait_connected=1.5 makes it wait at most 1.5 seconds).

Note: In the presence of reconnect after, wait connected ignores transient failures. The wait
completes once the connection is established or is closed explicitly.

e reconnect after: a net.box instance automatically reconnects any time the connection is broken
or if a connection attempt fails. This makes transient network failures become transparent to
the application. Reconnect happens automatically in the background, so queries/requests that
suffered due to connectivity loss are transparently retried. The number of retries is unlimited,
connection attempts are done over the specified timeout (e.g. reconnect _after=5 for 5 secs). Once
a connection is explicitly closed (or garbage-collected), reconnects stop.

e call 16: [since 1.7.2] by default, net.box connections comply with a new binary protocol com-
mand for CALL, which is not backward compatible with previous versions. The new CALL no
longer restricts a function to returning an array of tuples and allows returning an arbitrary Ms-
gPack/JSON result, including scalars, nil and void (nothing). The old CALL is left intact for
backward compatibility. It will be removed in the next major release. All programming language
drivers will be gradually changed to use the new CALL. To connect to a Tarantool instance that
uses the old CALL, specify call 16=true.

* console: depending on the option’s value, the connection supports different methods (as if in-
stances of different classes were returned). With console = true, you can use conn methods
close(), is_ connected(), wait_state(), eval() (in this case, both binary and Lua console network
protocols are supported). With console = false (default), you can also use conn database methods
(in this case, only the binary protocol is supported).

e connect timeout: number of seconds to wait before returning “error: Connection timed out”.

Parameters

» URI (string) — the URI of the target for the connection

* options — possible options are wait _connected, reconnect _after, call 16 and console
Return conn object

Rtype userdata

Examples:

conn — net_box.connect('localhost:3301")
conn = net_ box.connect('127.0.0.1:3302", {wait_connected = false})
conn — net_ box.connect('127.0.0.1:3303", {reconnect _after — 5, call 16 = true})

object conn

264

Chapter 5. Reference

Tarantool, Release 1.10.0

conn:ping)()
Execute a PING command.

Return true on success, false on error
Rtype boolean

Example:

net_box.self:ping()

conn:wait_connected([timeout])
Wait for connection to be active or closed.

Parameters

* timeout (number) — in seconds

Return true when connected, false on failure.

Rtype boolean

Example:

net_box.self:wait__connected()

conn:is_connected()
Show whether connection is active or closed.

Return true if connected, false on failure.
Rtype boolean

Example:

’ net_box.self:is_connected()

conn:wait _state(state|s| [, timeout])
[since 1.7.2] Wait for a target state.

Parameters
* states (string) — target states

* timeout (number) — in seconds

Return true when a target state is reached, false on timeout or connection closure

Rtype boolean

Examples:

-- wait infinitely for 'active ' state:
conn:wait_ state('active")

-- wait for 1.5 secs at most:
conn:wait_state('active', 1.5)

conn:wait_ state({active—true, fetch schema—true})

-- wait infinitely for either “active' or “fetch schema ' state:

conn:close()
Close a connection.

5.1.

Built-in modules reference

265

Tarantool, Release 1.10.0

Connection objects are garbage collected just like any other objects in Lua, so an explicit destruc-
tion is not mandatory. However, since close() is a system call, it is good programming practice
to close a connection explicitly when it is no longer needed, to avoid lengthy stalls of the garbage
collector.

Example:

conn:close()

conn.space. <space-name>:select({field-value, ...} [, {options}|)
conn.space.space-name:select({...}) is the remote-call equivalent of the local call box.space.space-
name:select{...}.

Example:

conn.space.testspace:select({1," B '}, {timeout—=1})

Note: Due to the implicit yield rules a local box.space.space-name:select{...} does not yield, but
a remote conn.space.space-name:selectq{...} call does yield, so global variables or database tuples
data may change when a remote conn.space.space-name:select{...} occurs.

conn.space.<space-name>:get({field-value, ...} [, {options}|)
conn.space.space-name:get(...) is the remote-call equivalent of the local call box.space.space-

name:get(...).

Example:

’ conn.space.testspace:get({1})

conn.space.<space-name>:insert({field-value, ...} [, {options}])
conn.space.space-name:insert(...) is the remote-call equivalent of the local call box.space.space-
name:insert(...).

Example:

conn.space.testspace:insert({2,3,4,5}, {timeout=1.1})

conn.space. <space-name>:replace({field-value, ...} [, {options}|)
conn.space.space-name:replace(...) is the remote-call equivalent of the local call box.space.space-
name:replace(...).

Example:

conn.space.testspace:replace({5,6,7,8})

conn.space. <space-name>:update({field-value, ...} [, {options}|)
conn.space.space-name:update(...) is the remote-call equivalent of the local call box.space.space-
name:update(...).

Example:

conn.space.Q:update({1},{{'=",2,5}}, {timeout=0})

conn.space. <space-name>:upsert({field-value, ...} [, {options}])
conn.space.space-name:upsert(...) is the remote-call equivalent of the local call box.space.space-
name:upsert(...).

266 Chapter 5. Reference

Tarantool, Release 1.10.0

conn.space.<space-name>:delete({field-value, ...} [, {options}])
conn.space.space-name:delete(...) is the remote-call equivalent of the local call box.space.space-
name:delete(...).

conn:call(function—name[, {arguments} [, {options}]])
conn:call('func', {'1', '2', '3'}) is the remote-call equivalent of func('1', '2', '3'). That
is, conn:call is a remote stored-procedure call.

Limitation: the called function cannot return a function, for example if func2 is defined as function
func2 () return func end then conn:call(func2) will return “error: unsupported Lua type ‘function’”.

Examples:

conn:call(' function5")
conn:call(' fx',{1,' B'},{timeout—99})

conn:eval(Lua—string[, {arguments} [, {options}]])
conn:eval(Lua-string) evaluates and executes the expression in Lua-string, which may be any
statement or series of statements. An execute privilege is required; if the user does not have it,
an administrator may grant it with box.schema.user.grant(username, 'execute', 'universe').

Example:

conn:eval('return 5+5")
conn:eval('return ...", {1,2,3})
conn:eval('return 545, {}, {timeout=0.1})

conn:timeout (timeout)
timeout(...) is a wrapper which sets a timeout for the request that follows it. Since version 1.7.4
this method is deprecated — it is better to pass a timeout value for a method’s {options} parameter.

Example:

’conn:timeout(().;')).space.tester:update({l}, {{'="1, 2, 15}})

Although timeout(...) is deprecated, all remote calls support its use. Using a wrapper object makes
the remote connection API compatible with the local one, removing the need for a separate timeout
argument, which the local version would ignore. Once a request is sent, it cannot be revoked from
the remote server even if a timeout expires: the timeout expiration only aborts the wait for the
remote server response, not the request itself.

Example

This example shows the use of most of the net.box methods.
The sandbox configuration for this example assumes that:
¢ the Tarantool instance is running on localhost 127.0.0.1:3301,

¢ there is a space named tester with a numeric primary key and with a tuple that contains a key value
= 800,

¢ the current user has read, write and execute privileges.

Here are commands for a quick sandbox setup:

box.cfg{listen = 3301}
s = box.schema.space.create(' tester ")
s:create_index('primary', {type — "hash', parts — {1, 'unsigned'}})

5.1. Built-in modules reference 267

Tarantool, Release 1.10.0

t = s:insert({800, "TEST'})
box.schema.user.grant(' guest ', 'read,write,execute', "universe')

And here starts the example:

tarantool > net box = require('net.box")

tarantool > function example()

local conn, wtuple

> if net _box.self:ping() then

> table.insert(ta, 'self:ping() succeeded")

> table.insert(ta, ' (no surprise -- self connection is pre-established)")

V.

> end

> if box.cfg.listen == '3301" then

> table.insert(ta, ' The local server listen address = 3301")
> else

> table.insert(ta, 'The local server listen address is not 3301")
> table.insert(ta, '((maybe box.cfg{...listen="3301"...} was not stated)")
> table.insert(ta, '((so connect will fail)")

> end
> conn = net_ box.connect('127.0.0.1:3301")
> conn.space.tester:delete({800})

> table.insert(ta, 'conn delete done on tester.")
> conn.space.tester:insert({800, "data'})

> table.insert(ta, 'conn insert done on tester, index 0")

> table.insert(ta, ' primary key value = 800.")

> wtuple = conn.space.tester:select({800})

> table.insert(ta, 'conn select done on tester, index 0")

> table.insert(ta, ' number of fields = ' .. #wtuple)

> conn.space.tester:delete({800})

> table.insert(ta, 'conn delete done on tester')

> conn.space.tester:replace({800, 'New data', 'Extra data'})
> table.insert(ta, 'conn:replace done on tester')

> conn.space.tester:update({800}, {{'=", 2, 'Fld#1'}})

> table.insert(ta, 'conn update done on tester')

> conn:close()

> table.insert(ta, 'conn close done")

> end

tarantool > ta = {}

tarantool > example()

tarantool> ta
- - self:ping() succeeded
- ' (no surprise - self connection is pre-established) '
- The local server listen address = 3301
- conn delete done on tester.
- conn insert done on tester, index 0
- ' primary key value = 800."'
- conn select done on tester, index 0
- ' number of fields = 1"
- conn delete done on tester

268 Chapter 5. Reference

Tarantool, Release 1.10.0

- conn:replace done on tester
- conn update done on tester
- conn close done

5.1.19 Module os

Overview

The os module contains the functions execute(), rename(), getenv(), remove(), date(), exit(), time(), clock(),
tmpname(), environ(), setenv(), setlocale(), difftime(). Most of these functions are described in the Lua

manual Chapter 22 The Operating System Library.

Index

Below is a list of all os functions.

Name Use

os.execute() Execute by passing to the shell

os.rename) Rename a file or directory

os.getenv() Get an environment variable

os.remove() Remove a file or directory

os.date() Get a formatted date

os.exit() Exit the program

os.time() Get the number of seconds since the epoch
os.clock() Get the number of CPU seconds since the program start
os.tmpname() | Get the name of a temporary file

os.environ() Get a table with all environment variables
os.setenv() Set an environment variable

os.setlocale() | Change the locale

os.difftime() Get the number of seconds between two times

os.execute(shell-command)
Execute by passing to the shell.

Parameters
* shell-command (string) — what to execute.

Example:

tarantool > os.execute('ls -1 /usr")

total 200

drwxr-xr-x 2 root root 65536 Apr 22 15:49 bin
drwxr-xr-x 59 root root 20480 Apr 18 07:58 include
drwxr-xr-x 210 root root 65536 Apr 18 07:59 lib
drwxr-xr-x 12 root root 4096 Apr 22 15:49 local
drwxr-xr-x 2 root root 12288 Jan 31 09:50 sbin

os.rename(old-name, new-name)
Rename a file or directory.

5.1. Built-in modules reference

269

https://www.lua.org/pil/contents.html#22

Tarantool, Release 1.10.0

Parameters
* old-name (string) — name of existing file or directory,
* new-name (string) — changed name of file or directory.

Example:

tarantool™> os.rename('local ', ' foreign")
- null

- 'local: No such file or directory"'

-2

os.getenv (variable-name)
Get environment variable.

Parameters: (string) variable-name = environment variable name.

Example:

tarantool> os.getenv('PATH")

- /usr/local/sbin: /usr/local /bin: /usr /sbin

os.remove(name)
Remove file or directory.

Parameters: (string) name = name of file or directory which will be removed.

Example:

tarantool os.remove('file")

- true

os.date(format-string [, time-since-epoch])
Return a formatted date.

Parameters: (string) format-string = instructions; (string) time-since-epoch = number of seconds since
1970-01-01. If time-since-epoch is omitted, it is assumed to be the current time.

Example:

tarantool> os.date("%A %B %d")

- Sunday April 24

os.exit()
Exit the program. If this is done on a server instance, then the instance stops.

Example:

tarantool > os.exit()
user@user-shell: ~ /tarantool _sandbox$

os.time()
Return the number of seconds since the epoch.

270 Chapter 5. Reference

Tarantool, Release 1.10.0

Example:

tarantool > os.time()

- 1461516945

os.clock()
Return the number of CPU seconds since the program start.

Example:

tarantool > os.clock()

- 0.05

os.tmpname()
Return a name for a temporary file.

Example:

tarantool> os.tmpname()

- /tmp/lua_7SW1m2

os.environ()
Return a table containing all environment variables.

Example:

tarantool > os.environ()[' TERM ']..os.environ()[' SHELL |

- xterm/bin/bash

os.setenv(variable-name, variable-value)
Set an environment variable.

Example:

tarantool > os.setenv(' VERSION",'99")

os.setlocale([new—locale—string])

Change the locale. If new-locale-string is not specified, return the current locale.

Example:

tarantool> require('string').sub(os.setlocale(),1,20)

-LC_CTYPE=en_ US.UTF-8

os.difftime(timel, time2)
Return the number of seconds between two times.

5.1. Built-in modules reference

271

Tarantool, Release 1.10.0

Example:

tarantool > os.difftime(os.time() - 0)

- 1486594859

5.1.20 Module pickle

Index

Below is a list of all pickle functions.

Name Use
pickle.pack() Convert Lua variables to binary format
pickle.unpack() | Convert Lua variables back from binary format

pickle.pack(format, argument[, argument])
To use Tarantool binary protocol primitives from Lua, it’s necessary to convert Lua variables to binary
format. The pickle.pack() helper function is prototyped after Perl ‘pack’.

Format specifiers

b, converts Lua scalar value to a 1-byte integer, and stores the integer in the resulting string

s, S | converts Lua scalar value to a 2-byte integer, and stores the integer in the resulting string,
low byte first

i, I | converts Lua scalar value to a 4-byte integer, and stores the integer in the resulting string,
low byte first
I, L | converts Lua scalar value to an 8-byte integer, and stores the integer in the resulting string,
low byte first

n converts Lua scalar value to a 2-byte integer, and stores the integer in the resulting string,
big endian,
N converts Lua scalar value to a 4-byte integer, and stores the integer in the resulting string,
big
q, converts Lua scalar value to an 8-byte integer, and stores the integer in the resulting string,
Q big endian,
f converts Lua scalar value to a 4-byte float, and stores the float in the resulting string
d converts Lua scalar value to a 8-byte double, and stores the double in the resulting string
a, converts Lua scalar value to a sequence of bytes, and stores the sequence in the resulting
A string
Parameters

o format (string) — string containing format specifiers

 argument(s) (scalar-value) — scalar values to be formatted
Return a binary string containing all arguments, packed according to the format specifiers.
Rtype string

A scalar value can be either a variable or a literal. Remember that large integers should be entered
with tonumber64() or LL or ULL suffixes.

272 Chapter 5. Reference

http://perldoc.perl.org/functions/pack.html

Tarantool, Release 1.10.0

Possible errors: unknown format specifier.

Example:

tarantool > pickle = require('pickle")

tarantool > box.space.tester:insert{0, 'hello world'}

- [0, "hello world']

tarantool > box.space.tester:update({0}, {{'=", 2, 'bye world'}})

- [0, "bye world "]

tarantool > box.space.tester:update({0}, {
{"=", 2, pickle.pack('iiA", 0, 3, "hello")}

)
:_i(), "\ 0\00\0\x03\0\0\0hello"]
:[.z.irantool‘ - box.space.tester:update({0}, {{'=", 2, 4}})
- 10, 4]
.t.e;r'antool > box.space.tester:update({0}, {{'+ ', 2, 4}})
:_io, 9]
;z.u‘antool - box.space.tester:update({0}, {{"' "', 2, 4}})

-0, 12]

pickle.unpack(format, binary-string)
Counterpart to pickle.pack(). Warning: if format specifier ‘A’ is used, it must be the last item.

Parameters

* format (string) —

* binary-string (string) —
Return A list of strings or numbers.
Rtype table

Example:

tarantool > pickle = require('pickle")

tarantool > tuple = box.space.tester:replace{0}

tarantool > string.len(tuple[1])

-1

tarantool > pickle.unpack('b"', tuple[1])

5.1. Built-in modules reference 273

Tarantool, Release 1.10.0

- 48

tarantool > pickle.unpack('bsi', pickle.pack('bsi', 255, 65535, 4294967295))
- 255

- 65535

- 4294967295

tarantool > num, num64, str — pickle.unpack('slA ', pickle.pack('slA ", 666,
- tonumber64(' 666666666666666"), 'string'))

tarantool > pickle.unpack('ls", pickle.pack('ls"', tonumber64('18446744073709551615"), 65535))

5.1.21 Module socket

Overview

The socket module allows exchanging data via BSD sockets with a local or remote host in connection-oriented
(TCP) or datagram-oriented (UDP) mode. Semantics of the calls in the socket API closely follow semantics
of the corresponding POSIX calls. Function names and signatures are mostly compatible with luasocket.

The functions for setting up and connecting are socket, sysconnect, tcp connect. The functions for sending
data are send, sendto, write, syswrite. The functions for receiving data are recv, recvfrom, read. The
functions for waiting before sending/receiving data are wait, readable, writable. The functions for setting
flags are nonblock, setsockopt. The functions for stopping and disconnecting are shutdown, close. The

functions for error checking are errno, error.

Index

Below is a list of all socket functions.

274

Chapter 5. Reference

https://github.com/diegonehab/luasocket

Tarantool, Release 1.10.0

Name

Use

socket()

Create a socket

socket.tep _connect|()

Connect a socket to a remote host

socket.getaddrinfo()

Get information about a remote site

socket.tep _server()

Make Tarantool act as a TCP server

socket object:sysconnect()

Connect a socket to a remote host

socket _object:send() socket object:write()

Send data over a connected socket

socket object:syswrite()

Write data to the socket buffer if non-blocking

socket object:recv()

Read from a connected socket

socket_object:sysread|()

Read data from the socket buffer if non-blocking

socket _object:bind()

Bind a socket to the given host/port

socket_ object:listen()

Start listening for incoming connections

socket _object:accept()

Accept a client connection + create a connected socket

socket_object:sendto()

Send a message on a UDP socket to a specified host

socket object:recvirom()

Receive a message on a UDP socket

socket_object:shutdown()

Shut down a reading end, a writing end, or both

socket__object:close()

Close a socket

socket _object:error() socket object:errno()

Get information about the last error on a socket

socket object:setsockopt()

Set socket flags

socket _object:getsockopt ()

Get socket flags

socket_object:linger()

Set/clear the SO LINGER flag

socket_object:nonblock()

Set /get the flag value

socket object:readable()

Wait until something is readable

socket_object:writable()

Wait until something is writable

socket object:wait()

Wait until something is either readable or writable

socket object:name()

Get information about the connection’s near side

socket_object:peer()

Get information about the connection’s far side

socket.iowait()

Wait for read/write activity

Typically a socket session will begin with the setup functions, will set one or more flags, will have a loop
with sending and receiving functions, will end with the teardown functions — as an example at the end of
this section will show. Throughout, there may be error-checking and waiting functions for synchronization.
To prevent a fiber containing socket functions from “blocking” other fibers, the implicit yield rules will cause
a yield so that other processes may take over, as is the norm for cooperative multitasking.

For all examples in this section the socket name will be sock and the function invocations will look like

sock:function name(...).

socket. call(domain, type, protocol)

Create a new TCP or UDP socket. The argument values are the same as in the Linux socket(2) man

page.
Return an unconnected socket, or nil.
Rtype userdata

Example:

socket("AF_INET', 'SOCK_STREAM', "tcp')

socket.tcpiconnect(host[, port [, timeout]])
Connect a socket to a remote host.

Parameters

* host (string) — URL or IP address

5.1. Built-in modules reference

275

http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html

Tarantool, Release 1.10.0

* port (number) — port number

* timeout (number) — timeout
Return a connected socket, if no error.
Rtype userdata

Example:

socket.tcp _connect('127.0.0.1", 3301)

socket.getaddrinfo(host, type[, {option-list }])
The socket.getaddrinfo() function is useful for finding information about a remote site so that the cor-
rect arguments for sock:sysconnect() can be passed. This function may use the worker pool threads
configuration parameter.
Return A table containing these fields: “host”, “family”, “type”, “protocol”, “port”.
Rtype table

Example:

tarantool > socket.getaddrinfo(' tarantool.org", "http")

- - host: 188.93.56.70
family: AF_INET
type: SOCK_STREAM
protocol: tcp
port: 80

- host: 188.93.56.70
family: AF_INET
type: SOCK_DGRAM
protocol: udp
port: 80

socket.tcp _server(host, port, handler—function[, timeout])
The socket.tcp _server() function makes Tarantool act as a server that can accept connections. Usually
the same objective is accomplished with box.cfg{listen=. .. }.

Parameters
* host (string) — host name or IP
* port (number) — host port, may be 0
* handler (function/table) — what to execute when a connection occurs
* timeout (number) — number of seconds to wait before timing out

The handler-function parameter may be a function name (for example function 55), a function decla-
ration (for example function () print('!"') end), or a table including handler = function (for example
{handler=function_ 55, name="A"}).

Example:
socket.tecp server('localhost ', 3302, function () end)
object socket object

276 Chapter 5. Reference

Tarantool, Release 1.10.0

socket _object:sysconnect(host, port)
Connect an existing socket to a remote host. The argument values are the same as in
tep__connect(). The host must be an IP address.

Parameters:

* FEither:
— host - a string representation of an IPv4 address or an IPv6 address;
— port - a number.

* Or:
— host - a string containing “unix/”;
— port - a string containing a path to a unix socket.

* Or:
— host - a number, 0 (zero), meaning “all local interfaces”;
— port - a number. If a port number is 0 (zero), the socket will be bound to a random

local port.
Return the socket object value may change if sysconnect() succeeds.

Rtype boolean

Example:

socket = require('socket ")
sock — socket("AF INET' 'SOCK STREAM', "tcp')
sock:sysconnect (0, 3301)

socket _object:send(data)
socket object:write(data)
Send data over a connected socket.

Parameters
* data (string) —
Return the number of bytes sent.
Rtype number
Possible errors: nil on error.

socket object:syswrite(size)
Write as much data as possible to the socket buffer if non-blocking. Rarely used. For details see
this description.

socket_object:recv(size)
Read size bytes from a connected socket. An internal read-ahead buffer is used to reduce the cost
of this call.

Parameters
* size (integer) —
Return a string of the requested length on success.

Rtype string

5.1.

Built-in modules reference 277

https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Release 1.10.0

Possible errors: On error, returns an empty string, followed by status, errno, errstr. In case the
writing side has closed its end, returns the remainder read from the socket (possibly an empty
string), followed by “eof” status.

socket_object:read(limit [, timeout])
(
(
(

socket object:read ({delimiter=delimiter} [7 timeout])

delimiter [, timeout])
{limit=limit}[, timeout |)

socket _object:read

socket _object:read

socket _object:read({limit=limit, delimiter=delimiter} [, timeout])
Read from a connected socket until some condition is true, and return the bytes that were read.
Reading goes on until limit bytes have been read, or a delimiter has been read, or a timeout has
expired.

Parameters

¢ limit (integer) — maximum number of bytes to read, for example 50 means “stop
after 50 bytes”

9y

* delimiter (string) — separator for example ‘?’ means “stop after a question mark”

* timeout (number) — maximum number of seconds to wait for example 50 means
“stop after 50 seconds”.

Return an empty string if there is nothing more to read, or a nil value if error, or a
string up to limit bytes long, which may include the bytes that matched the delimiter
expression.

Rtype string

socket object:sysread (size)
Return data from the socket buffer if non-blocking. In case the socket is blocking, sysread() can
block the calling process. Rarely used. For details, see also this description.

Parameters

* size (integer) — maximum number of bytes to read, for example 50 means “stop
after 50 bytes”

Return an empty string if there is nothing more to read, or a nil value if error, or a string
up to size bytes long.

Rtype string

socket object:bind(host [, port])
Bind a socket to the given host/port. A UDP socket after binding can be used to receive data
(see socket object.recvirom). A TCP socket can be used to accept new connections, after it has
been put in listen mode.

Parameters
* host —
¢ port —
Return a socket object on success
Rtype userdata
Possible errors: Returns nil, status, errno, errstr on error.

socket _object:listen(backlog)
Start listening for incoming connections.

278 Chapter 5. Reference

https://github.com/tarantool/tarantool/wiki/sockets%201.6

Tarantool, Release 1.10.0

Parameters

e backlog - On Linux the listen backlog backlog may be from
/proc/sys/net /core/somaxconn, on BSD the backlog may be SOMAXCONN.

Return true for success, false for error.
Rtype boolean.

socket object:accept()
Accept a new client connection and create a new connected socket. It is good practice to set the
socket’s blocking mode explicitly after accepting.

Return new socket if success.
Rtype userdata
Possible errors: nil.

socket object:sendto(host, port, data)
Send a message on a UDP socket to a specified host.

Parameters
* host (string) —
* port (number) —
* data (string) —
Return the number of bytes sent.
Rtype number
Possible errors: on error, returns status, errno, errstr.

socket_object:recvirom(limit)
Receive a message on a UDP socket.

Parameters
¢ limit (integer) —
Return message, a table containing “host”, “family” and “port” fields.
Rtype string, table
Possible errors: on error, returns status, errno, errstr.
Example:

After message content, message sender = recvirom(1) the value of message content might be
a string containing ‘X’ and the value of message sender might be a table containing

message sender.host = '18.44.0.1"
message sender.family — "AF INET'
message _sender.port — 43065

socket_ object:shutdown(how)
Shutdown a reading end, a writing end, or both ends of a socket.

Parameters
* how — socket.SHUT RD, socket.SHUT WR, or socket.SHUT RDWR.
Return true or false.

Rtype boolean

5.1.

Built-in modules reference 279

Tarantool, Release 1.10.0

socket _object:close()
Close (destroy) a socket. A closed socket should not be used any more. A socket is closed
automatically when its userdata is garbage collected by Lua.

Return true on success, false on error. For example, if sock is already closed, sock:close()
returns false.

Rtype boolean

socket _object:error()

socket_object:errno()
Retrieve information about the last error that occurred on a socket, if any. Errors do not cause
throwing of exceptions so these functions are usually necessary.

Return result for sock:errno(), result for sock:error(). If there is no error, then
sock:errno() will return 0 and sock:error().

Rtype number, string

socket _object:setsockopt(level, name, value)
Set socket flags. The argument values are the same as in the Linux getsockopt(2) man page. The
ones that Tarantool accepts are:

« SO_ACCEPTCONN
« SO_BINDTODEVICE
« SO_BROADCAST

« SO_DEBUG

« SO_DOMAIN

« SO_ERROR

« SO_DONTROUTE

+ SO KEEPALIVE

« SO_MARK

« SO_OOBINLINE

« SO_PASSCRED

« SO_PEERCRED

« SO_PRIORITY

« SO_PROTOCOL

+ SO_RCVBUF

« SO_RCVBUFFORCE
« SO_RCVLOWAT

« SO_SNDLOWAT

« SO_RCVTIMEO

« SO_SNDTIMEO

+ SO_REUSEADDR

+ SO_SNDBUF

« SO_SNDBUFFORCE

280

Chapter 5. Reference

http://man7.org/linux/man-pages/man2/setsockopt.2.html

Tarantool, Release 1.10.0

* SO_TIMESTAMP
« SO_TYPE
Setting SO LINGER is done with sock:linger(active).

socket object:getsockopt(level, name)
Get socket flags. For a list of possible flags see sock:setsockopt().

socket_object:linger([active])
Set or clear the SO LINGER flag. For a description of the flag, see the Linux man page.

Parameters
* active (boolean) —
Return new active and timeout values.
socket _object:nonblock([ﬂag])
* sock:nonblock() returns the current flag value.
* sock:nonblock(false) sets the flag to false and returns false.
¢ sock:nonblock(true) sets the flag to true and returns true.

This function may be useful before invoking a function which might otherwise block indefinitely.

socket _object:readable([timeout])
Wait until something is readable, or until a timeout value expires.

Return true if the socket is now readable, false if timeout expired;

socket object:writable([timeout])
Wait until something is writable, or until a timeout value expires.

Return true if the socket is now writable, false if timeout expired;

socket object:wait([timeout])
Wait until something is either readable or writable, or until a timeout value expires.

Return ‘R’ if the socket is now readable, ‘W’ if the socket is now writable, ‘RW’ if the
socket is now both readable and writable, ¢’ (empty string) if timeout expired;

socket object:name()
The sock:name() function is used to get information about the near side of the connection. If
a socket was bound to xyz.com:45, then sock:name will return information about [host:xyz.com,
port:45]. The equivalent POSIX function is getsockname().

RRENYS

Return A table containing these fields: “host”, “family”, “type”, “protocol”; “port”.
Rtype table

socket object:peer()
The sock:peer() function is used to get information about the far side of a connection. If a TCP
connection has been made to a distant host tarantool.org:80, sock:peer() will return information
about [host:tarantool.org, port:80]. The equivalent POSIX function is getpeername().

YO RNA4 97 L

Return A table containing these fields: “host”, “family”, “type”, “protocol”, “port”.

Rtype table

socket.iowait(fd, read-or-write-flags [, timeout])
The socket.iowait() function is used to wait until read-or-write activity occurs for a file descriptor.

Parameters

5.1. Built-in modules reference 281

http://man7.org/linux/man-pages/man1/loginctl.1.html

Tarantool, Release 1.10.0

* fd — file descriptor
* read-or-write-flags — ‘R’ or 1 = read, ‘W’ or 2 = write, ‘RW’ or 3 = read|write.
* timeout — number of seconds to wait

If the fd parameter is nil, then there will be a sleep until the timeout. If the timeout parameter is nil
or unspecified, then timeout is infinite.

Ordinarily the return value is the activity that occurred (‘R’ or ‘W’ or ‘RW’ or 1 or 2 or 3). If the
timeout period goes by without any reading or writing, the return is an error = ETIMEDOUT.

Example: socket.iowait(sock:fd(), 'r', 1.11)

Examples

Use of a TCP socket over the Internet

In this example a connection is made over the internet between a Tarantool instance and tarantool.org, then
an HTTP “head” message is sent, and a response is received: “HTTP /1.1 200 OK” or something else if the
site has moved. This is not a useful way to communicate with this particular site, but shows that the system
works.

tarantool > socket = require('socket ")

tarantool > sock = socket.tcp connect(' tarantool.org"', 80)

tarantool > type(sock)

- table

tarantool > sock:error()

- null

tarantool> sock:send("HEAD / HTTP/1.0\r\nHost: tarantool.org\r\n\r\n")

- 40

tarantool > sock:read(17)

- HTTP/1.1 302 Move

tarantool > sock:close()

- true

Use of a UDP socket on localhost

Here is an example with datagrams. Set up two connections on 127.0.0.1 (localhost): sock 1 and sock 2.
Using sock 2, send a message to sock 1. Using sock 1, receive a message. Display the received message.
Close both connections. This is not a useful way for a computer to communicate with itself, but shows that
the system works.

282 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool >

tarantool

tarantool

- true

tarantool

tarantool

- true

tarantool

tarantool

-X

tarantool >

- true

tarantool

- true

socket = require('socket ")

- sock 1 = socket('AF INET', 'SOCK_ DGRAM?', "udp")

- sock 1:bind('127.0.0.1")

sock 2 = socket("AF INET', 'SOCK DGRAM', 'udp")

sock 2:sendto('127.0.0.1", sock 1l:name().port,'X")

> message — sock l:recvirom()

~ message

sock 1:close()

- sock_ 2:close()

Use tcp _server to accept file contents sent with socat

Here is an example of the tcp server function, reading strings from the client and printing them. On the
client side, the Linux socat utility will be used to ship a whole file for the tcp server function to read.

Start two shells. The first shell will be a server instance. The second shell will be the client.

On the first shell, start Tarantool and say:

box.cfg{}

socket

require('socket ")

socket.tcp _server('0.0.0.0", 3302, function(s)
while true do
local request
request = siread("\n");

if request ——
break

end

""" or request —= nil then

print(request)

end
end)

The above code means: use tcp server() to wait for a connection from any host on port 3302. When it
happens, enter a loop that reads on the socket and prints what it reads. The “delimiter” for the read function

5.1. Built-in modules reference

283

Tarantool, Release 1.10.0

is “\n” so each read() will read a string as far as the next line feed, including the line feed.

On the second shell, create a file that contains a few lines. The contents don’t matter. Suppose the first line
contains A, the second line contains B, the third line contains C. Call this file “tmp.txt”.

On the second shell, use the socat utility to ship the tmp.txt file to the server instance’s host and port:

$ socat TCP:localhost:3302 ./tmp.txt

Now watch what happens on the first shell. The strings “A”, “B”, “C” are printed.

5.1.22 Module strict

The strict module has functions for turning “strict mode” on or off. When strict mode is on, an attempt to
use an undeclared global variable will cause an error. A global variable is considered “undeclared” if it has
never had a value assigned to it. Often this is an indication of a programming error.

By default strict mode is off, unless tarantool was built with the -DCMAKE BUILD TYPE=Debug option
— see the description of build options in section building-from-source.

Example:

tarantool> strict = require('strict")

tarantool > strict.on()

tarantool> a = b -- strict mode is on so this will cause an error

- error: ... variable ' 'b' "' is not declared'

tarantool > strict.off()

tarantool™> a = b -- strict mode is off so this will not cause an error

5.1.23 Module string

Overview

The string module has everything in the standard Lua string library, and some Tarantool extensions.
In this section we only discuss the additional functions that the Tarantool developers have added.

Below is a list of all additional string functions.

284 Chapter 5. Reference

https://www.lua.org/pil/20.html

Tarantool, Release 1.10.0

Name Use

string.ljust() Left-justify a string

string.rjust() Right-justify a string

string.hex() Get the hexadecimal value of a string
string.startswith() | Check if a string starts with a given substring
string.endswith() Check if a string ends with a given substring
string.Istrip() Remove spaces on the left of a string
string.rstrip() Remove spaces on the right of a string
string.strip() Remove spaces on the left and right of a string

string.ljust (input-string, Width[, pad-character])
Return the string left-justified in a string of length width.

Parameters

* input-string — (string) the string to left-justify

» width — (integer) the width of the string after left-justifying

* pad-character — (string) a single character, default = 1 space
Return left-justified string (unchanged if width <= string length)
Rtype string

Example:

tarantool > string = require('string")

tarantool > string.ljust(' A", 5)

_YAAI

string.rjust(input-string, Width[, pad—character])
Return the string right-justified in a string of length width.

Parameters

* input-string — (string) the string to right-justify

» width — (integer) the width of the string after right-justifying

* pad-character — (string) a single character, default = 1 space
Return right-justified string (unchanged if width <= string length)
Rtype string

Example:

tarantool > string — require('string")

tarantool > string.rjust(' ', 5, 'X")

- PXXXXX!

5.1. Built-in modules reference

285

Tarantool, Release 1.10.0

string.hex(input-string)
Return the hexadecimal value of the input string.

Parameters

* input-string — (string) the string to process
Return hexadecimal, 2 hex-digit characters for each input character
Rtype string

Example:

tarantool > string — require('string")

tarantool > string.hex('ABC ")

- 141424320"

string.startswith(input-string, start—string[, start—pos[7 end—pos]])
Return True if input-string starts with start-string, otherwise return False.

Parameters
* input-string — (string) the string where start-string should be looked for
* start-string — (string) the string to look for
* start-pos — (integer) position: where to start looking within input-string
* end-pos — (integer) position: where to end looking within input-string
Return true or false
Rtype boolean

start-pos and end-pos may be negative, meaning the position should be calculated from the end of the
string.

Example:

tarantool > string — require('string ")

tarantool > string.startswith(' A", "A', 2, 5)

- true

string.endswith(input-string, end—string[, Start—pos[, end—pos]])
Return True if input-string ends with end-string, otherwise return False.

Parameters
* input-string — (string) the string where end-string should be looked for
* end-string — (string) the string to look for
* start-pos — (integer) position: where to start looking within input-string
* end-pos — (integer) position: where to end looking within input-string

Return true or false

286 Chapter 5. Reference

Tarantool, Release 1.10.0

Rtype boolean

start-pos and end-pos may be negative, meaning the position should be calculated from the end of the

string.

Example:

tarantool > string = require('string")

tarantool > string.endswith('Baa', "aa")

- true

string.split (input-string [7 split-string])

Split input-string into one or more output strings in a table. The places to split are the places where

split-string occurs.
Parameters

* input-string — (string) the string to split

* split-string — (string) the string to find within input-string. Default = space.

Return table of strings that were split from input-string
Rtype table

Example:

tarantool > fiber = require('string")

tarantool > string.split("A*BXX C", "XX")
-- A*B
_ Cl

string.Istrip(input-string)
Return the value of the input string, but without spaces on the left.

Parameters

* input-string — (string) the string to process
Return result after stripping spaces from input string
Rtype string

Example:

tarantool > string = require('string")

tarantool > string.lstrip(' ABC ')

- "ABC

string.rstrip(input-string)
Return the value of the input string, but without spaces on the right.

5.1. Built-in modules reference

287

Tarantool, Release 1.10.0

Parameters

* input-string — (string) the string to process
Return result after stripping spaces from input string
Rtype string

Example:

tarantool > string — require('string')

tarantool > string.rstrip(' ABC ')

- ' ABC’

string.strip(input-string)

Return the value of the input string, but without spaces on the left or the right.

Parameters

* input-string — (string) the string to process
Return result after stripping spaces from input string
Rtype string

Example:

tarantool > string = require('string')

tarantool > string.strip(" ABC ")

- ABC

5.1.24 Module table

The table module has everything in the standard Lua table library, and some Tarantool extensions.

You can see this by saying “table”

tarantool > table

- maxn: 'function: builtin#90"
copy: 'function: 0x41e9d300"'
new: 'function: builtin#94"
clear: 'function: builtin#95"
move: 'function: 0x41e918e0"'
foreach: 'function: 0x41e91588"
sort: 'function: builtin#93"
remove: 'function: 0x41e917c8"'
foreachi: 'function: 0x41e914b&"
deepcopy: 'function: 0x41e9d2e0"’
getn: 'function: 0x41e91620"
concat: 'function: builtin#92"'
insert: 'function: builtin#91"'

288

Chapter 5. Reference

https://www.lua.org/pil/19.html

Tarantool, Release 1.10.0

[J

In this section we only discuss the additional function that the Tarantool developers have added: deepcopy.

table.deepcopy (input-table)

Return a “deep” copy of the table — a copy which follows nested structures to any depth and does not

depend on pointers, it copies the contents.
Parameters
* input-table — (table) the table to copy
Return the copy of the table
Rtype table

Example:

tarantool> input_table = {1,{"a','b'}}

tarantool > output_table — table.deepcopy(input_table)

tarantool™> output_ table

-1
--a
-b

5.1.25 Module tap

Overview

The tap module streamlines the testing of other modules. It allows writing of tests in the TAP protocol.
The results from the tests can be parsed by standard TAP-analyzers so they can be passed to utilities such

as prove. Thus one can run tests and then use the results for statistics, decision-making, and so on.

Index

Below is a list of all tap functions.

5.1. Built-in modules reference

289

https://en.wikipedia.org/wiki/Test_Anything_Protocol
https://metacpan.org/pod/distribution/Test-Harness/bin/prove

Tarantool, Release 1.10.0

Name

Use

tap.test()

Initialize

taptest:test()

Create a subtest and print the
results

taptest:plan()

Indicate how many tests to
perform

taptest:check()

Check the number of tests
performed

taptest:diag()

Display a diagnostic message

taptest:ok()

Evaluate the condition and
display the message

taptest:fail()

Evaluate the condition and
display the message

taptest:skip()

Evaluate the condition and
display the message

taptest:is()

Check if the two arguments
are equal

taptest:isnt()

Check if the two arguments
are different

taptest:is _deeply()

Recursively check if the two
arguments are equal

taptest:like()

Check if the argument
matches a pattern

taptest:unlike()

Check if the argument does
not match a pattern

taptest:isnil()
taptest:isboolean() taptest:isudata() taptest:iscdata()

taptest:isstring()

taptest:isnumber()

taptest:istable()

Check if a value has a partic-
ular type

tap.test(test-name)

Initialize.

The result of tap.test is an object, which will be called taptest in the

necessary for taptest:plan() and all the other methods.

Parameters

rest of this discussion, which is

* test-name (string) — an arbitrary name to give for the test outputs.

Return taptest
Rtype userdata

tap = require('tap")
taptest — tap.test('test-name')

object taptest

taptest:test(test-name, func)

Create a subtest (if no func argument specified), or (if all arguments are specified) create a subtest,
run the test function and print the result.

See the example.

Parameters

* name (string) — an arbitrary name to give for the test outputs.

290

Chapter 5. Reference

Tarantool, Release 1.10.0

¢ fun (function) — the test logic to run.
Return taptest
Rtype userdata or string

taptest:plan(count)
Indicate how many tests will be performed.

Parameters
* count (number) —
Return nil

taptest:check()
Checks the number of tests performed. This check should only be done after all planned tests are
complete, so ordinarily taptest:check() will only appear at the end of a script.

Will display # bad plan: ... if the number of completed tests is not equal to the number of tests
specified by taptest:plan(...).

Return true or false.
Rtype boolean

taptest:diag(message)
Display a diagnostic message.

Parameters
* message (string) — the message to be displayed.
Return nil

taptest:ok(condition, test-name)
This is a basic function which is used by other functions. Depending on the value of condition,
print ‘ok’ or ‘not ok’ along with debugging information. Displays the message.

Parameters
¢ condition (boolean) — an expression which is true or false
* test-name (string) — name of the test

Return true or false.

Rtype boolean

Example:

tarantool > taptest:ok(true, 'x")
ok - x

- true

tarantool> tap = require('tap")

tarantool > taptest — tap.test('test-name")
TAP version 13

tarantool > taptest:ok(1 + 1 2, 'X")
ok - X

5.1. Built-in modules reference 291

Tarantool, Release 1.10.0

- true

taptest:fail(test-name)
taptest:fail('x ") is equivalent to taptest:ok(false, 'x'). Displays the message.

Parameters

* test-name (string) — name of the test
Return true or false.
Rtype boolean

taptest:skip(message)
taptest:skip('x") is equivalent to taptest:ok(true, 'x' .. '# skip'). Displays the message.

Parameters
* test-name (string) — name of the test
Return nil

Example:

tarantool > taptest:skip('message")
ok - message # skip

- true

taptest:is(got, expected, test-name)
Check whether the first argument equals the second argument. Displays extensive message if the

result is false.
Parameters
* got (number) — actual result
* expected (number) — expected result
* test-name (string) — name of the test
Return true or false.
Rtype boolean

taptest:isnt(got, expected, test-name)
This is the negation of taptest:is().

Parameters
* got (number) — actual result
* expected (number) — expected result
* test-name (string) — name of the test
Return true or false.
Rtype boolean

taptest:is _deeply(got, expected, test-name)
Recursive version of taptest:is(...), which can be be used to compare tables as well as scalar values.

Return true or false.

292 Chapter 5. Reference

Tarantool, Release 1.10.0

Rtype boolean

Parameters
* got (lua~value) — actual result
* expected (lua-value) — expected result
* test-name (string) — name of the test

taptest:like(got, expected, test-name)
Verify a string against a pattern. Ok if match is found.

Return true or false.

Rtype boolean

Parameters
¢ got (lua~value) — actual result
¢ expected (lua-value) — pattern

* test-name (string) — name of the test

test:like(tarantool.version, ' ~[1-9]', "version")

taptest:unlike(got, expected, test-name)
This is the negation of taptest:like().

Parameters

* got (number) — actual result

* expected (number) — pattern

* test-name (string) — name of the test
Return true or false.
Rtype boolean

taptest:isnil(value, test-name)

taptest:isstring(value, test-name)

taptest:isnumber(value, test-name)

taptest:istable(value, test-name)

taptest:isboolean(value, test-name)

taptest:isudata(value, test-name)

taptest:iscdata(value, test-name)
Test whether a value has a particular type. Displays a long message if the value is not of the
specified type.

Parameters

* value (lua-value) —

* test-name (string) — name of the test
Return true or false.

Rtype boolean

5.1. Built-in modules reference 293

http://lua-users.org/wiki/PatternsTutorial

Tarantool, Release 1.10.0

Example

To run this example: put the script in a file named . /tap.lua, then make tap.lua executable by saying chmod
a+x ./tap.lua, then execute using Tarantool as a script processor by saying ./tap.lua.

#!/usr/bin/tarantool
local tap = require('tap")
test — tap.test("my test name")
test:plan(2)
test:ok(2 * 2 == 4, "2 * 2 s 4")
test:test("some subtests for test2", function(test)
test:plan(2)
test:is(2 + 2,4, "2 + 2 is 4")
test:isnt(2 + 3, 4, "2 + 3 is not 4")
end)
test:check()

The output from the above script will look approximately like this:

TAP version 13
1..2
ok-2%*2is4
Some subtests for test2
1..2
ok -2+ 2is 4,
ok -2+ 3isnot 4
Some subtests for test2: end
ok - some subtests for test2

5.1.26 Module tarantool

By saying require('tarantool'), one can answer some questions about how the tarantool server was built,
such as “what flags were used”, or “what was the version of the compiler”.

Additionally one can see the uptime and the server version and the process id. Those information items can
also be accessed with box.info() but use of the tarantool module is recommended.

Example:

tarantool > tarantool = require('tarantool")

tarantool > tarantool

- build:
target: Linux-x86_ 64-RelWithDeblnfo
options: cmake . -DCMAKE INSTALL PREFIX=/usr -DENABLE BACKTRACE=ON
mod_ format: so
flags: ' -fno-common -fno-omit-frame-pointer -fno-stack-protector -fexceptions
-funwind-tables -fopenmp -msse2 -std=c11 -Wall -Wextra -Wno-sign-compare -Wno-strict-aliasing
-fno-gnu89-inline "’
compiler: /usr/bin/x86 64-linux-gnu-gec /usr/bin/x86 64-linux-gnu-g+-+
uptime: 'function: 0x408668e0’
version: 1.7.0-66-g9093daa
pid: 'function: 0x40866900 "

tarantool> tarantool.pid()

294 Chapter 5. Reference

Tarantool, Release 1.10.0

- 30155

tarantool > tarantool.uptime()

- 108.64641499519

5.1.27 Module uuid

Overview
A “UUID” is a Universally unique identifier. If an application requires that a value be unique only within

a single computer or on a single database, then a simple counter is better than a UUID, because getting a

UUID is time-consuming (it requires a syscall). For clusters of computers, or widely distributed applications,
UUIDs are better.

Index

Below is list of all uuid functions and members.

Name Use

uuid.nil A nil object

uuid() uuid.bin() uuid.str() Get a UUID

uuid.fromstr() uuid.frombin() uuid _object:bin() uuid _object:str() | Get a converted UUID

uuid _object:isnil() Check if a UUID is an all-zero value
uuid.nil

A nil object

uuid. call()

Return a UUID

Rtype cdata
uuid.bin()

Return a UUID

Rtype 16-byte string
uuid.str()

Return a UUID

Rtype 36-byte binary string
uuid.fromstr(uuid _str)

Parameters

* uuid_str — UUID in 36-byte hexadecimal string
Return converted UUID
Rtype cdata

uuid.frombin(uuid _bin)

5.1. Built-in modules reference 295

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Syscall

Tarantool, Release 1.10.0

Parameters

* uuid_str — UUID in 16-byte binary string

Return converted UUID
Rtype cdata
object uuid object

uuid _object:bin([byte—order])
byte-order can be one of next flags:

e ‘I’ - little-endian,

¢ ‘b’ - big-endian,

* ‘h’ - endianness depends on host (default),

* ‘n’ - endianness depends on network

Parameters

* byte-order (string) —one of 'l', 'b', 'h' or 'n".

Return UUID converted from cdata input value.

Rtype 16-byte binary string

uuid _object:str()

Return UUID converted from cdata input value.

Rtype 36-byte hexadecimal string

uuid_object:isnil()

The all-zero UUID value can be expressed as uuid.NULL, or as uuid.fromstr('00000000-0000-
0000-0000-000000000000"). The comparison with an all-zero value can also be expressed as

uuid with type cdata == uuid.NULL.

Return true if the value is all zero, otherwise false.

Rtype bool

Example

tarantool> uuid = require('uuid")

tarantool> uuid(), uuid.bin(), uuid.str()

- 16ffedc8-cbae-4f93-a05e-349f3ab70baa
- IIbinary FvG+Vy1MfUC6klyeM81DYw==
- 67¢999d2-5dce-4e58-bel6-ac1bcb93160f

tarantool > uu = uuid()

tarantool > #uw:bin(), #uwstr(), type(uu), uu:isnil()

- 16

296

Chapter 5. Reference

Tarantool, Release 1.10.0

- 36
- cdata
- false

5.1.28 Module uri
Overview

A “URI” is a “Uniform Resource Identifier”. The [ETF standard says a URI string looks like this:

’ [scheme:]scheme-specific-part[#{ragment]

A common type, a hierarchical URI, looks like this:

’ [scheme:|[//authority|[path]|[?query][#{ragment]

For example the string 'https://tarantool.org/x.html#y' has three components:
¢ https is the scheme,
* tarantool.org/x.html is the path,
¢ y is the fragment.

Tarantool’s URI module provides routines which convert URI strings into their components, or turn compo-
nents into URI strings.

Index

Below is a list of all uri functions.

Name Use
uri.parse() Get a table of URI components
uri.format() | Construct a URI from components

uri.parse(URI-string)
Parameters
e URI-string — a Uniform Resource Identifier

Return URI-components-table. Possible components are fragment, host, login, password,
path, query, scheme, service.

Rtype Table

Example:

tarantool> uri = require('uri")

tarantool > uri.parse(' http://x.html#y ")

- host: x.html
scheme: http

5.1. Built-in modules reference 297

https://www.ietf.org/rfc/rfc2396.txt

Tarantool, Release 1.10.0

fragment: y

uri.format(URI-components-table)
Parameters
e URI-components-table — a series of name:value pairs, one for each component
Return URI-string. Thus uri.format() is the reverse of uri.parse().
Rtype string

Example:

tarantool > uri.format({host = 'x.html", scheme = "http', fragment = 'y'})

- http://x.html#y

5.1.29 Module xlog

The xlog module contains one function: pairs(). It can be used to read Tarantool’s snapshot files or write-
ahead-log (WAL) files. A description of the file format is in section Data persistence and the WAL file
format.

xlog.pairs([ﬁle—name])
Open a file, and allow iterating over one file entry at a time.

Returns iterator which can be used in a for/end loop.

Rtype iterator
Possible errors: File does not contain properly formatted snapshot or write-ahead-log information.
Example:

This will read the first write-ahead-log (WAL) file that was created in the wal dir directory in our
“Getting started” exercises.

Each result from pairs() is formatted with MsgPack so its structure can be specified with _ serialize.

xlog = require('xlog")

—

for k, v in xlog.pairs(' 00000000000000000000.xlog") do
table.insert(t, setmetatable(v, { _ _serialize = "map"}))

end

return t

The first lines of the result will look like:

--{'BODY"': {'space id': 272, 'index base': 1, 'key': ['max_id'],
“tuple': [["+', 2, 1]]},
"HEADER"': {'type': '"UPDATE", 'timestamp': 1477846870.8541,
"Isn': 1, 'server id': 1}}

- {'BODY"': {'space id': 280,
"tuple': [512, 1, "tester', 'memtx"', 0, {}, []]},

298 Chapter 5. Reference

https://www.lua.org/pil/7.1.html

Tarantool, Release 1.10.0

"HEADER"': {'type': "INSERT", '"timestamp': 1477846870.8597,

"Isn': 2, 'server id': 1}}

5.1.30 Module yaml

Overview

The yaml module takes strings in YAMI format and decodes them, or takes a se
and encodes them.

Index

Below is a list of all yaml functions and members.

ries of non-YAML values

Name Use

yaml.encode() | Convert a Lua object to a YAML string

yaml.decode() | Convert a YAML string to a Lua object

yaml.NULL Analog of Lua’s “nil”

yaml.encode(lua_ value)
Convert a Lua object to a YAML string.

Parameters

* lua_value — either a scalar value or a Lua table value.
Return the original value reformatted as a YAML string.
Rtype string

yaml.decode(string)
Convert a YAML string to a Lua object.

Parameters

* string — a string formatted as YAML.
Return the original contents formatted as a Lua table.
Rtype table

yaml. NULL
A value comparable to Lua “nil” which may be useful as a placeholder in a t

Example

uple.

tarantool> yaml = require('yaml")

tarantool> y — yaml.encode({'a', 1, 'b", 2})

tarantool > z = yaml.decode(y)

5.1. Built-in modules reference

299

http://yaml.org/

Tarantool, Release 1.10.0

tarantool > z[1], z[2], z[3], z[4]
-a
-1
-b
-2

tarantool> if yaml.NULL == nil then print('hi") end

hi
The YAML collection style can be specified with __ serialize:
e serialize="sequence" for a Block Sequence array,
e serialize="seq" for a Flow Sequence array,
e serialize="mapping" for a Block Mapping map,
e serialize="map" for a Flow Mapping map.
Serializing ‘A’ and ‘B’ with different _ _ serialize values causes different results:

tarantool> yaml = require('yaml")

tarantool > yaml.encode(setmetatable({' A", 'B'}, { __serialize—"sequence"}))

tarantool> yaml.encode(setmetatable({'A"', 'B'}, { __serialize="seq"}))

tarantool> yaml.encode({setmetatable({fl = "A', 2 = 'B'}, { _ serialize="map"})})

tarantool> yaml.encode({setmetatable({f1 = "A', f2 = 'B'}, { __serialize="mapping"})})

Also, some YAML configuration settings for encoding can be changed, in the same way that they can be
changed for JSON.

300 Chapter 5. Reference

http://yaml.org/spec/1.1/#id930798

Tarantool, Release 1.10.0

5.1.31 Miscellaneous

Index

Below is a list of miscellaneous functions.

Name Use

tonumber64() | Convert a string or a Lua number to a 64-bit integer

dostring() Parse and execute an arbitrary chunk of Lua code
tonumber64(value)

Convert a string or a Lua number to a 64-bit integer. The input value can be expressed in decimal,
binary (for example 0b1010), or hexadecimal (for example -0x{tff). The result can be used in arithmetic,
and the arithmetic will be 64-bit integer arithmetic rather than floating-point arithmetic. (Operations
on an unconverted Lua number use floating-point arithmetic.) The tonumber64() function is added by
Tarantool; the name is global.

Example:

tarantool > type(123456789012345), type(tonumber64(123456789012345))
- number
- number

tarantool> i = tonumber64(' 1000000000 ")

tarantool> type(i),i/2,i-2,1%2,1+2,1% 2,1~ 2
- number

- 500000000

- 999999998

- 2000000000

- 1000000002

-0

- 1000000000000000000

dostring(lua-chunk-string [, lua-chunk-string-argument ...])

Parse and execute an arbitrary chunk of Lua code. This function is mainly useful to define and run
Lua code without having to introduce changes to the global Lua environment.

Parameters
* lua-chunk-string (string) — Lua code

* lua-chunk-string-argument (lua-value) — zero or more scalar values which will be
appended to, or substitute for, items in the Lua chunk.

Return whatever is returned by the Lua code chunk.
Possible errors: If there is a compilation error, it is raised as a Lua error.

Example:

tarantool> dostring('abc")

error: '[string "abc"|:1: ' '="" expected near ''<eof>"'"

5.1.

Built-in modules reference 301

Tarantool, Release 1.10.0

loc
if t

end
retu

- null

tarantool> dostring('return 1")

1

i,.e.lranl‘ool dostring('return ...", "hello", "world")
:_ilello

- world

tarantool > dostring(||
local f = function(key)

al t = box.space.tester:select{key}
~= nil then

return t[1]
else

return nil
end

rn £(...)]], 1)

5.1.32 Database

error codes

In the current version of the binary protocol, error messages, which are normally more descriptive than error
codes, are not present in server responses. The actual message may contain a file name, a detailed reason
or operating system error code. All such messages, however, are logged in the error log. Below are general
descriptions of some popular codes. A complete list of errors can be found in file errcode.h in the source

tree.

List of error codes

ER NONMASTH

RIn replication) A server instance cannot modify data unless it is a master.

ER_ILLEGAL [

AlRdedlparameters. Malformed protocol message.

ER_MEMORY _|

SOt of memory: memtx memory limit has been reached.

ER_WAL 10

Failed to write to disk. May mean: failed to record a change in the write-ahead log.
Some sort of disk error.

ER_KEY PART

- KOQUNIE count is not the same as index part count

ER_NO SUCH |

SPACHpecified space does not exist.

ER_NO_SUCH |

INbESpecified index in the specified space does not exist.

ER_PROC LUA

An error occurred inside a Lua procedure.

ER_FIBER_STA

CRhe recursion limit was reached when creating a new fiber. This usually indicates
that a stored procedure is recursively invoking itself too often.

ER_UPDATE_F

[ENiDerror occurred during update of a field.

ER_TUPLE_FO

UNIduplicate key exists in a unique index.

5.1.33 Handling

eIrors

Here are some procedures that can make Lua functions more robust when there are errors, particularly

database errors.

1. Invoke with p

call.

302

Chapter 5. Reference

https://github.com/tarantool/tarantool/blob/1.9/src/box/errcode.h

Tarantool, Release 1.10.0

Take advantage of Lua’s mechanisms for “Error handling and exceptions”, particularly pcall. That is,
instead of simply invoking with

box.space.space-name:function-name()

say

if pcall(box.space.space-name.function-name, box.space.space-name) ...

For some Tarantool box functions, pcall also returns error details including a file-name and
line-number within Tarantool’s source code. This can be seen by unpacking. For example:

x, y = pcall(function() box.schema.space.create(' ") end)
y:unpack()

See the tutorial Sum a JSON field for all tuples to see how pcall can fit in an application.
2. Examine and raise with box.error.

To make a new error and pass it on, the box.error module provides box.error(code, errtext [, errtext

To find the last error, the box.error module provides box.error.last(). (There is also a way to find the
text of the last operating-system error for certain functions — errno.strerror([code]).)

3. Log.
Put messages in a log using the log module.
And filter messages that are automatically generated, with the log configuration parameter.

Generally, for Tarantool built-in functions which are designed to return objects: the result will be an object,
or nil, or a Lua error. For example consider the fio read.lua program in our cookbook:

#!/usr/bin/env tarantool

local fio = require('fio")
local errno = require('errno")
local f = fio.open(' /tmp/xxxx.txt', {"O_ _RDONLY" })
if not f then

error("Failed to open file:
end
local data = firead(4096)
f:close()
print(data)

"..errno.strerror())

After a function call that might fail, like fio.open() above, it is common to see syntax like if not f then ...
or if f == nil then ..., which check for common failures. But if there had been a syntax error, for example
fio.opex instead of fio.open, then there would have been a Lua error and f would not have been changed. If
checking for such an obvious error had been a concern, the programmer would probably have used pcall().

All functions in Tarantool modules should work this way, unless the manual explicitly says otherwise.

5.1.34 Debug facilities

Overview

Tarantool users can benefit from built-in debug facilities that are part of:

* Lua (debug library, see details below) and

5.1. Built-in modules reference 303

http://www.lua.org/pil/8.4.html
https://www.lua.org/pil/8.3.html
https://www.lua.org/manual/5.1/manual.html#5.9

Tarantool, Release 1.10.0

* LualJit (debug.* functions).

The debug library provides an interface for debugging Lua programs. All functions in this library reside in
the debug table. Those functions that operate on a thread have an optional first parameter that specifies
the thread to operate on. The default is always the current thread.

Note: This library should be used only for debugging and profiling and not as a regular programming tool,
as the functions provided here can take too long to run. Besides, several of these functions can compromise
otherwise secure code.

Index

Below is a list of all debug functions.

Name Use

debug.debug() Enter an interactive mode
debug.getfenv() Get an object’s environment
debug.gethook() Get a thread’s current hook settings
debug.getinfo() Get information about a function
debug.getlocal() Get a local variable’s name and value

debug.getmetatable() | Get an object’s metatable
debug.getregistry() Get the registry table

debug.getupvalue() Get an upvalue’s name and value
debug.setfenv() Set an object’s environment
debug.sethook() Set a given function as a hook
debug.setlocal() Assign a value to a local variable
debug.setmetatable() | Set an object’s metatable
debug.setupvalue() Assign a value to an upvalue
debug.traceback() Get a traceback of the call stack

debug.debug()
Enters an interactive mode and runs each string that the user types in. The user can, among other
things, inspect global and local variables, change their values and evaluate expressions.

Enter cont to exit this function, so that the caller can continue its execution.

Note: Commands for debug.debug() are not lexically nested within any function and so have no direct
access to local variables.

debug.getfenv(object)
Parameters
* object — object to get the environment of
Return the environment of the object
debug.gethook([thread])
Return the current hook settings of the thread as three values:
* the current hook function

¢ the current hook mask

304 Chapter 5. Reference

http://luajit.org/extensions.html

Tarantool, Release 1.10.0

* the current hook count as set by the debug.sethook() function

debug.getinfo([thread] , function [, what])
Parameters
* function — function to get information on
* what (string) — what information on the function to return
Return a table with information about the function

You can pass in a function directly, or you can give a number that specifies a function running at level
function of the call stack of the given thread: level 0 is the current function (getinfo() itself), level 1 is
the function that called getinfo(), and so on. If function is a number larger than the number of active
functions, getinfo() returns nil.

The default for what is to get all information available, except the table of valid lines. If present, the
option f adds a field named func with the function itself. If present, the option L adds a field named
activelines with the table of valid lines.

debug.getlocal([thread] , level, local)
Parameters
¢ level (number) — level of the stack
* local (number) — index of the local variable

Return the name and the value of the local variable with the index local of the function at
level level of the stack or nil if there is no local variable with the given index; raises an
error if level is out of range

Note: You can call debug.getinfo() to check whether the level is valid.

debug.getmetatable(object)
Parameters
* object — object to get the metatable of
Return a metatable of the object or nil if it does not have a metatable
debug.getregistry ()
Return the registry table
debug.getupvalue(func, up)
Parameters
* func (function) — function to get the upvalue of
* up (number) — index of the function upvalue

Return the name and the value of the upvalue with the index up of the function func or nil
if there is no upvalue with the given index

debug.setfenv(object, table)
Sets the environment of the object to the table.

Parameters
* object — object to change the environment of

* table (table) — table to set the object environment to

5.1. Built-in modules reference 305

Tarantool, Release 1.10.0

Return the object

debug.sethook([thread], hook, mausk[7 count])
Sets the given function as a hook. When called without arguments, turns the hook off.

Parameters
* hook (function) — function to set as a hook
* mask (string) — describes when the hook will be called; may have the following values:
— ¢ - the hook is called every time Lua calls a function
— 1 - the hook is called every time Lua returns from a function
— 1 - the hook is called every time Lua enters a new line of code

* count (number) — describes when the hook will be called; when different from zero,
the hook is called after every count instructions.

debug.setlocal([thread], level, local, value)
Assigns the value value to the local variable with the index local of the function at level level of the
stack.

Parameters
¢ level (number) — level of the stack
* local (number) — index of the local variable
* value — value to assign to the local variable

Return the name of the local variable or nil if there is no local variable with the given index;
raises an error if level is out of range

Note: You can call debug.getinfo() to check whether the level is valid.

debug.setmetatable(object, table)
Sets the metatable of the object to the table.

Parameters
* object — object to change the metatable of
* table (table) — table to set the object metatable to

debug.setupvalue(func, up, value)
Assigns the value value to the upvalue with the index up of the function func.

Parameters
¢ func (function) — function to set the upvalue of
* up (number) — index of the function upvalue
* value — value to assign to the function upvalue
Return the name of the upvalue or nil if there is no upvalue with the given index
debug.traceback([thread] , [message] [, level])
Parameters
* message (string) — an optional message prepended to the traceback

¢ level (number) — specifies at which level to start the traceback (default is 1)

306 Chapter 5. Reference

Tarantool, Release 1.10.0

Return a string with a traceback of the call stack

5.2 Rocks reference

This reference covers third-party Lua modules for Tarantool.

5.2.1 SQL DBMS Modules

The discussion here in the reference is about incorporating and using two modules that have already been
created: the “SQL DBMS rocks” for MySQL and PostgreSQL.

To call another DBMS from Tarantool, the essential requirements are: another DBMS, and Tarantool. The
module which connects Tarantool to another DBMS may be called a “connector”. Within the module there
is a shared library which may be called a “driver”.

Tarantool supplies DBMS connector modules with the module manager for Lua, LuaRocks. So the connector
modules may be called “rocks”.

The Tarantool rocks allow for connecting to SQL servers and executing SQL statements the same way that
a MySQL or PostgreSQL client does. The SQL statements are visible as Lua methods. Thus Tarantool
can serve as a “MySQL Lua Connector” or “PostgreSQL Lua Connector”, which would be useful even if
that was all Tarantool could do. But of course Tarantool is also a DBMS, so the module also is useful for
any operations, such as database copying and accelerating, which work best when the application can work
on both SQL and Tarantool inside the same Lua routine. The methods for connect/select/insert/etc. are
similar to the ones in the net.box module.

From a user’s point of view the MySQL and PostgreSQL rocks are very similar, so the following sections —
“MySQL Example” and “PostgreSQL Example” — contain some redundancy.

MySQL Example

This example assumes that MySQL 5.5 or MySQL 5.6 or MySQL 5.7 has been installed. Recent MariaDB
versions will also work, the MariaDB C connector is used. The package that matters most is the MySQL
client developer package, typically named something like libmysqlclient-dev. The file that matters most from
this package is libmysqlclient.so or a similar name. One can use find or whereis to see what directories these
files are installed in.

It will be necessary to install Tarantool’s MySQL driver shared library, load it, and use it to connect to a
MySQL server instance. After that, one can pass any MySQL statement to the server instance and receive
results, including multiple result sets.

Installation

Check the instructions for downloading and installing a binary package that apply for the environment where
Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on Ubuntu,
add the line:

$ sudo apt-get install tarantool-dev

Now, for the MySQL driver shared library, there are two ways to install:

5.2. Rocks reference 307

http://tarantool.org/download.html

Tarantool, Release 1.10.0

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the in-
structions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

luarocks install mysql [MYSQL _LIBDIR = path]
[MYSQL INCDIR = path]|
[--local]

For example:

$ luarocks install mysql MYSQL LIBDIR=/usr/local/mysql/lib

With GitHub

Go the site github.com /tarantool /mysql. Follow the instructions there, saying:

$ git clone https://github.com/tarantool /mysql.git

$ c¢d mysql && cmake . -DCMAKE BUILD TYPE—RelWithDeblnfo
$ make

$ make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the mysql driver. We will assume that the name is mysql in further
examples.

mysql = require('mysql")

Now, say:
connection name = mysql.connect(connection options)
The connection-options parameter is a table. Possible options are:
¢ host = host-name - string, default value = ‘localhost’
¢ port = port-number - number, default value = 3306
e user = user-name - string, default value is operating-system user name
¢ password = password - string, default value is blank
¢ db = database-name - string, default value is blank
* raise = truelfalse - boolean, default value is false

The option names, except for raise, are similar to the names that MySQL’s mysql client uses, for details see
the MySQL manual at dev.mysgl.com/doc/refman/5.6/en/connecting.html. The raise option should be set
to true if errors should be raised when encountered. To connect with a Unix socket rather than with TCP,
specify host = 'unix/' and port = socket-name.

Example, using a table literal enclosed in {braces}:

308 Chapter 5. Reference

http://rocks.tarantool.org/
https://github.com/tarantool/mysql
https://dev.mysql.com/doc/refman/5.6/en/connecting.html

Tarantool, Release 1.10.0

conn = mysql.connect({
host — '127.0.0.1",

port — 3306,
user = 'p',
password — 'p',
db = "test',
raise — true
)
- OR
conn — mysql.connect({
host = "unix/"',
port = ' /var/run/mysqld /mysqld.sock'
)
Example, creating a function which sets each option in a separate line:
tarantool> -- Connection function. Usage: conn = mysql connect|()
tarantool> function mysql connection()
local p = {}
p-host = "widgets.com
p.db = "test'

conn = mysql.connect(p)
return conn
- end

tarantool> conn — mysql connect()

We will assume that the name is ‘conn’ in further examples.

How to ping

To ensure that a connection is working, the request is:
connection-name:ping()

Example:

tarantool > conn:ping()

- true

Executing a statement

For all MySQL statements, the request is:
connection-name:execute(sql-statement [, parameters|)

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks (“?”s) in the SQL statement.

Example:

5.2. Rocks reference 309

Tarantool, Release 1.10.0

tarantool> conn:execute('select table name from information schema.tables')

- - table_name: ALL_PLUGINS
- table_name: APPLICABLE ROLES
- table_name: CHARACTER _SETS
<..>

- 78

Closing connection

To end a session that began with mysql.connect, the request is:
connection-name:close()

Example:

tarantool > conn:close()

For further information, including examples of rarely-used requests, see the README.md file at
github.com /tarantool /mysql.

Example

The example was run on an Ubuntu 12.04 (“precise”) machine where tarantool had been installed in a /usr
subdirectory, and a copy of MySQL had been installed on ~/mysql-5.5. The mysqld server instance is already
running on the local host 127.0.0.1.

$ export TMDIR—"/mysql-5.5

$ # Check that the include subdirectory exists by looking

$ # for .../include/mysql.h. (If this fails, there 's a chance

$ # that it 's in .../include/mysql/mysql.h instead.)

$ [-f $TMDIR/include/mysql.h | && echo "OK" || echo "Error"
OK

$ # Check that the library subdirectory exists and has the

$ # necessary .so file.

$ [-f $TMDIR /lib/libmysqlclient.so | && echo "OK" || echo "Error"
OK

$ # Check that the mysql client can connect using some factory

$ # defaults: port — 3306, user = 'root ', user password — ',

$ # database = 'test '. These can be changed, provided one uses

$ # the changed values in all places.

$ $TMDIR /bin/mysql --port—3306 -h 127.0.0.1 --user—root \
--password= --database=test

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25

Server version: 5.5.35 MySQL Community Server (GPL)

Type 'help;' or '"\h' for help. Type '\c' to clear ...

$ # Insert a row in database test, and quit.

310 Chapter 5. Reference

https://github.com/tarantool/mysql

Tarantool, Release 1.10.0

mysql> CREATE TABLE IF NOT EXISTS test (sl INT, s2 VARCHAR(50)):
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO test.test VALUES (1,' MySQL row"');

Query OK, 1 row affected (0.02 sec)

mysql> QUIT

Bye

$ # Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting up|already"”
Setting up luarocks (2.0.8-2) ...

$ # Set up the Tarantool rock list in ~/.luarocks,

$ # following instructions at rocks.tarantool.org

$ mkdir ~/.luarocks

$ echo "rocks_servers = {[[http://rocks.tarantool.org/[[}" >> \
= /.luarocks/config.lua

$ # Ensure that the next "install" will get files from Tarantool

$ # master repository. The resultant display is normal for Ubuntu
$ # 12.04 precise

$ cat /etc/apt/sources.list.d/tarantool.list

deb http://tarantool.org/dist/1.7/ubuntu/ precise main

deb-src http://tarantool.org/dist /1.7 /ubuntu/ precise main

$ # Install tarantool-dev. The displayed line should show version = 1.6
$ sudo apt-get -y install tarantool-dev | grep -E "Setting upl|already"
Setting up tarantool-dev (1.6.6.222.g48b98bb ~precise-1) ...

$

$ # Use luarocks to install locally, that is, relative to SHOME

$ luarocks install mysql MYSQL LIBDIR=/usr/local/mysql/lib --local
Installing http://rocks.tarantool.org/mysql-scm-1.rockspec...

.. (more info about building the Tarantool/MySQL driver appears here)
mysql scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at

$ find 7 /.luarocks -name "driver.so"

= /luarocks/lib/lua/5.1/mysql/driver.so

$ # Change directory to a directory which can be used for

$ # temporary tests. For this example we assume that the name
$ # of this directory is /home/pgulutzan/tarantool sandbox.

$ # (Change " /home/pgulutzan" to whatever is the user 's actual
$ # home directory for the machine that 's used for this test.)

$ cd /home/pgulutzan/tarantool sandbox

$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool

tarantool: version 1.7.0-222-g48b98bb
type "help' for interactive help
tarantool >

Configure tarantool and load mysql module. Make sure that tarantool doesn’t reply “error” for the call to

“require()”.

5.2. Rocks reference

311

Tarantool, Release 1.10.0

tarantool > box.cfg{}

tarantool > mysql = require(' mysql")

Create a Lua function that will connect to the MySQL server instance, (using some factory default values for
the port and user and password), retrieve one row, and display the row. For explanations of the statement
types used here, read the Lua tutorial earlier in the Tarantool user manual.

tarantool > function mysql select ()
local conn = mysql.connect({
host = "127.0.0.1",

port = 3306,
user — 'root',
db = "test'
b |
local test = conn:execute('SELECT * FROM test WHERE sl = 1)

local row = "'
for i, card in pairs(test) do
row — row .. card.s2 .. ' '
end
conn:close()
return row
- end

tarantool > mysql _select()

- "MySQL row '

Observe the result. It contains “MySQL row”. So this is the row that was inserted into the MySQL database.
And now it’s been selected with the Tarantool client.

PostgreSQL Example

This example assumes that PostgreSQL 8 or PostgreSQL 9 has been installed. More recent versions should
also work. The package that matters most is the PostgreSQL developer package, typically named something
like libpg-dev. On Ubuntu this can be installed with:

$ sudo apt-get install libpg-dev

However, because not all platforms are alike, for this example the assumption is that the user must check
that the appropriate PostgreSQL files are present and must explicitly state where they are when building
the Tarantool/PostgreSQL driver. One can use find or whereis to see what directories PostgreSQL files are
installed in.

It will be necessary to install Tarantool’s PostgreSQL driver shared library, load it, and use it to connect to
a PostgreSQL server instance. After that, one can pass any PostgreSQL statement to the server instance
and receive results.

312 Chapter 5. Reference

Tarantool, Release 1.10.0

Installation

Check the instructions for downloading and installing a binary package that apply for the environment where
Tarantool was installed. In addition to installing tarantool, install tarantool-dev. For example, on Ubuntu,
add the line:

$ sudo apt-get install tarantool-dev

Now, for the PostgreSQL driver shared library, there are two ways to install:

With LuaRocks

Begin by installing luarocks and making sure that tarantool is among the upstream servers, as in the in-
structions on rocks.tarantool.org, the Tarantool luarocks page. Now execute this:

luarocks install pg [POSTGRESQL LIBDIR = path]
[POSTGRESQL _INCDIR = path]|
[--local]

For example:

$ luarocks install pg POSTGRESQL LIBDIR=/usr/local/postgresql/lib

With GitHub

Go the site github.com /tarantool /pg. Follow the instructions there, saying:

$ git clone https://github.com/tarantool/pg.git

$ cd pg && cmake . -DCMAKE BUILD TYPE—=RelWithDebInfo
$ make

$ make install

At this point it is a good idea to check that the installation produced a file named driver.so, and to check
that this file is on a directory that is searched by the require request.

Connecting

Begin by making a require request for the pg driver. We will assume that the name is pg in further examples.

pg = require('pg")

Now, say:
connection name = pg.connect(connection options)
The connection-options parameter is a table. Possible options are:
¢ host = host-name - string, default value = ‘localhost’
¢ port = port-number - number, default value = 5432
e user = user-name - string, default value is operating-system user name
¢ pass = password or password = password - string, default value is blank

¢ db = database-name - string, default value is blank

5.2. Rocks reference 313

http://tarantool.org/download.html
http://rocks.tarantool.org/
https://github.com/tarantool/pg

Tarantool, Release 1.10.0

The names are similar to the names that PostgreSQL itself uses.

Example, using a table literal enclosed in {braces}:

conn = pg.connect({
host — '127.0.0.1",

port = 5432,
user = 'p',
password = 'p',
db = "test'

)

Example, creating a function which sets each option in a separate line:

tarantool > function pg_connect()
local p = {}

p-host = "widgets.com'
p.db = 'test’

p.user — 'postgres'
p-password = 'postgres'

local conn = pg.connect(p)
return conn
- end

tarantool > conn = pg_connect()

We will assume that the name is ‘conn’ in further examples.

How to ping

To ensure that a connection is working, the request is:
connection-name:ping|()

Example:

tarantool > conn:ping()

- true

Executing a statement

For all PostgreSQL statements, the request is:
connection-name:execute(sql-statement [, parameters|)

where sql-statement is a string, and the optional parameters are extra values that can be plugged in to
replace any question marks (“?”s) in the SQL statement.

Example:

tarantool> conn:execute('select tablename from pg tables')

314 Chapter 5. Reference

Tarantool, Release 1.10.0

- - tablename: pg_ statistic
- tablename: pg_type
- tablename: pg authid
<...>

Closing connection

To end a session that began with pg.connect, the request is:
connection-name:close()

Example:

tarantool > conn:close()

For further information, including examples of rarely-used requests, see the README.md file at
github.com /tarantool /pg.

Example

The example was run on an Ubuntu 12.04 (“precise”) machine where tarantool had been installed in a /usr
subdirectory, and a copy of PostgreSQL had been installed on /usr. The PostgreSQL server instance is
already running on the local host 127.0.0.1.

$ # Check that the include subdirectory exists

$ # by looking for /usr/include/postgresql/libpg-fe-h.

$ [-f /usr/include/postgresql/libpg-fe.h | && echo "OK" || echo "Error"
OK

$ # Check that the library subdirectory exists and has the necessary .so file.
$ [-f /usr/lib/x86 64-linux-gnu/libpg.so | && echo "OK" || echo "Error"
OK

$ # Check that the psql client can connect using some factory defaults:

$ # port = 5432, user = 'postgres ', user password = 'postgres ',

$ # database = 'postgres'. These can be changed, provided one changes
$ # them in all places. Insert a row in database postgres, and quit.

$ psql -h 127.0.0.1 -p 5432 -U postgres -d postgres

Password for user postgres:

psqal (9.3.10)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

postgres=# CREATE TABLE test (sl INT, s2 VARCHAR(50));
CREATE TABLE

postgres=# INSERT INTO test VALUES (1, ' PostgreSQL row");
INSERT 0 1

postgres=+# \q

$

$ 4 Install luarocks
$ sudo apt-get -y install luarocks | grep -E "Setting up|already"”

5.2. Rocks reference 315

https://github.com/tarantool/pg

Tarantool, Release 1.10.0

Setting up luarocks (2.0.8-2) ...

Set up the Tarantool rock list in ~/.luarocks,

following instructions at rocks.tarantool.org

mkdir ~/.luarocks

$ echo "rocks_servers = {[[http://rocks.tarantool.org/[[}" >> \
~/luarocks/config.lua

$
$
$

$ # Ensure that the next "install" will get files from Tarantool master

$ # repository. The resultant display is normal for Ubuntu 12.04 precise
$ cat /etc/apt/sources.list.d/tarantool.list

deb http://tarantool.org/dist /1.7 /ubuntu/ precise main

deb-src http://tarantool.org/dist/1.7/ubuntu/ precise main

$ # Install tarantool-dev. The displayed line should show version = 1.7
$ sudo apt-get -y install tarantool-dev | grep -E "Setting upl|already"
Setting up tarantool-dev (1.7.0.222.g48b98bb ™ precise-1) ...

$

$ # Use luarocks to install locally, that is, relative to SHOME

$ luarocks install pg POSTGRESQL LIBDIR=/usr/lib/x86 64-linux-gnu --local
Installing http://rocks.tarantool.org/pg-scm-1.rockspec...

.. (more info about building the Tarantool/PostgreSQL driver appears here)

pg scm-1 is now built and installed in ~/.luarocks/

$ # Ensure driver.so now has been created in a place
$ # tarantool will look at

$ find 7 /.luarocks -name "driver.so"

= /luarocks/lib/lua/5.1/pg/driver.so

$ # Change directory to a directory which can be used for

$ # temporary tests. For this example we assume that the

$ # name of this directory is SHOME /tarantool sandbox.

$ # (Change "$HOME" to whatever is the user 's actual

$ # home directory for the machine that 's used for this test.)

cd $HOME /tarantool sandbox
$ # Start the Tarantool server instance. Do not use a Lua initialization file.

$ tarantool

tarantool: version 1.7.0-412-g803b15c¢c
type "help' for interactive help
tarantool >

Configure tarantool and load pg module. Make sure that tarantool doesn’t reply “error” for the call to
“require()”.

tarantool > box.cfg{}

tarantool> pg = require('pg")

Create a Lua function that will connect to a PostgreSQL server, (using some factory default values for the
port and user and password), retrieve one row, and display the row. For explanations of the statement types
used here, read the Lua tutorial earlier in the Tarantool user manual.

316 Chapter 5. Reference

Tarantool, Release 1.10.0

tarantool > function pg_select ()
local conn — pg.connect({
host — "127.0.0.1",
port = 5432,
user 'postgres ',
password — 'postgres',
db = "postgres’
)
local test = conn:execute(' SELECT * FROM test WHERE s1 = 1)
local row = "'
for i, card in pairs(test) do
row — row .. card.s2 .. ' '
end
conn:close()
return row
- end

tarantool > pg_select()

- 'PostgreSQL row '

Observe the result. It contains “PostgreSQL row”. So this is the row that was inserted into the PostgreSQL
database. And now it’s been selected with the Tarantool client.

5.2.2 Module expirationd

For a commercial-grade example of a Lua rock that works with Tarantool, let us look at expirationd, which
Tarantool supplies on GitHub with an Artistic license. The expirationd.lua program is lengthy (about 500
lines), so here we will only highlight the matters that will be enhanced by studying the full source later.

task.worker fiber — fiber.create(worker loop, task)
log.info("expiration: task %q restarted", task.name)

fiber.sleep(expirationd.constants.check _interval)

Whenever one hears “daemon” in Tarantool, one should suspect it’s being done with a fiber. The program
is making a fiber and turning control over to it so it runs occasionally, goes to sleep, then comes back for
more.

for _, tuple in scan _space.index|[0]:pairs(nil, {iterator = box.index.ALL}) do

if task.is_tuple expired(task.args, tuple) then
task.expired tuples count — task.expired tuples count | 1
task.process _expired tuple(task.space id, task.args, tuple)

The “for” instruction can be translated as “iterate through the index of the space that is being scanned”,
and within it, if the tuple is “expired” (for example, if the tuple has a timestamp field which is less than the
current time), process the tuple as an expired tuple.

-- default process expired tuple function
local function default tuple drop(space_id, args, tuple)
local key = fun.map(

5.2. Rocks reference 317

https://github.com/tarantool/expirationd/blob/master/expirationd.lua

Tarantool, Release 1.10.0

function(x) return tuple[x.fieldno| end,
box.space[space _id].index[0].parts
):totable()
box.space[space _id]:delete(key)
end

Ultimately the tuple-expiry process leads to default tuple drop() which does a “delete” of a tuple from
its original space. First the fun fun module is used, specifically fun.map. Remembering that index|0] is
always the space’s primary key, and index|0].parts|N].fieldno is always the field number for key part N,
fun.map() is creating a table from the primary-key values of the tuple. The result of fun.map() is passed to
space _object:delete().

local function expirationd run_task(name, space_id, is_tuple expired, options)

At this point, if the above explanation is worthwhile, it’s clear that expirationd.lua starts a background
routine (fiber) which iterates through all the tuples in a space, sleeps cooperatively so that other fibers can
operate at the same time, and - whenever it finds a tuple that has expired - deletes it from this space. Now
the “expirationd run_ task()” function can be used in a test which creates sample data, lets the daemon run
for a while, and prints results.

For those who like to see things run, here are the exact steps to get expirationd through the test.

1. Get expirationd.lua. There are standard ways - it is after all part of a standard rock - but for this
purpose just copy the contents of expirationd.lua to a default directory.

2. Start the Tarantool server as described before.

3. Execute these requests:

fiber — require('fiber")
expd = require('expirationd ")
box.cfg{}
e = box.schema.space.create(' expirationd test")
e:create _index('primary', {type = 'hash', parts = {1, "unsigned'}})
exreplace{1, fiber.time() + 3}
exreplace{2, fiber.time() + 30}
function is_tuple expired(args, tuple)
if (tuple[2] < fiber.time()) then return true end
return false

end
expd.run_task('expirationd test', e.id, is_tuple expired)
retval = {}

fiber.sleep(2)

expd.task stats()

fiber.sleep(2)

expd.task _stats()

expd.kill task('expirationd test')
e:drop()

os.exit()

The database-specific requests (cfg, space.create, create index) should already be familiar.

The function which will be supplied to expirationd is is_tuple expired, which is saying “if the second field
of the tuple is less than the current time , then return true, otherwise return false”.

The key for getting the rock rolling is expd = require(' expirationd'). The “require” function is what reads
in the program; it will appear in many later examples in this manual, when it’s necessary to get a module

318 Chapter 5. Reference

http://rtsisyk.github.io/luafun/transformations.html#fun.map
https://luarocks.org/modules/rtsisyk/expirationd
https://github.com/tarantool/expirationd/blob/master/expirationd.lua

Tarantool, Release 1.10.0

that’s not part of the Tarantool kernel. After the Lua variable expd has been assigned the value of the
expirationd module, it’s possible to invoke the module’s run_task() function.

After sleeping for two seconds, when the task has had time to do its iterations through the spaces, expd.
task stats() will print out a report showing how many tuples have expired — “expired count: 0”. After
sleeping for two more seconds, expd.task stats() will print out a report showing how many tuples have
expired — “expired count: 1”. This shows that the is_tuple expired() function eventually returned “true”
for one of the tuples, because its timestamp field was more than three seconds old.

Of course, expirationd can be customized to do different things by passing different parameters, which will
be evident after looking in more detail at the source code.

5.2.3 Module shard

With sharding, the tuples of a tuple set are distributed to multiple nodes, with a Tarantool database server
instance on each node. With this arrangement, each instance is handling only a subset of the total data, so
larger loads can be handled by simply adding more computers to a network.

The Tarantool shard module has facilities for creating shards, as well as analogues for the data-manipulation
functions of the box library (select, insert, replace, update, delete).

First some terminology:

Consistent hash The shard module distributes according to a hash algorithm, that is, it applies a hash
function to a tuple’s primary-key value in order to decide which shard the tuple belongs to. The hash
function is consistent so that changing the number of servers will not affect results for many keys. The
specific hash function that the shard module uses is digest.guava in the digest module.

Instance A currently-running in-memory copy of the Tarantool server, sometimes called a “server instance”.
Usually each shard is associated with one instance, or, if both sharding and replicating are going on,
each shard is associated with one replica set.

Queue A temporary list of recent update requests. Sometimes called “batching”. Since updates to a sharded
database can be slow, it may speed up throughput to send requests to a queue rather than wait for
the update to finish on every node. The shard module has functions for adding requests to the queue,
which it will process without further intervention. Queuing is optional.

Redundancy The number of replicated data copies in each shard.
Replica An instance which is part of a replica set.

Replica set Often a single shard is associated with a single instance; however, often the shard is replicated.
When a shard is replicated, the multiple instances (“replicas”), which handle the shard’s replicated
data, are a “replica set”.

Replicated data A complete copy of the data. The shard module handles both sharding and replication.
One shard can contain one or more replicated data copies. When a write occurs, the write is attempted
on every replicated data copy in turn. The shard module does not use the built-in replication feature.

Shard A subset of the tuples in the database partitioned according to the value returned by the consistent
hash function. Usually each shard is on a separate node, or a separate set of nodes (for example if
redundancy = 3 then the shard will be on three nodes).

Zone A physical location where the nodes are closely connected, with the same security and backup and
access points. The simplest example of a zone is a single computer with a single Tarantool-server
instance. A shard’s replicated data copies should be in different zones.

The shard package is distributed separately from the main tarantool package. To acquire it, do a separate
installation:

5.2. Rocks reference 319

https://en.wikipedia.org/wiki/Consistent_hashing

Tarantool, Release 1.10.0

e with Tarantool 1.7.44, say:

’ $ tarantoolctl rocks install shard

* install with yum or apt, for example on Ubuntu say:

’ $ sudo apt-get install tarantool-shard

¢ or download from GitHub tarantool/shard and use the Lua files as described in the README.
Then, before using the module, say shard = require('shard").
The most important function is:
shard.init(shard-configuration)
This must be called for every shard.
The shard configuration is a table with these fields:
* servers (a list of URIs of nodes and the zones the nodes are in)
* login (the user name which applies for accessing via the shard module)
* password (the password for the login)
* redundancy (a number, minimum 1)

* binary (a port number that this host is listening on, on the current host, (distinguishable from the
‘listen’ port specified by box.cfg)

Possible errors:
¢ redundancy should not be greater than the number of servers;
¢ the servers must be alive;

¢ two replicated data copies of the same shard should not be in the same zone.

Example: shard.init syntax for one shard

* The number of replicated data copies per shard (redundancy) is 3.
¢ The number of instances is 3.

¢ The shard module will conclude that there is only one shard.

tarantool> cfg = {
- servers — {
{ uri = 'localhost:33131", zone = '1' },
{ uri = "localhost:33132", zone = "2 }
{ uri = 'localhost:33133", zone = '3' }

h

login — "test_user',
password = 'pass',
redundancy = '3',

binary — 33131,

tarantool > shard.init(cfg)

320 Chapter 5. Reference

https://github.com/tarantool/shard

Tarantool, Release 1.10.0

Example: shard.init syntax for three shards

This describes three shards. Each shard has two replicated data copies. Since the number of servers is 7,
and the number of replicated data copies per shard is 2, and dividing 7 / 2 leaves a remainder of 1, one of
the servers will not be used. This is not necessarily an error, because perhaps one of the servers in the list
is not alive.

tarantool > cfg = {
- servers = {
{ uri = "host1:33131", zone — '1' },
{ uri = "host2:33131", zone = '2" },
{ uri = "host3:33131", zone = '3' },
{ uri = "host4:33131", zone — '4' },
{ uri = '"host5:33131", zone = '5"' },
{ uri = "host6:33131", zone = '6' },
{ uri = "host7:33131", zone — '7' }

2

login — "test_user',
password = 'pass',
redundancy — '2',

binary = 33131,

tarantool > shard.init(cfg)

Every data-access function in the box module has an analogue in the shard module:

shard[space-name|.insert{...}
shard[space-name|.replace{...}
shard[space-name].delete{...}
shard[space-name].select{...}
shard[space-name|.update{...}
shard[space-name|.auto _increment{...}

For example, to insert in table T in a sharded database you simply say shard.T:insert{...} instead of box.
space.T:insert{...}.

A shard.T:select{} request without a primary key will search all shards.
Every queued data-access function has an analogue in the shard module:

shard[space-name].q _insert{...}
shard[space-name].q_replace{...}
shard[space-name].q_delete{...}
shard[space-name|.q_select{...}
shard[space-name|.q_update{...}
shard[space-name|.q_auto _increment{...}

The user must add an operation _id. For details of queued data-access functions, and of maintenance-related
functions, see the README.

Example: shard, minimal configuration

There is only one shard, and that shard contains only one replicated data copy. So this isn’t illustrating the
features of either replication or sharding, it’s only illustrating what the syntax is, and what the messages

5.2. Rocks reference 321

https://github.com/tarantool/shard

Tarantool, Release 1.10.0

look like, that anyone could duplicate in a minute or two with the magic of cut-and-paste.

$ mkdir ~/tarantool sandbox 1
$ c¢d ~/tarantool sandbox 1

$ rm -r *.snap

$ rm -r *.xlog

$ 7 /tarantool-1.7/src/tarantool

tarantool > box.cfg{listen = 3301}
tarantool > box.schema.space.create('tester")
tarantool > box.space.tester:create index('primary"', {})
tarantool > box.schema.user.create('test user', {password = 'pass'})
tarantool> box.schema.user.grant('test user', 'read,write,execute’, 'universe')
tarantool > cfg — {

> servers — {

{ uri = 'localhost:3301", zone — "1' },
b
login — 'test user';
password = 'pass';

redundancy — 1;
binary — 3301;

tarantool> shard = require('shard")
tarantool > shard.init(cfg)

tarantool> -- Now put something in ...
tarantool > shard.tester:insert{1, ' Tuple #1'}

If you cut and paste the above, then the result, showing only the requests and responses for shard.init and
shard.tester, should look approximately like this:

<...>

tarantool > shard.init(cfg)

2017-09-06 ... I>> Sharding initialization started...
2017-09-06 ... I> establishing connection to cluster servers...
2017-09-06 ... I>> connected to all servers

2017-09-06 ... I> started

2017-09-06 ... I>> redundancy = 1

2017-09-06 ... I>> Adding localhost:3301 to shard 1
2017-09-06 ... I>> shards = 1

2017-09-06 ... I>> Done

- true

tarantool> -- Now put something in ...

tarantool > shard.tester:insert{1,' Tuple #1'}

- - [1, 'Tuple #1"']

Example: shard, scaling out

There are two shards, and each shard contains one replicated data copy. This requires two nodes. In real life
the two nodes would be two computers, but for this illustration the requirement is merely: start two shells,
which we’ll call Terminal#1 and Terminal #2.

322 Chapter 5. Reference

Tarantool, Release 1.10.0

On Terminal #1, say:

$ mkdir ~/tarantool sandbox 1
$ c¢d ~/tarantool sandbox 1

$ rm -r *.snap

$ rm -r *.xlog

$ 7 /tarantool-1.7/src/tarantool

tarantool > box.cfg{listen = 3301}
tarantool > box.schema.space.create(' tester")
tarantool > box.space.tester:create index('primary"', {})
tarantool > box.schema.user.create('test user', {password = 'pass'})
tarantool > box.schema.user.grant('test user', 'read,write,execute’, "universe')
tarantool> console = require(' console")
tarantool > cfg = {
> servers — {

{ uri = 'localhost:3301", zone — "1" },

{ uri = 'localhost:3302", zone = '2" },
}a
login — 'test user',
password = 'pass',
redundancy = 1,
binary = 3301,

| L ,
\VARRVARRY/

| L ,
vV oV oV

/ \/

>}

tarantool > shard = require('shard")
tarantool> shard.init(cfg)

tarantool> -- Now put something in ...
tarantool > shard.tester:insert{1,' Tuple #1'}

On Terminal #2, say:

$ mkdir T /tarantool sandbox 2
$ cd ~/tarantool sandbox 2

$ rm -r *.snap

$ rm -r * xlog

$ 7 /tarantool-1.7 /src/tarantool

tarantool > box.cfg{listen = 3302}
tarantool> box.schema.space.create(' tester")
tarantool > box.space.tester:create _index('primary', {})
tarantool > box.schema.user.create('test user', {password = 'pass'})
tarantool > box.schema.user.grant('test user', 'read,write,execute', "universe')
tarantool> console = require(' console')
tarantool> cfg = {
> servers — {
> { uri = 'localhost:3301", zone = "1" };
> {uri = 'localhost:3302", zone = '2" };
S
> login — "test wuser';
> password — 'pass';
> redundancy = 1;
> binary = 3302;

tarantool> shard = require('shard")
tarantool > shard.init(cfg)

tarantool> -- Now get something out ...
tarantool > shard.tester:select{1}

What will appear on Terminal #1 is: a loop of error messages saying “Connection refused” and “server check

5.2. Rocks reference 323

Tarantool, Release 1.10.0

failure”. This is normal. It will go on until Terminal #2 process starts.

What will appear on Terminal #2, at the end, should look like this:

tarantool> shard.tester:select{1}

- --[1, "Tuple #1"']

This shows that what was inserted by Terminal #1 can be selected by Terminal #2, via the shard module.
For details, see the README.

5.2.4 Module tdb

The Tarantool Debugger (abbreviation = tdb) can be used with any Lua program. The operational features
include: setting breakpoints, examining variables, going forward one line at a time, backtracing, and showing
information about fibers. The display features include: using different colors for different situations, including
line numbers, and adding hints.

It is not supplied as part of the Tarantool repository; it must be installed separately. Here is the usual way:

$ git clone --recursive https://github.com/Sulverus/tdb
$ cd tdb

$ make

$ sudo make install prefix— /usr/share/tarantool/

To initiate tdb within a Lua program and set a breakpoint, edit the program to include these lines:

tdb = require('tdb")
tdb.start()

To start the debugging session, execute the Lua program. Execution will stop at the breakpoint, and it will
be possible to enter debugging commands.

Debugger Commands

bt Backtrace — show the stack (in red), with program/function names and line numbers of whatever has
been invoked to reach the current line.

¢ Continue till next breakpoint or till program ends.

e Enter evaluation mode. When the program is in evaluation mode, one can execute certain Lua statements
that would be valid in the context. This is particularly useful for displaying the values of the program’s
variables. Other debugger commands will not work until one exits evaluation mode by typing -e.

-e Exit evaluation mode.

f Display the fiber id, the program name, and the percentage of memory used, as a table.

n Go to the next line, skipping over any function calls.

globals Display names of variables or functions which are defined as global.

h Display a list of debugger commands.

locals Display names and values of variables, for example the control variables of a Lua “for” statement.

q Quit immediately.

324 Chapter 5. Reference

https://github.com/tarantool/shard

Tarantool, Release 1.10.0

Example Session

Put the following program in a default directory and call it “example.lua”

tdb = require('tdb")

tdb.start()
i=1
j=ra' i

print('end of program")

Now start Tarantool, using example.lua as the initialization file

$ tarantool example.lua

The screen should now look like this:

$ tarantool example.lua

(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua

(TDB) [example.lua]

(TDB) 3:i— 1

(TDB)>

Debugger prompts are blue, debugger hints and information are green, and the current line — line 3 of
example.lua — is the default color. Now enter six debugger commands:

n -- go to next line

n -- go to next line

e -- enter evaluation mode
j - display j

-e —- exit evaluation mode
q -- quit

The screen should now look like this:

$ tarantool example.lua

(TDB) Tarantool debugger v.0.0.3. Type h for help
example.lua

TDB) [example.lua]

3i=1

Vv
=

V

Another debugger example can be found here.

5.2. Rocks reference 325

https://github.com/sulverus/tdb

Tarantool, Release 1.10.0

5.3 Configuration reference

This reference covers all options and parameters which can be set for Tarantool on the command line or in
an initialization file.

Tarantool is started by entering either of the following command:

$ tarantool
$ tarantool options

$ tarantool lua-initialization-file | arguments |

5.3.1 Command options
-h, --help
Print an annotated list of all available options and exit.

-V, --version
Print product name and version, for example:

$./tarantool --version
Tarantool 1.7.0-1216-g73f7154
Target: Linux-x86_64-Debug

In this example:
“Tarantool” is the name of the reusable asynchronous networking programming framework.

The 3-number version follows the standard <major>-<minor>-<patch> scheme, in which <major>
number is changed only rarely, <minor> is incremented for each new milestone and indicates possible
incompatible changes, and <patch> stands for the number of bug fix releases made after the start of
the milestone. For non-released versions only, there may be a commit number and commit SHA1 to
indicate how much this particular build has diverged from the last release.

“Target” is the platform tarantool was built on. Some platform-specific details may follow this line.

Note: Tarantool uses git describe to produce its version id, and this id can be used at any time to
check out the corresponding source from our git repository.

5.3.2 URI

Some configuration parameters and some functions depend on a URI, or “Universal Resource Identifier”. The
URI string format is similar to the generic syntax for a URI schema. So it may contain (in order) a user name
for login, a password, a host name or host IP address, and a port number. Only the port number is always
mandatory. The password is mandatory if the user name is specified, unless the user name is ‘guest’. So,
formally, the URI syntax is [host:|port or [username:password@]|host:port. If host is omitted, then ‘0.0.0.0°
or ‘[::]” is assumed, meaning respectively any IPv4 address or any IPv6 address, on the local machine. If
username:password is omitted, then ‘guest’ is assumed. Some examples:

326 Chapter 5. Reference

http://www.kernel.org/pub/software/scm/git/docs/git-describe.html
http://github.com/tarantool/tarantool.git
http://en.wikipedia.org/wiki/URI_scheme#Generic_syntax

Tarantool, Release 1.10.0

URI fragment Example

port 3301

host:port 127.0.0.1:3301
username:password@host:port | notguest:sesame@mail.ru:3301

In certain circumstances a Unix domain socket may be used where a URI is expected, for example
“unix/:/tmp/unix _domain _socket.sock” or simply “/tmp/unix _domain _socket.sock”.

A method for parsing URISs is illustrated in Module uri.

5.3.3 Initialization file

If the command to start Tarantool includes lua-initialization-file, then Tarantool begins by invoking the
Lua program in the file, which by convention may have the name “script.lua”. The Lua program may get
further arguments from the command line or may use operating-system functions, such as getenv(). The
Lua program almost always begins by invoking box.cfg(), if the database server will be used or if ports need
to be opened. For example, suppose script.lua contains the lines

#!/usr/bin/env tarantool

box.cfg{
listen = os.getenv("LISTEN URI"),
memtx__memory = 100000,
pid_file = "tarantool.pid",
rows_ per_wal =50
}

print(' Starting ', arg[1])

and suppose the environment variable LISTEN URI contains 3301, and suppose the command line is ~/
tarantool/src/tarantool script.lua ARG. Then the screen might look like this:

$ export LISTEN URI=3301

$ 7 /tarantool/src/tarantool script.lua ARG

... main/101 /script.lua C> version 1.7.0-1216-g73f7154

... main/101 /script.lua C> log level 5

.. main/101/script.lua I>> mapping 107374184 bytes for a shared arena...
... main/101 /script.lua I>> recovery start

... main/101 /script.lua I>> recovering from './00000000000000000000.snap"
.. main/101 /script.lua I>> primary: bound to 0.0.0.0:3301

... main/102/leave_local hot standby I>> ready to accept requests
Starting ARG

.. main C> entering the event loop

If you wish to start an interactive session on the same terminal after initialization is complete, you can use
console.start().

5.3.4 Configuration parameters

Configuration parameters have the form:
box.cfg{[key = value [, key = value ...]||}

Since box.cfg may contain many configuration parameters and since some of the parameters (such as direc-
tory addresses) are semi-permanent, it’s best to keep box.cfg in a Lua file. Typically this Lua file is the
initialization file which is specified on the tarantool command line.

5.3. Configuration reference 327

Tarantool, Release 1.10.0

Most configuration parameters are for allocating resources, opening ports, and specifying database behavior.
All parameters are optional. A few parameters are dynamic, that is, they can be changed at runtime by
calling box.cfg{} a second time.

To see all the non-null parameters, say box.cfg (no parentheses). To see a particular parameter, for example
the listen address, say box.cfg.listen.

The following sections describe all parameters for basic operation, for storage, for binary logging and snap-
shots, for replication, for networking, and for logging.

Basic parameters

background
custom proc_title
listen

memtx _dir
pid file

read only
vinyl dir
vinyl timeout
username

wal dir

work dir

worker pool threads

background

Run the server as a background task. The log and pid_file parameters must be non-null for this to
work.

Type: boolean
Default: false
Dynamic: no

custom_proc_ title

Add the given string to the server’s process title (what’s shown in the COMMAND column for ps -ef
and top -¢ commands).

For example, ordinarily ps -ef shows the Tarantool server process thus:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:13 tarantool <running>

But if the configuration parameters include custom proc_title="sessions' then the output looks like:

$ ps -ef | grep tarantool
1000 14939 14188 1 10:53 pts/2 00:00:16 tarantool <running>: sessions

328

Chapter 5. Reference

Tarantool, Release 1.10.0

Type: string
Default: null
Dynamic: yes

listen
The read/write data port number or URI (Universal Resource Identifier) string. Has no default value,
so must be specified if connections will occur from remote clients that do not use the “admin port”.
Connections made with listen = URI are called “binary port” or “binary protocol” connections.

A typical value is 3301.

Note: A replica also binds to this port, and accepts connections, but these connections can only serve
reads until the replica becomes a master.

Type: integer or string
Default: null
Dynamic: yes

memtx dir
A directory where memtx stores snapshot (.snap) files. Can be relative to work dir. If not specified,
defaults to work dir. See also wal dir.

Type: string
Default: “.”
Dynamic: no

pid_file
Store the process id in this file. Can be relative to work dir. A typical value is “tarantool.pid”.

Type: string
Default: null
Dynamic: no

read only
Say box.cfg{read only=true...} to put the server instance in read-only mode. After this, any requests
that try to change persistent data will fail with error ER_ READONLY. Read-only mode should be
used for master-replica replication. Read-only mode does not affect data-change requests for spaces
defined as temporary. Although read-only mode prevents the server from writing to the WAL, it does
not prevent writing diagnostics with the log module.

Type: boolean
Default: false
Dynamic: yes

5.3. Configuration reference 329

Tarantool, Release 1.10.0

vinyl dir
A directory where vinyl files or subdirectories will be stored. Can be relative to work dir. If not
specified, defaults to work dir.

Type: string
Default: “.”
Dynamic: no

vinyl timeout
The vinyl storage engine has a scheduler which does compaction. When vinyl is low on available
memory, the compaction scheduler may be unable to keep up with incoming update requests. In that
situation, queries may time out after vinyl timeout seconds. This should rarely occur, since normally
vinyl would throttle inserts when it is running low on compaction bandwidth.

Type: float
Default: 60
Dynamic: yes

username
UNIX user name to switch to after start.

Type: string
Default: null
Dynamic: no

wal dir
A directory where write-ahead log (.xlog) files are stored. Can be relative to work dir. Sometimes
wal dir and memtx dir are specified with different values, so that write-ahead log files and snapshot
files can be stored on different disks. If not specified, defaults to work dir.

Type: string
Default: “.”

Dynamic: no

work dir
A directory where database working files will be stored. The server instance switches to work _dir with
chdir(2) after start. Can be relative to the current directory. If not specified, defaults to the current
directory. Other directory parameters may be relative to work dir, for example:

box.cfg{
work dir — ' /home/user/A",
wal dir = 'B",
memtx _dir = 'C'

}

330 Chapter 5. Reference

Tarantool, Release 1.10.0

will put xlog files in /home/user/A /B, snapshot files in /home/user/A/C, and all other files or subdi-

rectories in /home/user/A.

Type: string
Default: null

Dynamic: no

worker pool threads
The maximum number of threads to use during execution of certain internal processes (currently

socket.getaddrinfo() and coio_ call()).

Type: integer
Default: 4
Dynamic: yes

Configuring the storage

memtx__memory
memtx max tuple size
memtx min tuple size
vinyl bloom_fpr

vinyl _cache

vinyl max_tuple size
vinyl memory

vinyl page size

vinyl range size

vinyl run count per level
vinyl run_size ratio
vinyl read threads

vinyl write threads

memtx memory
How much memory Tarantool allocates to actually store tuples, in bytes. When the limit is reached,
INSERT or UPDATE requests begin failing with error ER_MEMORY ISSUE. The server does not
go beyond the memtx memory limit to allocate tuples, but there is additional memory used to store
indexes and connection information. Depending on actual configuration and workload, Tarantool can

consume up to 20% more than the memtx memory limit.

Type: float

Default: 256 * 1024 * 1024 = 268435456

Dynamic: no

5.3. Configuration reference

331

Tarantool, Release 1.10.0

memtx max_tuple size
Size of the largest allocation unit, in bytes, for the memtx storage engine. It can be increased if it is
necessary to store large tuples. See also: vinyl max_tuple size.

Type: integer
Default: 1024 * 1024 = 1048576
Dynamic: no

memtx min_tuple size
Size of the smallest allocation unit, in bytes. It can be decreased if most of the tuples are very small.
The value must be between 8 and 1048280 inclusive.

Type: integer
Default: 16

Dynamic: no

vinyl bloom_fpr
Bloom filter false positive rate — the suitable probability of the bloom filter to give a wrong re-
sult. The vinyl bloom fpr setting is a default value for one of the options in the Options for
space_object:create index() chart.

Type: float
Default = 0.05
Dynamic: no

vinyl cache
The maximal cache size for the vinyl storage engine, in bytes.

Type: integer
Default = 128 * 1024 * 1024 = 134217728

Dynamic: no

vinyl max_tuple size
Size of the largest allocation unit, in bytes, for the vinyl storage engine. It can be increased if it is
necessary to store large tuples. See also: memtx max_tuple size.

Type: integer
Default: 1024 * 1024 = 1048576

Dynamic: no

vinyl memory
The maximum number of in-memory bytes that vinyl uses.

332 Chapter 5. Reference

https://en.wikipedia.org/wiki/Bloom_filter

Tarantool, Release 1.10.0

Type: integer
Default = 128 * 1024 * 1024 = 134217728
Dynamic: no

vinyl page size
Page size, in bytes. Page is a read/write unit for vinyl disk operations. The vinyl page size setting
is a default value for one of the options in the Options for space object:create index() chart.

Type: integer
Default = 8 * 1024 = 8192
Dynamic: no

vinyl range size
The maximal range size for vinyl, in bytes. The vinyl range size setting is a default value for one of
the options in the Options for space object:create index() chart.

Type: integer
Default = 1024 * 1024 * 1024 = 1073741824

Dynamic: no

vinyl run count per level
The maximal number of runs per level in vinyl LSM tree. If this number is exceeded, a new level
is created. The vinyl run count per level setting is a default value for one of the options in the
Options for space object:create index() chart.

Type: integer
Default = 2
Dynamic: no

vinyl run_size ratio
Ratio between the sizes of different levels in the LSM tree. The vinyl run_size ratio setting is a
default value for one of the options in the Options for space object:create index() chart.

Type: float
Default = 3.5

Dynamic: no

vinyl read threads
The maximum number of read threads that vinyl can use for some concurrent operations, such as I/O
and compression.

Type: integer

5.3. Configuration reference 333

Tarantool, Release 1.10.0

Default = 1
Dynamic: no

vinyl write threads
The maximum number of write threads that vinyl can use for some concurrent operations, such as I/0
and compression.

Type: integer
Default = 2
Dynamic: no

Checkpoint daemon

¢ checkpoint count
* checkpoint _interval

The checkpoint daemon is a fiber which is constantly running. At intervals, it may make new snapshot
(.snap) files and then may delete old snapshot files.

If the checkpoint daemon deletes an old snapshot file, then it will also delete any write-ahead log (.xlog) files
which are older than the snapshot file and which contain information that is present in the snapshot file. It
will also delete obsolete vinyl .run files.

The checkpoint _interval and checkpoint count configuration settings determine how long the intervals are,
and how many snapshots should exist before deletions occur.

Note: The checkpoint daemon will not delete a file if:
* a backup is ongoing and the file has not been backed up (see “Hot backup”), or
* replication is ongoing and the file has not been relayed to a replica (see “Replication architecture”),
* a replica is connecting, or

¢ a replica has fallen behind. The progress of each replica is tracked; if a replica’s position is far from
being up to date, then the server stops to give it a chance to catch up. If an administrator concludes
that a replica is permanently down, then the correct procedure is to restart the server, or (preferably)
remove the replica from the cluster.

checkpoint_interval
The interval between actions by the checkpoint daemon, in seconds. If checkpoint interval is set to a
value greater than zero, and there is activity which causes change to a database, then the checkpoint
daemon will call box.snapshot every checkpoint interval seconds, creating a new snapshot file each
time. If checkpoint interval is set to zero, then the checkpoint daemon is disabled.

For example:

box.cfg{checkpoint _interval—60}

will cause the checkpoint daemon to create a new database snapshot once per minute, if there is activity.

Type: integer

334 Chapter 5. Reference

Tarantool, Release 1.10.0

Default: 3600 (one hour)
Dynamic: yes

checkpoint count

The maximum number of snapshots that may exist on the memtx dir directory before the checkpoint
daemon will delete old snapshots. If checkpoint count equals zero, then the checkpoint daemon does
not delete old snapshots. For example:

box.cfg{
checkpoint _interval = 3600,
checkpoint _count = 10

}

will cause the checkpoint daemon to create a new snapshot each hour until it has created ten snapshots.
After that, it will delete the oldest snapshot (and any associated write-ahead-log files) after creating a
new one.

Remember that, as noted earlier, snapshots will not be deleted if replication is ongoing and the file has
not been relayed to a replica. Therefore checkpoint count has no effect unless all replicas are alive.

Type: integer
Default: 2
Dynamic: yes

Binary logging and snapshots

force recovery,
rows_per wal,
snap_io_rate limit,
wal mode,

wal dir rescan delay

force recovery

If force recovery equals true, Tarantool tries to continue if there is an error while reading a snapshot
file (at server instance start) or a write-ahead log file (at server instance start or when applying an
update at a replica): skips invalid records, reads as much data as possible and re-builds the file.

Otherwise, Tarantool aborts recovery on read errors.

Type: boolean
Default: true
Dynamic: no

rows_per wal

How many log records to store in a single write-ahead log file. When this limit is reached, Tarantool
creates another WAL file named <first-Isn-in-wal>.xlog. This can be useful for simple rsync-based
backups.

5.3. Configuration reference 335

Tarantool, Release 1.10.0

Type: integer
Default: 500000
Dynamic: no

snap _io_rate limit
Reduce the throttling effect of box.snapshot on INSERT/UPDATE/DELETE performance by setting
a limit on how many megabytes per second it can write to disk. The same can be achieved by splitting
wal dir and memtx dir locations and moving snapshots to a separate disk.

Type: float
Default: null
Dynamic: yes

wal mode
Specify fiber-WAL-disk synchronization mode as:

¢ none: write-ahead log is not maintained;
* write: fibers wait for their data to be written to the write-ahead log (no fsync(2));

o fsync: fibers wait for their data, fsync(2) follows each write(2);

Type: string
Default: “write”

Dynamic: yes

wal dir rescan delay
Number of seconds between periodic scans of the write-ahead-log file directory, when checking for
changes to write-ahead-log files for the sake of replication or hot standby.

Type: float
Default: 2

Dynamic: no

Hot standby

hot standby
Whether to start the server in hot standby mode.

Hot standby is a feature which provides a simple form of failover without replication.

The expectation is that there will be two instances of the server using the same configuration. The
first one to start will be the “primary” instance. The second one to start will be the “standby” instance.

To initiate the standby instance, start a second instance of the Tarantool server on the same computer
with the same box.cfg configuration settings — including the same directories and same non-null URIs —
and with the additional configuration setting hot standby = true. Expect to see a notification ending
with the words I>> Entering hot standby mode. This is fine. It means that the standby instance is
ready to take over if the primary instance goes down.

336 Chapter 5. Reference

Tarantool, Release 1.10.0

The standby instance will initialize and will try to take a lock on wal dir, but will fail because the
primary instance has made a lock on wal dir. So the standby instance goes into a loop, reading the
write ahead log which the primary instance is writing (so the two instances are always in sync), and
trying to take the lock. If the primary instance goes down for any reason, the lock will be released.
In this case, the standby instance will succeed in taking the lock, will connect on the listen address
and will become the primary instance. Expect to see a notification ending with the words I> ready to
accept requests.

Thus there is no noticeable downtime if the primary instance goes down.
Hot standby feature has no effect:

e if wal dir rescan delay = a large number (on Mac OS and FreeBSD); on these platforms, it is
designed so that the loop repeats every wal dir rescan delay seconds.

e if wal mode = ‘none’; it is designed to work with wal mode = 'write' or wal _mode = 'fsync"'.

« for spaces created with engine = ‘vinyl’; it is designed to work for spaces created with engine =
'memtx'.

Type: boolean
Default: false
Dynamic: no

Replication

e replication

¢ replication timeout

e replication connect quorum
e replicaset uuid

e instance uuid

replication
If replication is not an empty string, the instance is considered to be a Tarantool replica. The replica
will try to connect to the master specified in replication with a URI (Universal Resource Identifier),
for example:

konstantin:secret password@tarantool.org:3301

If there is more than one replication source in a replica set, specify an array of URIs, for example
(replace ‘uri’ and ‘uri2’ in this example with valid URIs):

box.cfg{ replication = { ‘uril’, ‘uri2’ } }

If one of the URIs is “self” — that is, if one of the URIs is for the instance where box.cfg{} is being
executed on — then it is ignored. Thus it is possible to use the same replication specification on multiple
server instances, as shown in these examples.

The default user name is ‘guest’.
A read-only replica does not accept data-change requests on the listen port.

The replication parameter is dynamic, that is, to enter master mode, simply set replication to an empty
string and issue:

box.cfg{ replication = new-value }

5.3. Configuration reference 337

Tarantool, Release 1.10.0

Type: string
Default: null
Dynamic: yes

replication timeout
A replica sends heartbeat messages to the master every second, and the master is programmed to
reconnect automatically if it doesn’t see heartbeat messages more often than replication timeout
seconds.

See more in Monitoring a replica set.

Type: integer
Default: 1
Dynamic: yes

replication connect quorum
By default a replica will try to connect to all the masters, or it will not start. (The default is recom-
mended so that all replicas will receive the same replica set UUID.)

However, by specifying replication _connect quorum = N, where N is a number greater than or equal
to zero, users can state that the replica only needs to connect to N masters.

Example:

box.cfg{replication connect quorum-—2}

Type: integer
Default: null
Dynamic: yes

replicaset uuid
As described in section “Replication architecture”, each replica set is identified by a universally unique
identifier called replica set UUID, and each instance is identified by an instance UUID.

Ordinarily it is sufficient to let the system generate and format the UUID strings which will be per-
manently stored.

However, some administrators may prefer to store Tarantool configuration information in a central
repository, for example Apache ZooKeeper. Such administrators can assign their own UUID values for
either — or both — instances (instance uuid) and replica set (replicaset uuid), when starting up for
the first time.

General rules:

¢ The values must be true unique identifiers, not shared by other instances or replica sets within
the common infrastructure.

* The values must be used consistently, not changed after initial setup (the initial values are stored
in snapshot files and are checked whenever the system is restarted).

¢ The values must comply with RFC 4122. The nil UUID is not allowed.

338 Chapter 5. Reference

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://zookeeper.apache.org
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122#section-4.1.7

Tarantool, Release 1.10.0

The UUID format includes sixteen octets represented as 32 hexadecimal (base 16) digits, displayed in
five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 alphanumeric
characters and four hyphens).

Example:

box.cfg{replicaset uuid="'7b853d13-508b-4b8e-82e6-806{088eabe9 " }

Type: string
Default: null
Dynamic: no

instance uuid
For replication administration purposes, it is possible to set the universally unique identifiers of the
instance (instance uuid) and the replica set (replicaset uuid), instead of having the system generate
the values.

See the description of replicaset uuid parameter for details.

Example:

box.cfg{instance uuid="'037fec43-18a9-4e12-a684-a42b716fcd02 "}

Type: string
Default: null
Dynamic: no

Networking

e io_collect interval,
 readahead

io_collect interval
The instance will sleep for io collect interval seconds between iterations of the event loop. Can be
used to reduce CPU load in deployments in which the number of client connections is large, but requests
are not so frequent (for example, each connection issues just a handful of requests per second).

Type: float
Default: null
Dynamic: yes

readahead
The size of the read-ahead buffer associated with a client connection. The larger the buffer, the more
memory an active connection consumes and the more requests can be read from the operating system
buffer in a single system call. The rule of thumb is to make sure the buffer can contain at least a
few dozen requests. Therefore, if a typical tuple in a request is large, e.g. a few kilobytes or even
megabytes, the read-ahead buffer size should be increased. If batched request processing is not used,
it’s prudent to leave this setting at its default.

5.3. Configuration reference 339

https://en.wikipedia.org/wiki/Universally_unique_identifier

Tarantool, Release 1.10.0

Type: integer
Default: 16320
Dynamic: yes

Logging

log level

log

log nonblock
too_long threshold

log format

log level

What level of detail the log will have. There are seven levels:

* 1 - SYSERROR

* 2 - ERROR

* 3 - CRITICAL
* 4 - WARNING
* 5 - INFO

* 6 - VERBOSE
* 7- DEBUG

By setting log level, one can enable logging of all classes below or equal to the given level. Tarantool
prints its logs to the standard error stream by default, but this can be changed with the log configuration
parameter.

Type: integer
Default: 5
Dynamic: yes

Warning: prior to Tarantool 1.7.5 there were only six levels and DEBUG was level 6. Starting with
Tarantool 1.7.5 VERBOSE is level 6 and DEBUG is level 7. VERBOSE is a new level for monitoring
repetitive events which would cause too much log writing if INFO were used instead.

log
By default, Tarantool sends the log to the standard error stream (stderr). If log is specified, Tarantool
sends the log to a file, or to a pipe, or to the system logger.
Example setting:
box.cfg{log = 'tarantool.log'}
-- or
box.cfg{log = 'file: tarantool.log'}
This will open the file tarantool.log for output on the server’s default directory. If the log string has
no prefix or has the prefix “file:”, then the string is interpreted as a file path.
Example setting:
340 Chapter 5. Reference

Tarantool, Release 1.10.0

box.cfg{log = '| cronolog tarantool.log'}
- or

box.cfg{log — 'pipe: cronolog tarantool.log'}'

This will start the program cronolog when the server starts, and will send all log messages to the
standard input (stdin) of cronolog. If the log string begins with ¢|” or has the prefix “pipe:”, then the
string is interpreted as a Unix pipeline.

Example setting:

box.cfg{log = 'syslog:identity=tarantool '}

- or

box.cfg{log = 'syslog:facility=user' }

-- or

box.cfg{log — 'syslog:identity—tarantool,facility—user' }

If the log string has the prefix “syslog:”, then the string is interpreted as a message for the syslogd
program which normally is running in the background of any Unix-like platform. One can optionally
specify an identity, a facility, or both. The identity is an arbitrary string, default value = tarantool,
which will be placed at the beginning of all messages. The facility is an abbreviation for the name of
one of the syslog facilities, default value = user, which tell syslogd where the message should go.

Possible values for facility are: auth, authpriv, cron, daemon, ftp, kern, Ipr, mail, news, security, syslog,
user, uucp, local0, locall, local2, local3, local4, local5, local6, local7.

The facility setting is currently ignored but will be used in the future.

When logging to a file, Tarantool reopens the log on SIGHUP. When log is a program, its pid is saved
in the log.logger pid variable. You need to send it a signal to rotate logs.

Type: string
Default: null
Dynamic: no

log _nonblock
If log nonblock equals true, Tarantool does not block on the log file descriptor when it’s not ready for
write, and drops the message instead. If log_level is high, and many messages go to the log file, setting
log_nonblock to true may improve logging performance at the cost of some log messages getting lost.

This parameter has effect only if the output is going to syslog or to a pipe.

Type: boolean
Default: true
Dynamic: no

too_ long threshold
If processing a request takes longer than the given value (in seconds), warn about it in the log. Has
effect only if log_level is more than or equal to 4 (WARNING).

Type: float
Default: 0.5

5.3. Configuration reference 341

https://linux.die.net/man/1/cronolog
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
http://www.rfc-base.org/txt/rfc-5424.txt
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/SIGHUP

Tarantool, Release 1.10.0

Dynamic: yes

log format

Log entries have two possible formats:
¢ ‘plain’ (the default), or
* ‘json’ (with more detail and with JSON labels).

Here is what a log entry looks like after box.cfg{log format="plain"'}:

2017-10-16 11:36:01.508 [18081] main/101/interactive I> set 'log format' configuration option to "plain"

Here is what a log entry looks like after box.cfg{log format="json" }:

{"time": "2017-10-16T11:36:17.996-0600",

"evel": "INFO",

"message": "set 'log format' configuration option to \"json\"",
"pid": 18081,

"cord name": "main",

"fiber id": 101,

"fiber _name": "interactive",

"file": "builtin\ /box\ /load _cfg.lua",
"line": 317}

The log format="plain' entry has time, process id, cord name, fiber id, fiber name, log level, and

message.

The log_format="json' entry has the same things along with their labels, and in addition has the file

name and line number of the Tarantool source.

Type: string
Default: ‘plain’
Dynamic: yes

Logging example

This will illustrate how “rotation” works, that is, what happens when the server instance is writing to a log
and signals are used when archiving it.

Start with two terminal shells, Terminal #1 and Terminal #2.

On Terminal #1: start an interactive Tarantool session, then say the logging will go to Log _file, then put
a message “Log Line #1” in the log file:

box.cfg{log—"'Log file'}

log

require('log")

log.info(' Log Line #1")

On Terminal #2: use mv so the log file is now named Log_file.bak. The result of this is: the next log
message will go to Log_file.bak.

mv Log_file Log file.bak

On Terminal #1: put a message “Log Line #2” in the log file.

342

Chapter 5. Reference

Tarantool, Release 1.10.0

’ log.info('Log Line #2")

On Terminal #2: use ps to find the process ID of the Tarantool instance.

’ ps -A | grep tarantool

On Terminal #2: use kill -HUP to send a SIGHUP signal to the Tarantool instance. The result of this is:
Tarantool will open Log_file again, and the next log message will go to Log_file. (The same effect could be
accomplished by executing log.rotate() on the instance.)

kill -HUP process_ id
On Terminal #1: put a message “Log Line #3” in the log file.

log.info('Log Line #3")

On Terminal #2: use less to examine files. Log_file.bak will have these lines, except that the date and time
will depend on when the example is done:

2015-11-30 15:13:06.373 [27469] main/101 /interactive I > Log Line #1°
2015-11-30 15:14:25.973 [27469] main/101/interactive I> Log Line #2°

and Log file will have

log file has been reopened
2015-11-30 15:15:32.629 [27469] main/101 /interactive I> Log Line #3

Deprecated parameters

These parameters are deprecated since Tarantool version 1.7.4:
e coredump
* logger
* logger nonblock
e panic_on_ snap error,
e panic_on_wal error
* replication source
e slab_alloc_arena
e slab_alloc_factor
* slab alloc maximal
e slab_alloc_ minimal
e snap_dir
* snapshot count
* snapshot period

coredump
Deprecated, do not use.

Type: boolean

5.3. Configuration reference 343

Tarantool, Release 1.10.0

Default: false
Dynamic: no

logger
Deprecated in favor of log. The parameter was only renamed, while the type, values and semantics
remained intact.

logger nonblock
Deprecated in favor of log nonblock. The parameter was only renamed, while the type, values and
semantics remained intact.

panic_on_snap _error
Deprecated in favor of force recovery.

If there is an error while reading a snapshot file (at server instance start), abort.

Type: boolean
Default: true

Dynamic: no

panic_on_wal error
Deprecated in favor of force recovery.

Type: boolean
Default: true
Dynamic: yes

replication source
Deprecated in favor of replication. The parameter was only renamed, while the type, values and
semantics remained intact.

slab_alloc_arena
Deprecated in favor of memtx memory.

How much memory Tarantool allocates to actually store tuples, in gigabytes. When the limit is reached,
INSERT or UPDATE requests begin failing with error ER._ MEMORY ISSUE. While the server does
not go beyond the defined limit to allocate tuples, there is additional memory used to store indexes
and connection information. Depending on actual configuration and workload, Tarantool can consume
up to 20% more than the limit set here.

Type: float
Default: 1.0

Dynamic: no

slab_alloc_ factor
Deprecated, do not use.

344 Chapter 5. Reference

Tarantool, Release 1.10.0

The multiplier for computing the sizes of memory chunks that tuples are stored in. A lower value may
result in less wasted memory depen